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Abstract—The Internet has witnessed rapidly increasing
streaming traffic to various mobile devices. In this paper, we find
that for the popular iOS based mobile devices, accessing popular
Internet streaming services typically involves about 10% - 70%
unnecessary redundant traffic. Such a practice not only over-
utilizes and wastes resources on the server side and the network
(cellular or Internet), but also consumes additional battery power
on users’ mobile devices and leads to possible monetary cost. To
alleviate such a situation without changing the server side or
the iOS, we design and implement a CStreamer prototype that
can transparently work between existing iOS devices and media
servers. We also build a CStreamer iOS App to enable end users
to access Internet streaming services via CStreamer. Experiments
conducted based on this prototype running on Amazon EC2 show
that CStreamer can completely eliminate the redundant traffic
without degrading user’s QoS.

I. INTRODUCTION

Today mobile devices, such as iPhone and iPad, are becom-

ing more and more popular. Accesses from mobile devices

are directed to all kinds of Internet streaming services. For

example, popular video sharing websites such as YouTube [1],

Dailymotion [2], and Veoh [3], all allow mobile users to access

their services. As a result, today mobile video traffic dominates

the Internet mobile traffic. According to Cisco’s report [4],

mobile video traffic accounts for 52% of total mobile data

traffic in 2011, and is predicted to exceed two thirds by 2016.

It has been found that 80% of the mobile video accesses take

place on iOS devices [5].

Compared to general web surfing on the Internet, streaming

applications often involve bulk data transmission in a con-

tinuous fashion, which may deplete the limited battery power

supply at a fast pace and incur extra monetary cost for cellular

data plan users. Therefore, for mobile devices and mobile

users, it is very important that the streaming data should be

delivered in a precise fashion without unnecessary traffic or

extra monetary cost. However, in this paper, we find that for

the popular iOS based mobile devices, accessing streaming

services typically involves about 10% to 70% unnecessary

redundant traffic if a user watches the requested video from

the beginning to the end. That is, such redundant traffic is

not due to the early termination of the client access. Through

experiments and analysis, we further investigate why such a

significant amount of redundant traffic is transmitted. Our re-

sults show that: (1) to improve user’s experience of potentially

re-watching the video, the iOS MediaPlayer constantly re-

downloads the beginning part of the video again after finishing

downloading the entire file; (2) when the downloading speed is

fast, the MediaPlayer frequently aborts the HTTP connection

and then sends the request again, causing data in flow to be

wasted; and (3) when the downloading speed is slow, the

MediaPlayer continuously sends additional and overlapping

requests to smooth the playback.

Such a significant amount of redundant traffic not only

wastes network bandwidth, but also over-utilizes server-side

resources. A streaming server is often short of bandwidth and

processing power today due to the rapid increase of video

files and requests. Moreover, even if such redundant traffic is

for the sake of user’s perceived streaming performance, it is

detrimental to the mobile device’s interest (in terms of battery

power consumption) and the mobile user’s interest (in terms

of potential extra monetary cost).

Motivated by our measurement results, we examine the

potential causes for such unnecessary traffic in normal mobile

streaming accesses. We find these problems are mainly due

to the limited memory size of popular iOS devices and the

too fast/slow network connections. These findings motivate

us to seek effective solutions to alleviate and minimize such

redundant traffic without modifying the server side or the client

side. For this purpose, we design and implement CStreamer

that can transparently work between the client and the server.

CStreamer partitions the video content into small segments. To

eliminate the re-downloaded traffic, CStreamer synchronizes

the downloading with the MediaPlayer’s playback progress.

To refrain from sending too fast, it serves the segments peri-

odically, instead of all at once. To deal with slow connections,

CStreamer allows the MediaPlayer to seamlessly switch to a

lower quality version of the same video provided by the server.

To evaluate the effectiveness of CStreamer in minimizing

the redundant traffic, we have implemented a prototype of

CStreamer running on Amazon EC2. To enable transparent

user accesses, we have also built a corresponding CStreamer

App. Different iOS devices are instructed to access various

streaming services via this prototype. Our experimental results

show that CStreamer can completely eliminate the redundant

traffic without affecting user perceived streaming experience.

In summary, this paper makes the following contributions:

• We find that the current streaming services to iOS mobile

devices often generate 10% to 70% redundant traffic that

is detrimental to the server (for delivery), the network (for

transmission), the mobile device (for battery consumption),

and the mobile user (for money).



• Conducting client-side experiments, we investigate the

potential reasons of such redundant traffic. We find it is

mainly attributed to the limited memory size of mobile

devices, and too fast or too slow network connections.

• Motivated by our findings, we design and implement

CStreamer that transparently works between the client and

the server. We evaluate our CStreamer prototype with

various popular Internet streaming services, and show that

CStreamer can completely eliminate redundant traffic with-

out degrading the user’s QoS.

II. HTTP RANGE REQUEST AND STREAMING TO IOS

Among the popular mobile devices, iOS based devices are

leading the market [6]. According to Freewheel, 80% of wire-

less video views take place on iOS devices [5]. iOS supports

two streaming protocols: Pseudo streaming and HTTP Live

Streaming (HLS) [7]. Pseudo streaming today carries more

mobile traffic than HLS, as it is often used by video streaming

services like YouTube [1] and DailyMotion [2], and YouTube

alone contributes 27% of mobile traffic in North America [8].

With Pseudo streaming, the client can download the media

content from an HTTP server. The playback can start before

the entire file is downloaded. The client uses HTTP range

requests to request part of the video file. An HTTP range

request, or range request in short, is an HTTP request with

ranges specified in the header of the request, indicating the

desired data range of the requested file. The server only needs

to respond with that part of data instead of the entire file.

However, the entire file can be requested with the range

specified from 0 to filesize-1.

The iOS MediaPlayer identifies itself with the user agents

(e.g., AppleCoreMedia/1.0.0). It would first ask the

server for meta-data information about the video file, including

file size, last modified time, etc. This is achieved by sending

out an HTTP GET request specifying a range of 0-1. Then,

the MediaPlayer would send multiple HTTP requests for the

video file, and specifies a range to download in each request.

III. LOCAL MEASUREMENT RESULTS

We have conducted experiments with four devices running

different versions of iOS: iPod Touch (iOS 3.1.2), iPhone 3G

(iOS 4.2.1), iPhone 3GS (iOS 5.0.1), and iPhone 4S (iOS 5.1).

These devices are instructed to access the streaming services

of YouTube, Dailymotion, and Veoh via MobileSafari. Due to

space limit, we only show the results of YouTube. During the

experiments, to record all the incoming and outgoing packets,

we setup Wireshark to listen on the same channel as the

testing device in promiscuous mode and capture all packets

received/delivered from our testing devices.

We use our iOS devices to watch a same 480-second

YouTube video repeatedly. We capture all the packets in the

streaming sessions, and compare the actual size of the video

file (36.7 MBytes) with the total number of bytes in the HTTP

responses that are received by our testing devices. In these

experiments, all viewing sessions are normal sessions without

early termination, seeking, or replay. Figure 1(a) shows the
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Fig. 1: Statistics of iOS devices watching YouTube

results. Most of the streaming sessions received more than 40

MBytes of responses, which is 10% more than the file size.

It is noticeable that iPhone 3G even received more than 74

MBytes of traffic in some sessions, which is more than doubled

the size of the video file. Note that we only count the TCP

payload (i.e., video data) of HTTP responses here, without

taking into account the protocol headers. Our experiments with

Dailymotion and Veoh show similar results.

The impact of such an extra amount of redundant traffic is

multi-fold. First, this increases the traffic on the Internet. More

importantly, this adds additional load on the server while a

server is constantly busy with serving multiple clients. Besides

unnecessarily over-utilizing the server and Internet resources,

such traffic is also detrimental to the user and mobile device’s

interests. On one hand, receiving more data would make

the wireless network interface card (WNIC) on the mobile

device work longer and thus consume more battery power. On

the other hand, if the video is downloaded using a cellular

network connection, it would lead to user’s data plan tier be

reached sooner than expected and generate more monetary cost

because cellular data plans today often use a tiered billing

model.

IV. SUMMARY OF REDUNDANT TRAFFIC ANALYSIS

To find out why such redundant traffic is transmitted, we

closely study the captured workloads and further conduct

experiments to validate our findings. Our experiments and

analysis reveal three causes of the redundant streaming traffic.

Due to space limit, we only present our major findings here.

Please refer to our technical report [9] for detailed analysis.

With Pseudo streaming, the entire video file may have been

downloaded while the video is still playing. However, the iOS

MediaPlayer automatically starts to request the file from the

beginning again afterwards. Our conjecture for this behavior

is that the MediaPlayer downloads the data again in case the

user wants to re-watch the video. Due to the limited amount

of memory that is made available to the MediaPlayer by the

OS, it is sometimes not feasible for the mobile device to fit

the entire video in the memory. Therefore, the MediaPlayer

has to request the missing part of the video that is not cached

in the memory.

Besides re-downloading, we find that the MediaPlayer often

aborts the TCP connection before it receives all the requested

data, and starts a new connection afterwards. A new HTTP



range request would be sent to the server through a new

connection, with Byte-Range from the last successfully

received byte in the previous connection all the way to the

end of the file. Figure 1(b) shows the total number of TCP

connections used to download the entire video file from the

YouTube server. Such abnormal aborts cause traffic in flow

wasted. Our conjecture is that when MediaPlayer finds the

downloading speed is so fast that the downloaded but not-

played part of the video has nearly filled up all the available

memory, it decides to abort the connection and let the playback

buffer consume before it resumes the downloading.

While the fast serving/downloading speed from the server

can cause redundant traffic, we find that a slow speed causes

problems as well. When the MediaPlayer finds that the down-

loading speed of the current connection is not fast enough

to keep up with the playback progress, it would start new

connections to request data in the unit of 64 KBytes continu-

ously. This helps smoothly play the video by fetching desired

data directly. However, the original “slow” connection is not

terminated, and continues to download.

V. DESIGN AND IMPLEMENTATION OF CSTREAMER

The redundant traffic is mainly caused by the limited avail-

able memory on mobile devices and the mismatch between

the client and the server for connection aborts. Such redundant

streaming traffic not only over-utilizes the Internet and server

resources, but also incurs extra battery power consumption and

potential monetary cost to users.

Unlike desktop operating systems, mobile operating systems

today do not use swap/virtual memory to extend memory size.

Moreover, as we have shown, even if the physical memory

size is increased from 128 MBytes in iPhone 3G to 512

MBytes in iPhone 4S, the problem persists. This is likely due

to the increased screen resolution of iPhone 4S that uses more

memory for display, and the increased degree of multitasking

on iPhone 4S. As the quality level of mobile videos also keeps

increasing, the limited memory size is likely to continue as a

bottleneck for Internet mobile streaming.

Furthermore, given that iOS is a closed system, it is difficult

to address the redundant traffic problem by modifying the iOS

MediaPlayer. One may argue that such a problem is due to

design pitfall or a software bug, and can be fixed by software

updates. However, such a problem is seen in different iOS

versions from 3.1.2 to 5.1 with millions of devices installed.

Updating existing software may not be easy and quick.

With these considerations in mind, we have built a mid-

dleware system, which we call CStreamer. With CStreamer,

redundant traffic can be eliminated without changing either

the iOS operating system or the many media sites which serve

videos via Pseudo streaming.

A. CStreamer Design

While Pseudo streaming to iOS generates redundant traffic

due to three reasons as discussed in section IV, we find that

such phenomena does not happen when videos are delivered
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Fig. 2: Overview of CStreamer

with HTTP Live Streaming (HLS). This suggests a straight-

forward solution for mitigating the redundant traffic in Pseudo

streaming: convert Pseudo streaming into HLS. The challenge

here, however, is how such conversions can be done in a

transparent approach.

Figure 2 shows the architecture of the CStreamer. CStreamer

combines an iOS App with a proxy-like CStreamer server.

The iOS App works with the CStreamer server to rewrite

Pseudo streaming video links so that the MediaPlayer requests

streaming data using HLS from the CStreamer server. When

the CStreamer server receives such a video request with the

re-written URL, it downloads the desired video from the video

server using a single GET request. Then it segments the video

according to HLS, and transmits the segments to the iOS

devices for playback. Converting Pseudo streaming to HLS

with CStreamer brings the following benefits:

1) When downloading speed is fast: With HLS, a subse-

quent request is not sent out immediately following the current

one. Rather, it waits for its turn until the playback progress

has reached its scheduled time. Therefore, the request rate is

not as aggressive as in Pseudo streaming, HTTP requests are

not aborted even the available memory size of the requesting

device is small. Moreover, the MediaPlayer does not re-

download the beginning portion of the video after finishing

downloading the entire video.

2) When downloading speed is slow: While downloading

a video using Pseudo streaming under a slow connection, the

MediaPlayer issues parallel, overlapping requests for video

ranges, leading to redundant traffic and even slower effective

downloading speeds. When the MediaPlayer goes through

CStreamer transparently, however, it would always wait to re-

ceive the full response of the current request, without sending

out any additional overlapping requests. To adaptively deliver

the video when the connection speed is slow, CStreamer

requests a high quality version and a low quality version of

the same video, segments both versions, and puts the meta-

information of both versions in the same playlist, allowing the

user to seamlessly switch between different versions.

B. CStreamer Implementation

Our CStreamer prototype has four major components:

1) Request Handler: The Request Handler processes two

types of requests sent by the mobile device: meta-info requests

and video requests. For meta-info request (e.g., requesting

a file containing video name, duration, and video link), the

Request Handler would request the desired content. However,

before it delivers the response, it rewrites the Pseudo streaming



link in the response to a new URL: the CStreamer URL.

This URL is an HLS URL that points to a new playlist

file on the CStreamer Media Server. After the mobile device

receives the response containing the CStreamer URL, if the

user decides to watch the video, the MediaPlayer would send

out a video request directing for the CStreamer URL. When

the Request Handler receives such a video request, it would

call the Media Downloader.

2) Media Downloader: The Media Downloader receives

the request from the Request Handler. It extracts the orig-

inal Pseudo streaming link from the CStreamer URL, and

starts immediately to download the requested video at the

highest speed. As the video is being downloaded, the Media

Downloader pipelines the downloaded content to the Media

Segmenter, which segments the video without waiting for the

downloading to complete. This pipelining procedure results in

a minimal user perceived start-up delay.

3) Media Segmenter: The Media Segmenter consists of two

parts: Container Changer, and Segmenter. Videos deliverable

to iOS devices via Pseudo streaming today, are often put into

either MP4 or 3GP format other than MPEG2-TS used by

HLS. The video file must be put into MPEG2-TS container

format to be segmented. However, unlike video transcoding

which is CPU intensive and slow, changing only the container

format does not require changing the audio/video encoding

and is fast enough to be conducted at real-time.

The Media Segmenter receives pipelined output from the

Media Downloader, feeds the data into the Container Changer

to change the container format. The Container Changer further

pipelines its output to the Segmenter, which segments the

video into segments. The pipelined execution of the Media

Downloader and the Media Segmenter makes CStreamer very

fast to prepare the video content.

After the requested video has been processed, the Media

Downloader and the Media Segmenter can move on to process

another version of the same video, either in higher quality or

lower quality.

4) Media Server: While the Media Downloader and Media

Segmenter are still processing, the Media Server allows the

user to download and watch the first segment. Without an

EXT-X-ENDLIST tag in the playlist file, the MediaPlayer

would wait and retrieve the playlist again later from the Media

Server, which contains updated playback meta-information.

To efficiently utilize the storage at the Media Server, and

save the downloading bandwidth cost, it also maintains a

database with information about the original video file (e.g.,

web service, video id, video link, etc.) and its corresponding

segmented files (e.g., location, playlist file, etc.). This allows

more requests for the same video to be served directly from

the Media Server, without repeating the downloading and

segmenting processes.

C. CStreamer iOS App

For an iOS device to use CStreamer, the end user can set the

CStreamer server as an HTTP proxy to handle the requests.

However, manually configuring the iOS device is inconvenient
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Fig. 3: CStreamer Eliminates Redundant Traffic

for end users, and proxying all traffic through CStreamer puts

a lot of burden on the CStreamer server. To mitigate such

drawbacks, we have also implemented a CStreamer App. To

end users, the CStreamer App is a web browser. However, it

monitors all requests, and identifies meta-info requests. For

example, the request URL for a YouTube video meta-info

starts with http://m.youtube.com/watch?ajax=1.

The response to this request contains a json file with video’s

Pseudo streaming link in it. The CStreamer App redirects such

video meta-info requests to the CStreamer server, where the

response is rewritten by the Request Handler.

VI. PERFORMANCE EVALUATION

To evaluate the effectiveness of CStreamer, we implement

our prototype CStreamer server and run it on Amazon EC2.

We run CStreamer on an EC2 Micro Instance, and

instruct our iOS devices to access the video services of

YouTube and Dailymotion via CStreamer. For each access, we

have repeated the experiments 10 times consecutively. In our

experiments, we focus on whether CStreamer can serve users’

requests in a timely manner, so we do not consider the case

when the video can be directly served from CStreamer cache.

After each experiment with CStreamer, we would empty the

media server’s storage.

Figure 3(a) shows the traffic patterns of two consecutive

experiments we conducted to watch a 480-second YouTube

video on iPhone 3GS using Pseudo streaming and CStreamer,

respectively. Results with other iOS devices are similar, and

we omit them due to space limitation. With Pseudo streaming,

over 59 MBytes of traffic was delivered. With CStreamer,

the 480-second video is segmented into 48 segments. Each

segment is delivered every 10 seconds, except for the first

5 segments, which were requested aggressively by the Medi-

aPlayer. As a result, (1) each segment is downloaded only once

and no re-request is observed, even if the last segment finishes

downloading 40 seconds earlier before the end of playback;

(2) the MediaPlayer on the iPhone 3GS did not abort any

connections, and each segment is downloaded in only one

connection. As a result, no redundant traffic is transmitted

during the entire streaming session. As a result, about 32%

of traffic is saved compared to using Pseudo streaming.

Similarly, Figure 3(b) shows the traffic patterns of watching

a 478-second video on Dailymotion. More than 50 MBytes

of traffic was transmitted using Pseudo streaming, while

CStreamer did not cause any redundant traffic.



TABLE I: ESTIMATED START-UP DELAY (SECONDS)

Name Pseudo streaming CStreamer

YouTube 1.78 1.75

Dailymotion 2.42 2.87

TABLE II: AVERAGE WNIC SLEEP TIME (%)

Name Pseudo streaming CStreamer

YouTube 80.9 87.7

Dailymotion 79.8 90.5

We further examine if the start-up delay is increased due

to additional processing between the client and the server. We

estimate the start-up delay of Pseudo streaming by examining

the period between the HTTP request for the video is sent and

when the first 10-second of streaming data is received. For

CStreamer, we examine the period between when the video

request is sent and when the first segment was downloaded.

To make the comparison more meaningful, we compare a pair

of experiments that are conducted sequentially. Table I shows

the results. For YouTube, we find that the video server is close

to our testing location. So with Pseudo streaming, it took only

1.78 seconds to download the initial 10 seconds of playback

data. With CStreamer, despite the communication between

our client and CStreamer server as well as the processing

delay, it took 1.75 seconds to download the first 10-second

segment. Similar to YouTube, we find that Dailymotion does

not experience much additional delay either. This indicates the

start-up delay, which is important to user perceived QoS, is

not affected by CStreamer.

Using CStreamer also brings another benefit. It allows the

wireless network interface card (WNIC) on the mobile device

to spend more time in low-power sleep mode, and thus saves

battery power consumption. The battery saving comes from

two aspects: the reduced total traffic amount and the bursty

traffic delivery. For example, in the YouTube experiment, the

WNIC is able to sleep 86.8% (416 seconds) of time during

the 480 second playback; while it only sleeps 85.0% of time

in our succeeding test when watching the same video via

Pseudo streaming. For Dailymotion, using CStreamer allows

the WNIC to sleep 91.7% (439 seconds) of the time over

478 seconds, while it can only sleep 83.6% time when using

Pseudo streaming. The average of the 10 experiments is shown

in Table II.

VII. RELATED WORK

In recent years, the Internet mobile streaming traffic has

increased dramatically. Pseudo streaming (as used by popular

video services like YouTube) and HTTP Live Streaming

(HLS) (as promoted by Apple) are among the most popular

streaming protocols used by mobile devices today. Plenty of

previous work had focused on analyzing these two protocols.

In our prior work [10], we compared the energy-efficiency

of different streaming protocols, including HLS and Pseudo

streaming. Finamore et al. collected traffic from several edge

locations and studied the potential reasons for the inferior

streaming experience of mobile YouTube users [11]. Erman et

al. examined mobile video traffic (HLS and Pseudo streaming

combined) over cellular networks from the ISP’s perspec-

tive [12]. Li et al. examined an iOS mobile TV that uses

HLS based on server-side logs [13]. In this work, focusing

on the dominant iOS devices, we find that streaming to these

iOS devices has introduced a significant amount of redundant

traffic in the current practice, which is detrimental to both the

server and the client, as well as the resource utilization on the

Internet. Our proposed solution can effectively address this

problem without requiring changes at either the client side or

the server side.

VIII. CONCLUSION

Internet mobile streaming traffic has started to dominate

the Internet mobile data traffic, and it continues to increase

with wider adoption of all kinds of mobile devices. Precisely

delivering streaming traffic to mobile devices is not only

important to the service providers and the Internet, but also

important to mobile devices (battery power wise) and mobile

users (monetary cost wise). In this paper, through measure-

ment and analysis, we find that there is non-trivial redundant

traffic delivered when existing mobile streaming services are

accessed on iOS devices. Motivated by the analysis results,

we design a middleware that can transparently reduce such

redundant traffic. Having evaluated with a prototype installed

on Amazon EC2, we find that our solution can completely

eliminate such redundant traffic without degrading end users’

performance.
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