
AWK REFERENCE

Action Statements .. 7
Arrays ... 11
Awk Program Execution ... 4
Bit Manipulation Functions (gawk) 16
Bug Reports.. 2
Closing Redirections .. 12
Command Line Arguments (standard) 2
Command Line Arguments (gawk) 3
Command Line Arguments (mawk) 4
Conversions And Comparisons 9
Copying Permissions.. 18
Definitions .. 2
Dynamic Extensions (gawk) 14
Environment Variables (gawk) 16
Escape Sequences... 8
Expressions ... 11
Fields .. 6
FTP/HTTP Information.. 18
Historical Features (gawk) .. 16
Input Control .. 12
Internationalization (gawk) ... 18
Lines And Statements... 5
Localization (gawk)... 17
Numeric Functions ... 14
Output Control.. 12
Pattern Elements... 7
POSIX Character Classes (gawk)................................ 6
Printf Formats ... 13
Records ... 6
Regular Expressions ... 5
Special Filenames... 14
String Functions ... 15
Time Functions (gawk).. 16
User-defined Functions .. 17
Variables ... 8

CONTENTS

Arnold Robbins wrote this reference card. We thank Brian
Kernighan and Michael Brennan who reviewed it.

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA

Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652

E-mail: gnu@gnu.org
URL: http://www.gnu.org

Source Distributions on CD-ROM
Deluxe Distributions

Emacs, Gawk, Make and GDB Manuals
Emacs and GDB References

OTHER FSF PRODUCTS:

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.

1

This card describes POSIX AWK, as well as the three freely
available awk implementations (see FTP/HTTP Infor mation
below). Common extensions (in two or more versions) are
printed in light blue. Features specific to just one version—
usually GNU AWK (gawk)—are printed in dark blue.
Exceptions and deprecated features are printed in red. Features
mandated by POSIX are printed in black.

Several type faces are used to clarify the meaning:
• Courier Bold is used for computer input.
• Times Italic is used for emphasis, to indicate user input and for

syntactic placeholders, such as variable or action.
• Times Roman is used for explanatory text.

number − a floating point number as in ANSI C, such as 3, 2.3,
1.4e2 or 4.1E5. Numbers may also be given in octal or
hexadecimal: e.g., 011 or 0x11.

escape sequences − a special sequence of characters beginning
with a backslash, used to describe otherwise unprintable
characters. (See Escape Sequences below.)

string − a group of characters enclosed in double quotes. Strings
may contain escape sequences.

regexp − a regular expression, either a regexp constant enclosed in
forward slashes, or a dynamic regexp computed at run-time.
Regexp constants may contain escape sequences.

name − a variable, array or function name.

entry(N) − entry entry in section N of the UNIX reference
manual.

pattern − an expression describing an input record to be matched.

action − statements to execute when an input record is matched.

rule − a pattern-action pair, where the pattern or action may be
missing.

DEFINITIONS

Command line arguments control setting the field separator,
setting variables before the BEGIN rule is run, and the location of
AWK program source code. Implementation-specific command
line arguments change the behavior of the running interpreter.

−F fs use fs for the input field separator.
−v var=val assign the value val to the variable var before

execution of the program begins. Such variable
values are available to the BEGIN rule.

−f prog-file read the AWK program source from the file
prog-file, instead of from the first command line
argument. Multiple −f options may be used.

−− signal the end of options.

The following options are accepted by both Bell Labs awk and
gawk (ignored by gawk, not in mawk).

−mf val set the maximum number of fields to val
−mr val set the maximum record size to val

COMMAND LINE ARGUMENTS (standard)

If you find a bug in this reference card, please report it via
electronic mail to bug-gawk@gnu.org.

BUG REPORTS

2

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

The following options are specific to gawk. You may also use
‘‘−W option’’ for full POSIX compliance. Long options may
abbreviated as long as the abbreviation remains unique.

−−assign var=val just like −v.
−−field-separator fs just like −F.
−−file prog-file just like −f.
−−compat, −−traditional

disable gawk-specific extensions (the use of
−−traditional is preferred).

−−copyleft, −−copyright
print the short version of the GNU copyright
information on stdout.

−−dump-variables[=file]
Print a sorted list of global variables, their types
and final values to file. If no file is provided,
gawk uses awkvars.out.

−−gen−po process the program and print a GNU gettext
format .po format file on standard output,
containing the text of all strings that were
marked for localization.

−−help, −−usage
print a short summary of the available options on
stdout, then exit zero.

−−lint[=fatal]
warn about constructs that are dubious or non-
portable to other awks. With an optional
argument of fatal, lint warnings become fatal
errors.

−−lint−old warn about constructs that are not portable to the
original version of Unix awk.

−−non−decimal−data
recognize octal and hexadecimal values in input
data. Use this option with great caution!

−−posix disable common and GNU extensions. Enable
interval expressions in regular expression
matching (see Regular Expressions below).

−−profile[=prof_file]
send profiling data to prof_file (default:
awkprof.out). With gawk, the profile is just
a ‘‘pretty printed’’ version of the program. With
pgawk, the profile contains execution counts in
the left margin of each statement in the program.

−−re−interval
enable interval expressions in regular expression
matching (see Regular Expressions below).
Useful if −−posix is not specified.

−−source ’text’
use text as AWK program source code.

−−version print version information on stdout and exit
zero.

In compatibility mode, any other options are flagged as invalid,
but are otherwise ignored. In normal operation, as long as
program text has been supplied, unknown options are passed on
to the AWK program in ARGV for processing. This is most useful
for running AWK programs via the #! executable interpreter
mechanism.

pgawk accepts two signals. SIGUSR1 causes it to dump a profile
and function call stack to the profile file. It then continues to run.
SIGHUP causes it to dump the profile and function call stack and
then exit.

COMMAND LINE ARGUMENTS (gawk)

3

The following options are specific to mawk.

−W dump print an assembly listing of the program
to stdout and exit zero.

−W exec file read program text from file. No other
options are processed. Useful with #!.

−W interactive unbuffer stdout and line buffer
stdin. Lines are always records,
ignoring RS.

−W posix_space \n separates fields when RS = "".
−W sprintf=num adjust the size of mawk’s internal

sprintf buffer.
−W version print version and copyright on stdout

and limit information on stderr and
exit zero.

The options may be abbreviated using just the first letter, e.g.,
−We, −Wv and so on.

COMMAND LINE ARGUMENTS (mawk)

AWK programs are a sequence of pattern-action statements and
optional function definitions.

pattern { action statements }
function name(parameter list) { statements }

awk first reads the program source from the prog-file(s), if
specified, from arguments to −−source, or from the first non-
option argument on the command line. The program text is read
as if all the prog-file(s) and command line source texts had been
concatenated.

AWK programs execute in the following order. First, all variable
assignments specified via the −v option are performed. Next,
awk executes the code in the BEGIN rules(s), if any, and then
proceeds to read the files 1 through ARGC − 1 in the ARGV
array. (Adjusting ARGC and ARGV thus provides control over the
input files that will be processed.) If there are no files named on
the command line, awk reads the standard input.

If a command line argument has the form var=val, it is treated as
a variable assignment. The variable var will be assigned the value
val. (This happens after any BEGIN rule(s) have been run.)
Command line variable assignment is most useful for
dynamically assigning values to the variables awk uses to control
how input is broken into fields and records. It is also useful for
controlling state if multiple passes are needed over a single data
file.

If the value of a particular element of ARGV is empty (""), awk
skips over it.

For each record in the input, awk tests to see if it matches any
pattern in the AWK program. For each pattern that the record
matches, the associated action is executed. The patterns are
tested in the order they occur in the program.

Finally, after all the input is exhausted, awk executes the code in
the END rule(s), if any.

If a program only has a BEGIN rule, no input files are processed.
If a program only has an END rule, the input will be read.

AWK PROGRAM EXECUTION

4

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

AWK is a line-oriented language. The pattern comes first, and
then the action. Action statements are enclosed in { and }. Either
the pattern or the action may be missing, but not both. If the
pattern is missing, the action is executed for every input record.
A missing action is equivalent to

{ print }

which prints the entire record.

Comments begin with the # character, and continue until the end
of the line. Normally, a statement ends with a newline, but lines
ending in a ‘‘,’’, {, ?, :, && or || are automatically continued.
Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a
line can be continued by ending it with a ‘‘\’’, in which case the
newline is ignored. However, a ‘‘\’’ after a # is not special.

Multiple statements may be put on one line by separating them
with a ‘‘;’’. This applies to both the statements within the action
part of a pattern-action pair (the usual case) and to the pattern-
action statements themselves.

LINES AND STATEMENTS

Regular expressions are the extended kind originally defined by
egrep. Additional GNU regexp operators are supported by
gawk. A word-constituent character is a letter, digit, or
underscore (_).

Summary of Regular Expressions
In Decreasing Precedence

(r) regular expression (for grouping)
c if non-special char, matches itself
\c turn off special meaning of c
ˆ beginning of string (note: not line)
$ end of string (note: not line)
. any single character, including newline
[...] any one character in ... or range
[ˆ...] any one character not in ... or range
\y word boundary
\B middle of a word
\< beginning of a word
\> end of a word
\w any word-constituent character
\W any non-word-constituent character
\‘ beginning of a string
\’ end of a string
r* zero or more occurrences of r
r+ one or more occurrences of r
r? zero or one occurrences of r
r{n,m} n to m occurrences of r (POSIX: see note below)
r1| r2 r1 or r2

The r{n,m} notation is called an interval expression. POSIX
mandates it for AWK regexps, but most awks don’t implement it.
Use −−re−interval or −−posix to enable this feature in
gawk.

REGULAR EXPRESSIONS

5

In regular expressions, within character ranges ([...]), the
notation [[:class:]] defines character classes:

alnum alphanumeric lower lower-case
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space whitespace
digit decimal upper upper-case
graph non-spaces xdigit hexadecimal

Recognition of these character classes is disabled when
−−traditional is supplied.

POSIX CHARACTER CLASSES (gawk)

Normally, records are separated by newline characters. Assigning
values to the built-in variable RS controls how records are
separated. If RS is any single character, that character separates
records. Otherwise, RS is a regular expression. (Not Bell Labs
awk.) Te xt in the input that matches this regular expression
separates the record. gawk sets RT to the value of the input text
that matched the regular expression. The value of IGNORECASE
also affects how records are separated when RS is a regular
expression. If RS is set to the null string, then records are
separated by one or more blank lines. When RS is set to the null
string, the newline character always acts as a field separator, in
addition to whatever value FS may have. mawk does not apply
exceptional rules to FS when RS = "".

RECORDS

As each input record is read, awk splits the record into fields,
using the value of the FS variable as the field separator. If FS is a
single character, fields are separated by that character. If FS is
the null string, then each individual character becomes a separate
field. Otherwise, FS is expected to be a full regular expression.
In the special case that FS is a single space, fields are separated
by runs of spaces and/or tabs and/or newlines. Leading and
trailing whitespace are ignored. The value of IGNORECASE also
affects how fields are split when FS is a regular expression.

If the FIELDWIDTHS variable is set to a space-separated list of
numbers, each field is expected to have a fixed width, and gawk
splits up the record using the specified widths. The value of FS is
ignored. Assigning a new value to FS overrides the use of
FIELDWIDTHS, and restores the default behavior.

Each field in the input record may be referenced by its position,
$1, $2 and so on. $0 is the whole record. Fields may also be
assigned new values.

The variable NF is set to the total number of fields in the input
record.

References to non-existent fields (i.e., fields after $NF) produce
the null-string. However, assigning to a non-existent field (e.g.,
$(NF+2) = 5) increases the value of NF, creates any
intervening fields with the null string as their value, and causes
the value of $0 to be recomputed with the fields being separated
by the value of OFS. References to negative numbered fields
cause a fatal error. Decreasing the value of NF causes the trailing
fields to be lost (not Bell Labs awk).

FIELDS

6

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

AWK patterns may be one of the following.

BEGIN
END
expression
pat1,pat2

BEGIN and END are special patterns that provide start-up and
clean-up actions respectively. They must have actions. There can
be multiple BEGIN and END rules; they are merged and executed
as if there had just been one large rule. They may occur anywhere
in a program, including different source files.

Expression patterns can be any expression, as described under
Expressions.

The pat1,pat2 pattern is called a range pattern. It matches all
input records starting with a record that matches pat1, and
continuing until a record that matches pat2, inclusive. It does not
combine with any other pattern expression.

PA TTERN ELEMENTS

break
break out of the nearest enclosing do, for, or while loop.

continue
skip the rest of the loop body. Evaluate the condition part of
the nearest enclosing do or while loop, or go to the incr
part of a for loop.

delete array[index]
delete element index from array array.

delete array
delete all elements from array array.

do statement while (condition)
execute statement while condition is true. The statement is
always executed at least once.

exit [expression]
terminate input record processing. Execute the END rule(s) if
present. If present, expression becomes awk’s return value.

for (init; cond; incr) statement
execute init. Evaluate cond. If it is true, execute statement.
Execute incr before going back to the top to re-evaluate cond.
Any of the three may be omitted. A missing cond is
considered to be true.

for (var in array) statement
execute statement once for each subscript in array, with var
set to a different subscript each time through the loop.

if (condition) statement1 [else statement2]
if condition is true, execute statement1, otherwise execute
statement2. Each else matches the closest if.

next see Input Control.
nextfile (not mawk) see Input Control.
while (condition) statement

while condition is true, execute statement.
{ statements }

a list of statements enclosed in braces can be used anywhere
that a single statement would otherwise be used.

ACTION STATEMENTS

7

Within strings constants ("...") and regexp constants (/.../),
escape sequences may be used to generate otherwise unprintable
characters. This table lists the available escape sequences.

\a alert (bell) \r carriage return
\b backspace \t horizontal tab
\f form feed \v vertical tab
\n newline \\ backslash
\ddd octal value ddd \xhh hex value hh
\" double quote \/ forward slash

ESCAPE SEQUENCES

ARGC number of command line arguments.
ARGIND index in ARGV of current data file.
ARGV array of command line arguments. Indexed

from 0 to ARGC − 1. Dynamically changing
the contents of ARGV can control the files
used for data.

BINMODE controls ‘‘binary’’ mode for all file I/O.
Values of 1, 2, or 3, indicate input, output, or
all files, respectively, should use binary I/O.
(Not Bell Labs awk.) Applies only to non-
POSIX systems. For gawk, string values of
"r", or "w" specify that input files, or
output files, respectively, should use binary
I/O. String values of "rw" or "wr" specify
that all files should use binary I/O. Any
other string value is treated as "rw", but
generates a warning message.

CONVFMT conversion format for numbers, default
value is "%.6g".

ENVIRON array containing the current environment.
The array is indexed by the environment
variables, each element being the value of
that variable.

ERRNO string describing the error if a getline
redirection or read fails, or if close()
fails.

FIELDWIDTHS white-space separated list of fieldwidths.
Used to parse the input into fields of fixed
width, instead of the value of FS.

FILENAME name of the current input file. If no files
given on the command line, FILENAME is
‘‘−’’. FILENAME is undefined inside the
BEGIN rule (unless set by getline).

FNR record number in current input file.
FS input field separator, a space by default (see

Fields above).
IGNORECASE if non-zero, all regular expression and string

operations ignore case. Array subscripting
and asort() are not affected.

LINT provides dynamic control of the −−lint
option from within an AWK program.
When true, gawk prints lint warnings.
When assigned the string value "fatal",
lint warnings become fatal errors, exactly
like −−lint=fatal. Any other true value
just prints warnings.

NF number of fields in the current input record.
NR total number of input records seen so far.
OFMT output format for numbers, "%.6g", by

default. Old versions of awk used this for
number to string conversion.

VARIABLES

8

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

OFS output field separator, a space by default.
ORS output record separator, a newline by

default.
PROCINFO elements of this array provide access to info

about the running AWK program. See
GAWK: Effective AWK Programming for
details.

RLENGTH length of the string matched by match();
−1 if no match.

RS input record separator, a newline by default
(see Records above).

RSTART index of the first character matched by
match(); 0 if no match.

RT record terminator. gawk sets RT to the input
text that matched the character or regular
expression specified by RS.

SUBSEP character(s) used to separate multiple
subscripts in array elements, by default
"\034". (See Arrays below).

TEXTDOMAIN the application’s text domain for
internationalization; used to find the
localized translations for the program’s
strings.

VARIABLES (continued)

Variables and fields may be (floating point) numbers, strings or
both. Context determines how the value of a variable is
interpreted. If used in a numeric expression, it will be treated as a
number, if used as a string it will be treated as a string.

To force a variable to be treated as a number, add 0 to it; to force
it to be treated as a string, concatenate it with the null string.

When a string must be converted to a number, the conversion is
accomplished using strtod(3). A number is converted to a string
by using the value of CONVFMT as a format string for sprintf(3),
with the numeric value of the variable as the argument. However,
ev en though all numbers in AWK are floating-point, integral
values are always converted as integers.

Comparisons are performed as follows: If two variables are
numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a ‘‘numeric string,’’ then
comparisons are also done numerically. Otherwise, the numeric
value is converted to a string, and a string comparison is
performed. Two strings are compared, of course, as strings.

Note that string constants, such as "57", are not numeric strings,
they are string constants. The idea of ‘‘numeric string’’ only
applies to fields, getline input, FILENAME, ARGV elements,
ENVIRON elements and the elements of an array created by
split() that are numeric strings. The basic idea is that user
input, and only user input, that looks numeric, should be treated
that way. Note that the POSIX standard applies the concept of
‘‘numeric string’’ everywhere, even to string constants. However,
this is clearly incorrect, and none of the three free awks do this.
(Fortunately, this is fixed in the next version of the standard.)

Uninitialized variables have the numeric value 0 and the string
value "" (the null, or empty, string).

CONVERSIONS AND COMPARISONS

9

NOTES

10

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

An array subscript is an expression between square brackets ([
and]). If the expression is a list (expr, expr ...), then the
subscript is a string consisting of the concatenation of the (string)
value of each expression, separated by the value of the SUBSEP
variable. This simulates multi-dimensional arrays. For example:

i = "A"; j = "B"; k = "C"
x[i, j, k] = "hello, world\n"

assigns "hello, world\n" to the element of the array x
indexed by the string "A\034B\034C". All arrays in AWK are
associative, i.e., indexed by string values.

Use the special operator in in an if or while statement to see
if a particular value is an array index.

if (val in array)
print array[val]

If the array has multiple subscripts, use (i, j) in array.

Use the in construct in a for loop to iterate over all the elements
of an array.

Use the delete statement to delete an element from an array.
Specifying just the array name without a subscript in the delete
statement deletes the entire contents of an array.

ARRAYS

Expressions are used as patterns, for controlling conditional
action statements, and to produce parameter values when calling
functions. Expressions may also be used as simple statements,
particularly if they hav e side-effects such as assignment.
Expressions mix operands and operators. Operands are constants,
fields, variables, array elements, and the return values from
function calls (both built-in and user-defined).

Regexp constants (/pat/), when used as simple expressions, i.e.,
not used on the right-hand side of ˜ and !˜, or as arguments to
the gensub(), gsub(), match(), split(), and sub(),
functions, mean $0 ˜ /pat/.

The AWK operators, in order of decreasing precedence, are:

(...) grouping
$ field reference
++ −− increment and decrement, prefix and postfix
ˆ ** exponentiation
+ − ! unary plus, unary minus, and logical negation
* / % multiplication, division, and modulus
+ − addition and subtraction
space string concatenation
< > less than, greater than
<= >= less than or equal, greater than or equal
!= == not equal, equal
˜ !˜ regular expression match, negated match
in array membership
&& logical AND, short circuit
|| logical OR, short circuit
?: in-line conditional expression
= += −= *= /= %= ˆ= **=

assignment operators

EXPRESSIONS

11

getline set $0 from next record; set NF, NR, FNR.
getline < file set $0 from next record of file; set NF.
getline v set v from next input record; set NR, FNR.
getline v < file set v from next record of file.
cmd | getline pipe into getline; set $0, NF.
cmd | getline v pipe into getline; set v.
cmd |& getline co-process pipe into getline; set $0, NF.
cmd |& getline v

co-process pipe into getline; set v.
next

stop processing the current input record. Read next input
record and start over with the first pattern in the program.
Upon end of the input data, execute any END rule(s).

nextfile
stop processing the current input file. The next input record
comes from the next input file. FILENAME and ARGIND are
updated, FNR is reset to 1, and processing starts over with the
first pattern in the AWK program. Upon end of input data,
execute any END rule(s). Earlier versions of gawk used
next file, as two words. This usage is no longer
supported. mawk does not currently support nextfile.

getline returns 0 on end of file and −1 on an error. Upon an
error, ERRNO contains a string describing the problem.

INPUT CONTROL

fflush([file])
flush any buffers associated with the open output file or pipe
file. If no file, then flush standard output. If file is null, then
flush all open output files and pipes (not Bell Labs awk).

print
print the current record. Terminate output record with ORS.

print expr-list
print expressions. Each expression is separated by the value
of OFS. Terminate the output record with ORS.

printf fmt, expr-list
format and print (see Pr intf Formats below).

system(cmd)
execute the command cmd, and return the exit status (may
not be available on non-POSIX systems).

I/O redirections may be used with both print and printf.

print "hello" > file
print data to file. The first time the file is written to, it is
truncated. Subsequent commands append data.

print "hello" >> file
append data to file. The previous contents of file are not lost.

print "hello" | cmd
print data down a pipeline to cmd.

print "hello" |& cmd
print data down a pipeline to co-process cmd.

OUTPUT CONTROL

close(file)
close input or output file, pipe or co-process.

close(command, how)
close one end of co-process pipe. Use "to" for the write
end, or "from" for the read end.

On success, close() returns zero for a file, or the exit status for
a process. It returns −1 if file was nev er opened, or if there was a
system problem. ERRNO describes the error.

CLOSING REDIRECTIONS

12

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

The printf statement and sprintf() function accept the
following conversion specification formats:

%c an ASCII character
%d a decimal number (the integer part)
%i a decimal number (the integer part)
%e a floating point number of the form

[−]d.dddddde[+ −]dd
%E like %e, but use E instead of e
%f a floating point number of the form

[−]ddd.dddddd
%g use %e or %f, whichever is shorter, with

nonsignificant zeros suppressed
%G like %g, but use %E instead of %e
%o an unsigned octal integer
%u an unsigned decimal integer
%s a character string
%x an unsigned hexadecimal integer
%X like %x, but use ABCDEF for 10–15
%% A literal %; no argument is converted

Optional, additional parameters may lie between the % and the
control letter:

count$ use the count’th argument at this point in the
formatting (a positional specifier). Use in
translated versions of format strings, not in the
original text of an AWK program.

− left-justify the expression within its field.
space for numeric conversions, prefix positive values

with a space and negative values with a minus
sign.

+ used before the width modifier means to always
supply a sign for numeric conversions, even if
the data to be formatted is positive. The +
overrides the space modifier.

use an ‘‘alternate form’’ for some control letters.
%o supply a leading zero.
%x, %X supply a leading 0x or 0X for a nonzero result.
%e, %E, %f the result always has a decimal point.
%g, %G trailing zeros are not removed.
0 a leading zero acts as a flag, indicating output

should be padded with zeros instead of spaces.
This applies even to non-numeric output formats.
Only has an effect when the field width is wider
than the value to be printed.

width pad the field to this width. The field is normally
padded with spaces. If the 0 flag has been used,
pad with zeros.

.prec precision. The meaning of the prec varies by
control letter:

%d, %o, %i,
%u, %x, %X the minimum number of digits to print.
%e, %E, %f the number of digits to print to the right of the

decimal point.
%g, %G the maximum number of significant digits.
%s the maximum number of characters to print.

The dynamic width and prec capabilities of the ANSI C
printf() routines are supported. A * in place of either the
width or prec specifications causes their values to be taken from
the argument list to printf or sprintf(). Use *n$ to use
positional specifiers with a dynamic width or precision.

PRINTF FORMATS

13

When doing I/O redirection from either print or printf into a
file or via getline from a file, all three implementations of
awk recognize certain special filenames internally. These
filenames allow access to open file descriptors inherited from the
parent process (usually the shell). These filenames may also be
used on the command line to name data files. The filenames are:

"−" standard input
/dev/stdin standard input (not mawk)
/dev/stdout standard output
/dev/stderr standard error output

The following names are specific to gawk.

/dev/fd/n
File associated with the open file descriptor n.

/inet/tcp/lport/rhost/rport
File for TCP/IP connection on local port lport to remote host
rhost on remote port rport. Use a port of 0 to have the
system pick a port. Usable only with the |& two-way I/O
operator.

/inet/udp/lport/rhost/rport
Similar, but use UDP/IP instead of TCP/IP.

/inet/raw/lport/rhost/rport
Reserved for future use.

Other special filenames provide access to information about the
running gawk process. Reading from these files returns a single
record. The filenames and what they return are:

/dev/pid process ID of current process
/dev/ppid parent process ID of current process
/dev/pgrpid process group ID of current process
/dev/user a single newline-terminated record.

The fields are separated with spaces.
$1 is the return value of getuid(2),
$2 is the return value of geteuid(2),
$3 is the return value of getgid(2) , and
$4 is the return value of getegid(2).
Any additional fields are the group IDs
returned by getgroups(2). Multiple groups
may not be supported on all systems.

These filenames are now obsolete. Use the PROCINFO array to
obtain the information they provide.

SPECIAL FILENAMES

atan2(y, x) the arctangent of y/x in radians.
cos(expr) the cosine of expr, which is in radians.
exp(expr) the exponential function (e ˆ x).
int(expr) truncates to integer.
log(expr) the natural logarithm function (base e).
rand() a random number between 0 and 1.
sin(expr) the sine of expr, which is in radians.
sqrt(expr) the square root function.
srand([expr]) uses expr as a new seed for the random

number generator. If no expr, the time of day
is used. Returns previous seed for the
random number generator.

NUMERIC FUNCTIONS

extension(lib, func)
dynamically load the shared library lib and call func in it to
initialize the library. This adds new built-in functions to
gawk. It returns the value returned by func.

DYNAMIC EXTENSIONS (gawk)

14

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

asort(s [, d])
sorts the source array s, replacing the indices with numeric
values 1 through n (the number of elements in the array), and
returns the number of elements. If destination d is supplied, s
is copied to d, d is sorted, and s is unchanged.

gensub(r, s, h [, t])
search the target string t for matches of the regular expression
r. If h is a string beginning with g or G, replace all matches
of r with s. Otherwise, h is a number indicating which match
of r to replace. If t is not supplied, $0 is used instead. Within
the replacement text s, the sequence \n, where n is a digit
from 1 to 9, may be used to indicate just the text that
matched the nth parenthesized subexpression. The sequence
\0 represents the entire matched text, as does the character
&. Unlike sub() and gsub(), the modified string is
returned as the result of the function, and the original target
string is not changed.

gsub(r, s [, t])
for each substring matching the regular expression r in the
string t, substitute the string s, and return the number of
substitutions. If t is not supplied, use $0. An & in the
replacement text is replaced with the text that was actually
matched. Use \& to get a literal &. See GAWK: Effective
AWK Pro gramming for a fuller discussion of the rules for &’s
and backslashes in the replacement text of gensub(),
sub() and gsub()

index(s, t)
returns the index of the string t in the string s, or 0 if t is not
present.

length([s])
returns the length of the string s, or the length of $0 if s is
not supplied.

match(s, r [, a])
returns the position in s where the regular expression r
occurs, or 0 if r is not present, and sets the values of variables
RSTART and RLENGTH. If a is supplied, the text matching
all of r is placed in a[0]. If there were parenthesized
subexpressions, the matching texts are placed in a[1],
a[2], and so on.

split(s, a [, r])
splits the string s into the array a using the regular expression
r, and returns the number of fields. If r is omitted, FS is used
instead. The array a is cleared first. Splitting behaves
identically to field splitting. (See Fields, above.)

sprintf(fmt, expr-list)
prints expr-list according to fmt, and returns the resulting
string.

strtonum(s)
examines s, and returns its numeric value. If s begins with a
leading 0, strtonum() assumes that s is an octal number.
If s begins with a leading 0x or 0X, strtonum() assumes
that s is a hexadecimal number.

sub(r, s [, t])
just like gsub(), but only the first matching substring is
replaced.

substr(s, i [, n])
returns the at most n-character substring of s starting at i. If
n is omitted, the rest of s is used.

tolower(str)
returns a copy of the string str, with all the upper-case
characters in str translated to their corresponding lower-case
counterparts. Non-alphabetic characters are left unchanged.

STRING FUNCTIONS

15

toupper(str)
returns a copy of the string str, with all the lower-case
characters in str translated to their corresponding upper-case
counterparts. Non-alphabetic characters are left unchanged.

STRING FUNCTIONS (continued)

gawk provides the following functions for obtaining time stamps
and formatting them.

mktime(datespec)
turns datespec into a time stamp of the same form as returned
by systime(). The datespec is a string of the form "YYYY
MM DD HH MM SS[DST]".

strftime([format [, timestamp]])
formats timestamp according to the specification in format.
The timestamp should be of the same form as returned by
systime(). If timestamp is missing, the current time of
day is used. If format is missing, a default format equivalent
to the output of date(1) is used.

systime()
returns the current time of day as the number of seconds
since the Epoch.

TIME FUNCTIONS (gawk)

gawk provides the following functions for doing bitwise
operations.

and(v1, v2)
returns the bitwise AND of the values provided by v1 and v2.

compl(val)
returns the bitwise complement of val.

lshift(val, count)
returns the value of val, shifted left by count bits.

or(v1, v2)
returns the bitwise OR of the values provided by v1 and v2.

rshift(val, count)
returns the value of val, shifted right by count bits.

xor(v1, v2)
teturns the bitwise XOR of the values provided by v1 and v2.

BIT MANIPULATION FUNCTIONS (gawk)

The environment variable AWKPATH specifies a search path to
use when finding source files named with the −f option. The
default path is ".:/usr/local/share/awk". If a file name
given to the −f option contains a ‘‘/’’ character, no path search is
performed.

If POSIXLY_CORRECT exists then gawk behaves exactly as if
the −−posix option had been given.

ENVIRONMENT VARIABLES (gawk)

1. It is possible to call the length() built-in function not only
with no argument, but even without parentheses. This feature is
marked as ‘‘deprecated’’ in the POSIX standard, and gawk issues
a warning about its use if −−lint is specified on the command
line.

2. The continue and break statements may be used outside
the body of a while, for, or do loop. Historical AWK
implementations have treated such usage as equivalent to the
next statement. gawk supports this usage if −−traditional
is specified.

HISTORICAL FEATURES (gawk)

16

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

Functions in AWK are defined as follows:

function name(parameter list)
{

statements
}

Functions are executed when they are called from within
expressions in either patterns or actions. Actual parameters
supplied in the function call instantiate the formal parameters
declared in the function. Arrays are passed by reference, other
variables are passed by value.

Local variables are declared as extra parameters in the parameter
list. The convention is to separate local variables from real
parameters by extra spaces in the parameter list. For example:

a and b are local
function f(p, q, a, b)
{

.....
}

/abc/ { ... ; f(1, 2) ; ... }

The left parenthesis in a function call is required to immediately
follow the function name without any intervening white space.
This is to avoid a syntactic ambiguity with the concatenation
operator. This restriction does not apply to the built-in functions.

Functions may call each other and may be recursive. Function
parameters used as local variables are initialized to the null string
and the number zero upon function invocation.

Use return to return a value from a function. The return value
is undefined if no value is provided, or if the function returns by
‘‘falling off’’ the end.

The word func may be used in place of function. Note: This
usage is deprecated.

USER-DEFINED FUNCTIONS

There are several steps involved in producing and running a
localizable awk program.

1. Add a BEGIN action to assign a value to the TEXTDOMAIN
variable to set the text domain for your program.

BEGIN { TEXTDOMAIN = "myprog" }

This allows gawk to find the .mo file associated with your
program. Without this step, gawk uses the messages text
domain, which probably won’t work.

2. Mark all strings that should be translated with leading
underscores.

3. Use the bindtextdomain(), dcgettext(), and/or
dcngettext() functions in your program, as appropriate.

4. Run

gawk −−gen−po −f myprog.awk > myprog.po

to generate a .po file for your program.

5. Provide appropriate translations, and build and install a
corresponding .mo file.

The internationalization features are described in full detail in
GAWK: Effective AWK Programming.

LOCALIZATION (gawk)

17

gawk provides the following functions for runtime message
translation.

bindtextdomain(directory [, domain])
specifies the directory where gawk looks for the .mo files,
in case they will not or cannot be placed in the ‘‘standard’’
locations (e.g., during testing.) It returns the directory where
domain is ‘‘bound.’’

The default domain is the value of TEXTDOMAIN. When
directory is the null string (""), bindtextdomain()
returns the current binding for the given domain.

dcgettext(string [, domain [, category]])
returns the translation of string in text domain domain for
locale category category. The default value for domain is the
current value of TEXTDOMAIN. The default value for
category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to
one of the known locale categories. You must also supply a
text domain. Use TEXTDOMAIN to use the current domain.

dcngettext(string1 , string2 , number [, domain [,
category]])
returns the plural form used for number of the translation of
string1 and string2 in text domain domain for locale category
category. The default value for domain is the current value
of TEXTDOMAIN. The default value for category is
"LC_MESSAGES".

If you supply a value for category, it must be a string equal to
one of the known locale categories. You must also supply a
text domain. Use TEXTDOMAIN to use the current domain.

INTERNATIONALIZATION (gawk)

Host: ftp.gnu.org
File: /gnu/gawk/gawk-3.1.1.tar.gz

GNU awk (gawk). There may be a later version.

http://cm.bell-labs.com/who/bwk/awk.tar.gz
Bell Labs awk. This version requires an ANSI C compiler;
GCC (the GNU C compiler) works well.

Host: ftp.whidbey.net
File: /pub/brennan/mawk1.3.3.tar.gz

Michael Brennan’s mawk. There may be a newer version.

FTP/HTTP INFORMATION

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free
Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of
this reference card provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of
this reference card under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this
reference card into another language, under the above conditions
for modified versions, except that this permission notice may be
stated in a translation approved by the Foundation.

COPYING PERMISSIONS

18

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

Copyright 05-01-02 18:25:12, FSF, Inc. (all)

