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Using Qualnet – Part II

Adding a Custom Protocol
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Qualnet’s Directory Structure
$QUALNET_HOME

application

bin

include

gui

mac

main

network

phy

tcplib

transport

– code for the application layer protocols and traffic generators

– executable and configuration or input/output files

– common include files

– the code for the MAC layer protocols

– the basic framework design

– the code for the mobility models

– the code for the network layer protocols and routing protocols

– the code for the physical layer models

– the code for the transport layer protocols (TCP/UDP, RSVP, etc)

– User models for simulating TCP applications such as FTP and Telnet

– Sample files and outputs to verify protocol correctness

mobility

verification

– the Visual Environment Toolset
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Qualnet Layered Architecture
The simulation is a collection of network nodes, each 
with its own protocol stack parameters and statistics

� File addons/seq/node.h

struct struct_node_str {

unsigned       nodeIndex;

NodeAddress    nodeId; /* the network address of the node */

:  
unsigned short seed[3];       /* seed for random number generator */

long           numNodes;      /* number of nodes in the simulation */

:

/* Layer-specific information for the node. */
PhyData* phyData[MAX_NUM_PHYS];        // phy layer

MacData* macData[MAX_NUM_INTERFACES];  // MAC layer

MacSwitch* switchData;                   // MAC switch

NetworkData     networkData;                  // network layer

TransportData   transportData;                // transport layer
AppData         appData;                      // application layer

:

};

struct struct_node_str {

unsigned       nodeIndex;

NodeAddress    nodeId; /* the network address of the node */

:  
unsigned short seed[3];       /* seed for random number generator */

long           numNodes;      /* number of nodes in the simulation */

:

/* Layer-specific information for the node. */
PhyData* phyData[MAX_NUM_PHYS];        // phy layer

MacData* macData[MAX_NUM_INTERFACES];  // MAC layer

MacSwitch* switchData;                   // MAC switch

NetworkData     networkData;                  // network layer

TransportData   transportData;                // transport layer
AppData         appData;                      // application layer

:

};

General node’s info

Layer-specific info
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Messages, Packets, and Timers

A message is a unit defining an interaction 
between protocols and between nodes

Two types of messages
� Packets – used for communication between 

nodes
� Timers – allow protocols to schedule events in 

a future time
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Message-Related API Functions

Add virtual payload to a Message (increase tx delay 
without increasing array size)

MESSAGE_AddVirtualPayload()

Free the message, once it has reached its final 
destination

MESSAGE_Free()

Send the message as an event to the specified 
layer and protocol

MESSAGE_Send()

Copy the message, including its packet and user-
specified space (info field)

MESSAGE_Duplicate()

Remove a header from the packetMESSAGE_RemoveHeader()

Add a header to the packet (usually called by each 
layer in the protocol stack)

MESSAGE_AddHeader()

Allocate space for the packet within the messageMESSAGE_PacketAlloc()

Allocate additional user-specified space for optional 
information about the event

MESSAGE_InfoAlloc()

Allocate a message and provide it with standard 
event, layer, protocol info

MESSAGE_Alloc()
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Packet Life Cycle
Application

Transport

IP

MAC

Radio

Application

Transport

IP

MAC

Radio

IP

MAC

Radio

Routing Routing

MESSAGE_AddHeader()
MESSAGE_Send(…)

MESSAGE_Alloc(…)
MESSAGE_PacketAlloc(…)
MESSAGE_Send(…)

MESSAGE_AddHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_Free(…)

MESSAGE_AddHeader()
MESSAGE_Send(…)
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Creating Messages

Message*

MESSAGE_Alloc(

Node *node,

int layerType,

int protocol,

int eventType);

Message*

MESSAGE_Alloc(

Node *node,

int layerType,

int protocol,

int eventType);

A pointer to the node creating
the message

The stack layer at which this message
will be processed next
e.g., NETWORK_LAYER

The specific protocol at the layer 
which will process this message
e.g., ROUTING_PROTOCOL_DSR

The event that this message represents
e.g., MSG_NETWORK_FlushTables

8

Message Processing

Check layerType field

Radio MAC Network Transport App

Check protocolType field

Check eventType field

IP DSR AODV
�

Event queue

FlushTables CheckReplied RouteTimeout

Handling function
for FlushTables

event

msg

newMsg
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Qualnet’s Protocol Modeling

Initialization Function
• Allocate memory for each node’s 

local variables
• Initialize local variables
• Process configuration file(s)
• Schedule the first event

Idle

Message (packet or timer)
processing function
• Modify state variables
• Update local statistics
• Generate/forward packets

Finalization Function
• Output statistics

Packet arrival or
timer expiration

10

Adding a Protocol to Qualnet
Determine what layer your protocol will 
operate at

Implement four/five main functions
� Initialization function
� Packet/event handling function
� Router function (for routing protocol)
� Finalization function

Hook up the above functions to the 
protocol dispatching functions of the 
corresponding layer
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Example: Adding a New Routing Protocol

Simplified Routing Information Protocol 
(SRIP)

� Table-driven, distance vector protocol
� Using periodic route update, no triggered 

update, no split horizon
� Working properly in static networks with only 

a small number of nodes (no node failure)
� Supporting only one interface (wireless) per 

node
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Distributed Bellman-Ford Algorithm
What local information is maintained by each node?

�

What information is exchanged between neighboring 
nodes?

�

How a node processes a route advertisement?
� A node A updates its entry for destination D only when the 

advertised cost to D is lower than its current cost

Routing Table

:

Cost

::

Next hopDestination

Initial routing table for A

�-:

�-B

0

Cost

AA

Next hopDestination

Route Advertisement

:

Cost

:

Destination
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SRIP Header File (network/srip.h)

#ifndef _SRIP_H_

#define _SRIP_H_

#define SRIP_INFINITY  16

typedef struct srip_table_entry

{

NodeAddress  destination;

NodeAddress  nextHop;

unsigned int distance;

} SripTableEntry;

typedef struct srip_str

{

clocktype       updateInterval;

SripTableEntry* routingTable;

/* statistic */

unsigned int numRouteUpdatesBroadcast;

} SripData;

void SripInit(Node* node, SripData** sripPtr,

const NodeInput* nodeInput, int interfaceIndex);

void SripHandleProtocolEvent(Node* node, Message* msg);

void SripHandleProtocolPacket(Node* node, Message* msg,

NodeAddress sourceAddress);

void SripFinalize(Node *node);

void SripRouterFunction(Node* node, Message* msg, NodeAddress destAddr,

NodeAddress previousHopAddress, BOOL* packetWasRouted);

#endif

#ifndef _SRIP_H_

#define _SRIP_H_

#define SRIP_INFINITY  16

typedef struct srip_table_entry

{

NodeAddress  destination;

NodeAddress  nextHop;

unsigned int distance;

} SripTableEntry;

typedef struct srip_str

{

clocktype       updateInterval;

SripTableEntry* routingTable;

/* statistic */

unsigned int numRouteUpdatesBroadcast;

} SripData;

void SripInit(Node* node, SripData** sripPtr,

const NodeInput* nodeInput, int interfaceIndex);

void SripHandleProtocolEvent(Node* node, Message* msg);

void SripHandleProtocolPacket(Node* node, Message* msg,

NodeAddress sourceAddress);

void SripFinalize(Node *node);

void SripRouterFunction(Node* node, Message* msg, NodeAddress destAddr,

NodeAddress previousHopAddress, BOOL* packetWasRouted);

#endif

Local SRIP variables per nodes

Function prototypes to be recognized
by Qualnet’s network layer (IP)

Routing table entry
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SRIP Initialization Function
Called when each node is initialized by Qualnet

void SripInit(Node*            node,

SripData** sripPtr,

const NodeInput* nodeInput,

int              interfaceIndex)

{

int i; BOOL retVal;

Message* newMsg;

SripData* srip;

if (MAC_IsWiredNetwork(node, interfaceIndex))

ERROR_ReportError("SRIP supports only wireless interfaces");

if (node->numberInterfaces > 1)

ERROR_ReportError("SRIP only supports one interface of node");

/* allocate memory for SRIP's variables for this node */

(*sripPtr) = (SripData*) MEM_malloc(sizeof(SripData));

srip = *sripPtr;

/* read parameter from the configuration file */

IO_ReadTime(node->nodeId,

ANY_ADDRESS,

nodeInput,

"SRIP-UPDATE-INTERVAL",

&retVal,

&(srip->updateInterval));

if (retVal == FALSE)

ERROR_ReportError("SRIP-UPDATE-INTERVAL not specified!");

void SripInit(Node*            node,

SripData** sripPtr,

const NodeInput* nodeInput,

int              interfaceIndex)

{

int i; BOOL retVal;

Message* newMsg;

SripData* srip;

if (MAC_IsWiredNetwork(node, interfaceIndex))

ERROR_ReportError("SRIP supports only wireless interfaces");

if (node->numberInterfaces > 1)

ERROR_ReportError("SRIP only supports one interface of node");

/* allocate memory for SRIP's variables for this node */

(*sripPtr) = (SripData*) MEM_malloc(sizeof(SripData));

srip = *sripPtr;

/* read parameter from the configuration file */

IO_ReadTime(node->nodeId,

ANY_ADDRESS,

nodeInput,

"SRIP-UPDATE-INTERVAL",

&retVal,

&(srip->updateInterval));

if (retVal == FALSE)

ERROR_ReportError("SRIP-UPDATE-INTERVAL not specified!");

(to be continued)

Allocate memory for local SRIP 
variables within each node

Read SRIP parameter
from the main config file

Make sure the node has 
exactly one wireless interface
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SRIP Initialization Function

/* allocate and initialize the routing table for this node */

/* Note: (n+1) entries are allocated for convenience       */

srip->routingTable = (SripTableEntry*)

MEM_malloc(sizeof(SripTableEntry)*node->numNodes + 1);
for (i = 1; i <= node->numNodes; i++) {

srip->routingTable[i].destination = i;

srip->routingTable[i].nextHop     = INVALID_ADDRESS;

srip->routingTable[i].distance    = SRIP_INFINITY;
}

srip->routingTable[node->nodeId].nextHop  = node->nodeId;

srip->routingTable[node->nodeId].distance = 0;

/* Initialize statistic */
srip->numRouteUpdatesBroadcast = 0;

/* Tell IP to use our function to route packets */

NetworkIpSetRouterFunction(node,

&SripRouterFunction,
interfaceIndex);

/* schedule the very first route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, pc_nrand(node->seed)%srip->updateInterval);

}

/* allocate and initialize the routing table for this node */

/* Note: (n+1) entries are allocated for convenience       */

srip->routingTable = (SripTableEntry*)

MEM_malloc(sizeof(SripTableEntry)*node->numNodes + 1);
for (i = 1; i <= node->numNodes; i++) {

srip->routingTable[i].destination = i;

srip->routingTable[i].nextHop     = INVALID_ADDRESS;

srip->routingTable[i].distance    = SRIP_INFINITY;
}

srip->routingTable[node->nodeId].nextHop  = node->nodeId;

srip->routingTable[node->nodeId].distance = 0;

/* Initialize statistic */
srip->numRouteUpdatesBroadcast = 0;

/* Tell IP to use our function to route packets */

NetworkIpSetRouterFunction(node,

&SripRouterFunction,
interfaceIndex);

/* schedule the very first route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, pc_nrand(node->seed)%srip->updateInterval);

}

(continued)

Initialize routing table

Initialize statistic

Register router
function with IP

Schedule the first route
advertisement timer
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SRIP Event Handling Function

Called when a node’s timer expires

void SripHandleProtocolEvent(Node* node, Message* msg)

{

int i, numEntries = 0, pktSize;

Message* newMsg; 

char* pktPtr;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

for (i = 0; i < node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY)

numEntries++;

}

newMsg = MESSAGE_Alloc(node, 0, 0, 0);

pktSize = sizeof(unsigned int) + sizeof(SripTableEntry)*numEntries;

MESSAGE_PacketAlloc(node, newMsg, pktSize, TRACE_ANY_PROTOCOL);

pktPtr = newMsg->packet;

memcpy(pktPtr, &numEntries, sizeof(unsigned int)); /* number of entries */

pktPtr += sizeof(unsigned int);

/* Fill the packet with the valid table entries */

for (i = 1; i <= node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY) {

memcpy(pktPtr, &(srip->routingTable[i]), sizeof(SripTableEntry));

pktPtr += sizeof(SripTableEntry);

}

}

void SripHandleProtocolEvent(Node* node, Message* msg)

{

int i, numEntries = 0, pktSize;

Message* newMsg; 

char* pktPtr;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

for (i = 0; i < node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY)

numEntries++;

}

newMsg = MESSAGE_Alloc(node, 0, 0, 0);

pktSize = sizeof(unsigned int) + sizeof(SripTableEntry)*numEntries;

MESSAGE_PacketAlloc(node, newMsg, pktSize, TRACE_ANY_PROTOCOL);

pktPtr = newMsg->packet;

memcpy(pktPtr, &numEntries, sizeof(unsigned int)); /* number of entries */

pktPtr += sizeof(unsigned int);

/* Fill the packet with the valid table entries */

for (i = 1; i <= node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY) {

memcpy(pktPtr, &(srip->routingTable[i]), sizeof(SripTableEntry));

pktPtr += sizeof(SripTableEntry);

}

} (to be continued)

Count the number of 
valid entries

Prepare a route advertisement packet

Obtain pointer to local
variable space
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SRIP Event Handling Function

/* Send the route update packet to MAC layer */

NetworkIpSendRawMessageToMacLayer(

node,               /* node pointer */

newMsg,             /* raw message */
node->nodeId,       /* source address */

ANY_DEST,           /* destination address */

CONTROL,            /* priority */

IPPROTO_SRIP,       /* IP Protocol */
1,                  /* TTL */

DEFAULT_INTERFACE,  /* output interface */

ANY_DEST);          /* next hop address */

/* update statistic */
srip->numRouteUpdatesBroadcast++;

/* schedule the next route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, srip->updateInterval);

}

/* Send the route update packet to MAC layer */

NetworkIpSendRawMessageToMacLayer(

node,               /* node pointer */

newMsg,             /* raw message */
node->nodeId,       /* source address */

ANY_DEST,           /* destination address */

CONTROL,            /* priority */

IPPROTO_SRIP,       /* IP Protocol */
1,                  /* TTL */

DEFAULT_INTERFACE,  /* output interface */

ANY_DEST);          /* next hop address */

/* update statistic */
srip->numRouteUpdatesBroadcast++;

/* schedule the next route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, srip->updateInterval);

}

(continued)

Ask IP to add header and 
send packet to MAC layer

Update local statistic

Schedule the next
broadcast event
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SRIP Packet Handling Function
Called when a node receives a route advertisement

void SripHandleProtocolPacket(Node*       node,

Message* msg,

NodeAddress sourceAddress)

{

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

int i, numEntries;

char *pktPtr;

SripTableEntry entry;

pktPtr = msg->packet;

memcpy(&numEntries, pktPtr, sizeof(unsigned int));

pktPtr += sizeof(unsigned int);

/* scan the entry list and update routing table only with entries with

* shorter distance */

for (i = 0; i < numEntries; i++)

{

memcpy(&entry, pktPtr, sizeof(SripTableEntry));

entry.distance++;

if (entry.distance < srip->routingTable[entry.destination].distance) {

srip->routingTable[entry.destination].distance = entry.distance;

srip->routingTable[entry.destination].nextHop  = sourceAddress;

}

pktPtr += sizeof(SripTableEntry);

}

MESSAGE_Free(node, msg);

}

void SripHandleProtocolPacket(Node*       node,

Message* msg,

NodeAddress sourceAddress)

{

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

int i, numEntries;

char *pktPtr;

SripTableEntry entry;

pktPtr = msg->packet;

memcpy(&numEntries, pktPtr, sizeof(unsigned int));

pktPtr += sizeof(unsigned int);

/* scan the entry list and update routing table only with entries with

* shorter distance */

for (i = 0; i < numEntries; i++)

{

memcpy(&entry, pktPtr, sizeof(SripTableEntry));

entry.distance++;

if (entry.distance < srip->routingTable[entry.destination].distance) {

srip->routingTable[entry.destination].distance = entry.distance;

srip->routingTable[entry.destination].nextHop  = sourceAddress;

}

pktPtr += sizeof(SripTableEntry);

}

MESSAGE_Free(node, msg);

}

#entries 1st entry 2nd entry …

Packet format

Free the message since this is its
final destination

Obtain pointer to local
variable space
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SRIP Router Function

Called when IP layer receives a data packet from 
MAC or transport

void SripRouterFunction(Node*       node,

Message* msg,

NodeAddress destAddr,

NodeAddress previousHopAddress,

BOOL* packetWasRouted)

{

IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

/* do not route any SRIP packet, or any packets destined to myself */

if (ipHeader->ip_p == IPPROTO_SRIP || ipHeader->ip_dst == node->nodeId)

return;

/* route the packet only when the destination is considered reachable */

if (srip->routingTable[ipHeader->ip_dst].distance < SRIP_INFINITY)

{

*packetWasRouted = TRUE;

NetworkIpSendPacketToMacLayer(

node,

msg,

DEFAULT_INTERFACE,

srip->routingTable[ipHeader->ip_dst].nextHop);

}

}

void SripRouterFunction(Node*       node,

Message* msg,

NodeAddress destAddr,

NodeAddress previousHopAddress,

BOOL* packetWasRouted)

{

IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

/* do not route any SRIP packet, or any packets destined to myself */

if (ipHeader->ip_p == IPPROTO_SRIP || ipHeader->ip_dst == node->nodeId)

return;

/* route the packet only when the destination is considered reachable */

if (srip->routingTable[ipHeader->ip_dst].distance < SRIP_INFINITY)

{

*packetWasRouted = TRUE;

NetworkIpSendPacketToMacLayer(

node,

msg,

DEFAULT_INTERFACE,

srip->routingTable[ipHeader->ip_dst].nextHop);

}

}

Ignore SRIP packets
and my own packets

Route the packet if
the destination is
reachable
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SRIP Finalizing Function

Called at each node when Qualnet is 
terminating

void SripFinalize(Node *node)

{

char buf[MAX_STRING_LENGTH];

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

sprintf(buf, "Number of Route Updates Broadcast = %u",

srip->numRouteUpdatesBroadcast);

IO_PrintStat(node, "Network", "SRIP", ANY_DEST, -1, buf);

}

void SripFinalize(Node *node)

{

char buf[MAX_STRING_LENGTH];

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

sprintf(buf, "Number of Route Updates Broadcast = %u",

srip->numRouteUpdatesBroadcast);

IO_PrintStat(node, "Network", "SRIP", ANY_DEST, -1, buf);

}

Report statistic



11

21

Make SRIP Recognized by Qualnet

Let Qualnet know SRIP as a network layer 
protocol

� In the file include/network.h

typedef

enum

{

NETWORK_PROTOCOL_IP = 0,
NETWORK_PROTOCOL_MOBILE_IP,

:

:

ROUTING_PROTOCOL_IGRP,
ROUTING_PROTOCOL_SRIP,

//InsertPatch ROUTING_PROTOCOL_TYPE

:

ROUTING_PROTOCOL_ALL,

ROUTING_PROTOCOL_NONE
}

NetworkRoutingProtocolType;

typedef

enum

{

NETWORK_PROTOCOL_IP = 0,
NETWORK_PROTOCOL_MOBILE_IP,

:

:

ROUTING_PROTOCOL_IGRP,
ROUTING_PROTOCOL_SRIP,

//InsertPatch ROUTING_PROTOCOL_TYPE

:

ROUTING_PROTOCOL_ALL,

ROUTING_PROTOCOL_NONE
}

NetworkRoutingProtocolType;

22

Make SRIP Recognized by Qualnet

Let IP module know SRIP as an IP protocol
� In the file network/ip.h

//

// IP protocol numbers for network- and transport-layer protocols.

//

#define IPPROTO_ICMP            1
#define IPPROTO_IGMP            2

:

#define IPPROTO_DVMRP           200

#define IPPROTO_SRIP            234
//InsertPatch ROUTING_IPPROTO

//

// IP protocol numbers for network- and transport-layer protocols.

//

#define IPPROTO_ICMP            1
#define IPPROTO_IGMP            2

:

#define IPPROTO_DVMRP           200

#define IPPROTO_SRIP            234
//InsertPatch ROUTING_IPPROTO



12

23

Make SRIP Recognized by Qualnet

Have IP module recognize the five entry 
functions of SRIP

� Have network/ip.c include srip.h

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>
:

:

#include "pim.h"

#include "access_list.h"

//#define DEBUG_FIX

#include "srip.h"
//InsertPatch HEADER_FILES
:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>
:

:

#include "pim.h"

#include "access_list.h"

//#define DEBUG_FIX

#include "srip.h"
//InsertPatch HEADER_FILES
:

(file network/ip.pc)
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Make SRIP Recognized by Qualnet

Have IP initialize SRIP if specified in the configuration file
� In the file network/ip.c, function NetworkIpInit()

void

NetworkIpInit(Node *node, const NodeInput *nodeInput)
{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
:

IO_ReadString(
node->nodeId,

NetworkIpGetInterfaceAddress(node, i),

nodeInput,
"ROUTING-PROTOCOL",

&retVal,
protocolString);

if (retVal)
{

:
else
if (strcmp(protocolString, "SRIP") == 0) {

NetworkIpAddUnicastRoutingProtocolType(node, ROUTING_PROTOCOL_SRIP, i);

if (!NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP)) {
SripInit(node,

(SripData **) &ip->interfaceInfo[i]->routingProtocol,
nodeInput, i);

}
else {

NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
node, ROUTING_PROTOCOL_SRIP, i);

}
}

//InsertPatch NETWORK_INIT_CODE

:

void

NetworkIpInit(Node *node, const NodeInput *nodeInput)
{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
:

IO_ReadString(
node->nodeId,

NetworkIpGetInterfaceAddress(node, i),

nodeInput,
"ROUTING-PROTOCOL",

&retVal,
protocolString);

if (retVal)
{

:
else
if (strcmp(protocolString, "SRIP") == 0) {

NetworkIpAddUnicastRoutingProtocolType(node, ROUTING_PROTOCOL_SRIP, i);

if (!NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP)) {
SripInit(node,

(SripData **) &ip->interfaceInfo[i]->routingProtocol,
nodeInput, i);

}
else {

NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
node, ROUTING_PROTOCOL_SRIP, i);

}
}

//InsertPatch NETWORK_INIT_CODE

:
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Make SRIP Recognized by Qualnet

When the network layer receives an event for SRIP, 
dispatch it to SRIP’s event handling function

� In the file, network/ip.c, function NetworkIpLayer()

void

NetworkIpLayer(Node *node, Message *msg)

{               

switch (msg->protocolType)
{  

:  

case ROUTING_PROTOCOL_ALL:

{
ERROR_Assert(FALSE, "IP event error");

//HandleSpecialMacLayerStatusEvents(node, msg);

break;      

}

case ROUTING_PROTOCOL_SRIP:
{

SripHandleProtocolEvent(node, msg);
break;

}               
//InsertPatch NETWORK_IP_LAYER

:

void

NetworkIpLayer(Node *node, Message *msg)

{               

switch (msg->protocolType)
{  

:  

case ROUTING_PROTOCOL_ALL:

{
ERROR_Assert(FALSE, "IP event error");

//HandleSpecialMacLayerStatusEvents(node, msg);

break;      

}

case ROUTING_PROTOCOL_SRIP:
{

SripHandleProtocolEvent(node, msg);
break;

}               
//InsertPatch NETWORK_IP_LAYER

:
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Make SRIP Recognized by Qualnet

When IP receives an SRIP route advertisement packet, 
dispatch it to SRIP’s packet handling function

� In the file, network/ip.pc, function DeliverPacket()

static void //inline//

DeliverPacket(Node *node, Message *msg,

int interfaceIndex, NodeAddress previousHopAddress)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

ipHeader = (IpHeaderType *) msg->packet;

ipProtocolNumber = ipHeader->ip_p;

if (ipHeader->ip_tos & IPTOS_CE) {

aCongestionExperienced = TRUE;

}

switch (ipProtocolNumber)

{

:

case IPPROTO_SRIP:
{

SripHandleProtocolPacket(
node,
msg,
sourceAddress);

break;
}

//InsertPatch NETWORK_HANDLE_PACKET

:

static void //inline//

DeliverPacket(Node *node, Message *msg,

int interfaceIndex, NodeAddress previousHopAddress)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

ipHeader = (IpHeaderType *) msg->packet;

ipProtocolNumber = ipHeader->ip_p;

if (ipHeader->ip_tos & IPTOS_CE) {

aCongestionExperienced = TRUE;

}

switch (ipProtocolNumber)

{

:

case IPPROTO_SRIP:
{

SripHandleProtocolPacket(
node,
msg,
sourceAddress);

break;
}

//InsertPatch NETWORK_HANDLE_PACKET

:
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Make SRIP Recognized by Qualnet

Call SRIP’s finalizing function when IP is terminating
� In the file network/ip.pc, function NetworkIpFinalize()

void

NetworkIpFinalize(Node *node)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

for (i = 0; i < node->numberInterfaces; i++)

{

switch (NetworkIpGetUnicastRoutingProtocolType(node, i))

{

case ROUTING_PROTOCOL_LAR1:

{

Lar1Finalize(node);

break;

}

:

case ROUTING_PROTOCOL_SRIP:
{

SripFinalize(node);
break;

}
//InsertPatch FINALIZE_FUNCTION

:

void

NetworkIpFinalize(Node *node)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

for (i = 0; i < node->numberInterfaces; i++)

{

switch (NetworkIpGetUnicastRoutingProtocolType(node, i))

{

case ROUTING_PROTOCOL_LAR1:

{

Lar1Finalize(node);

break;

}

:

case ROUTING_PROTOCOL_SRIP:
{

SripFinalize(node);
break;

}
//InsertPatch FINALIZE_FUNCTION

:

28

Compiling Qualnet with SRIP

Edit main/Makefile-common
� Add srip.h and srip.c to SIM_HDRS and 

SIM_SRCS macros, respectively

SIM_HDRS = \

$(ADDON_HDRS) \

\

:
../mac/aloha.h  \

\

../network/srip.h \
#InsertPatch HEADER_FILES

:

SIM_SRCS = \

$(ADDON_SRCS) \

\
:

\

../mac/aloha.c  \

\

../network/srip.c \
#InsertPatch SOURCE_FILES

SIM_HDRS = \

$(ADDON_HDRS) \

\

:
../mac/aloha.h  \

\

../network/srip.h \
#InsertPatch HEADER_FILES

:

SIM_SRCS = \

$(ADDON_SRCS) \

\
:

\

../mac/aloha.c  \

\

../network/srip.c \
#InsertPatch SOURCE_FILES
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Compiling Qualnet with SRIP

Rebuild the .h dependencies:    

Rebuild Qualnet executable:

cd $QUALNET_HOME/main

make depend

cd $QUALNET_HOME/main

make depend

makemake

30

Creating a configuration file for SRIP

In $QUALNET_HOME/bin directory, copy 
default.config into srip.config, then 

modify/add the following parameters:

EXPERIMENT-NAME      srip
:
ROUTING-PROTOCOL  SRIP
SRIP-UPDATE-INTERVAL 10S
:

EXPERIMENT-NAME      srip
:
ROUTING-PROTOCOL  SRIP
SRIP-UPDATE-INTERVAL 10S
:
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Testing the Protocol

In $QUALNET_HOME/bin directory, run qualnet 
with SRIP configuration file:

Check srip.stat file to see applications’

statistics

cd $QUALNET_HOME/bin

./qualnet srip.config

cd $QUALNET_HOME/bin

./qualnet srip.config

32

Obtaining SRIP Example

Two files, srip.h and srip.c, are located in 
/m/buckwheat/qualnet/examples

Check README file for instructions 



17

33

Programming Tips
MESSAGE_Free() must be called only once per 

message

Run make depend to rebuild .h dependencies whenever 

different header files are included

Filling data into a packet or a packet header can be tricky
� A field may span across a word boundary, causing ‘bus error’ in 

some systems
� Use memcpy() instead of an assignment operation (i.e., =)

Use message’s info field to carry extra information 
internally (within the same node)

A good way to learn Qualnet is to study the code of some 
provided protocols


