
1

Using Qualnet – Part II

Adding a Custom Protocol

2

Qualnet’s Directory Structure
$QUALNET_HOME

application

bin

include

gui

mac

main

network

phy

tcplib

transport

– code for the application layer protocols and traffic generators

– executable and configuration or input/output files

– common include files

– the code for the MAC layer protocols

– the basic framework design

– the code for the mobility models

– the code for the network layer protocols and routing protocols

– the code for the physical layer models

– the code for the transport layer protocols (TCP/UDP, RSVP, etc)

– User models for simulating TCP applications such as FTP and Telnet

– Sample files and outputs to verify protocol correctness

mobility

verification

– the Visual Environment Toolset

2

3

Qualnet Layered Architecture
The simulation is a collection of network nodes, each
with its own protocol stack parameters and statistics

� File addons/seq/node.h

struct struct_node_str {

unsigned nodeIndex;

NodeAddress nodeId; /* the network address of the node */

:
unsigned short seed[3]; /* seed for random number generator */

long numNodes; /* number of nodes in the simulation */

:

/* Layer-specific information for the node. */
PhyData* phyData[MAX_NUM_PHYS]; // phy layer

MacData* macData[MAX_NUM_INTERFACES]; // MAC layer

MacSwitch* switchData; // MAC switch

NetworkData networkData; // network layer

TransportData transportData; // transport layer
AppData appData; // application layer

:

};

struct struct_node_str {

unsigned nodeIndex;

NodeAddress nodeId; /* the network address of the node */

:
unsigned short seed[3]; /* seed for random number generator */

long numNodes; /* number of nodes in the simulation */

:

/* Layer-specific information for the node. */
PhyData* phyData[MAX_NUM_PHYS]; // phy layer

MacData* macData[MAX_NUM_INTERFACES]; // MAC layer

MacSwitch* switchData; // MAC switch

NetworkData networkData; // network layer

TransportData transportData; // transport layer
AppData appData; // application layer

:

};

General node’s info

Layer-specific info

4

Messages, Packets, and Timers

A message is a unit defining an interaction
between protocols and between nodes

Two types of messages
� Packets – used for communication between

nodes
� Timers – allow protocols to schedule events in

a future time

3

5

Message-Related API Functions

Add virtual payload to a Message (increase tx delay
without increasing array size)

MESSAGE_AddVirtualPayload()

Free the message, once it has reached its final
destination

MESSAGE_Free()

Send the message as an event to the specified
layer and protocol

MESSAGE_Send()

Copy the message, including its packet and user-
specified space (info field)

MESSAGE_Duplicate()

Remove a header from the packetMESSAGE_RemoveHeader()

Add a header to the packet (usually called by each
layer in the protocol stack)

MESSAGE_AddHeader()

Allocate space for the packet within the messageMESSAGE_PacketAlloc()

Allocate additional user-specified space for optional
information about the event

MESSAGE_InfoAlloc()

Allocate a message and provide it with standard
event, layer, protocol info

MESSAGE_Alloc()

6

Packet Life Cycle
Application

Transport

IP

MAC

Radio

Application

Transport

IP

MAC

Radio

IP

MAC

Radio

Routing Routing

MESSAGE_AddHeader()
MESSAGE_Send(…)

MESSAGE_Alloc(…)
MESSAGE_PacketAlloc(…)
MESSAGE_Send(…)

MESSAGE_AddHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_RemoveHeader()
MESSAGE_Send(…)

MESSAGE_Free(…)

MESSAGE_AddHeader()
MESSAGE_Send(…)

4

7

Creating Messages

Message*

MESSAGE_Alloc(

Node *node,

int layerType,

int protocol,

int eventType);

Message*

MESSAGE_Alloc(

Node *node,

int layerType,

int protocol,

int eventType);

A pointer to the node creating
the message

The stack layer at which this message
will be processed next
e.g., NETWORK_LAYER

The specific protocol at the layer
which will process this message
e.g., ROUTING_PROTOCOL_DSR

The event that this message represents
e.g., MSG_NETWORK_FlushTables

8

Message Processing

Check layerType field

Radio MAC Network Transport App

Check protocolType field

Check eventType field

IP DSR AODV
�

Event queue

FlushTables CheckReplied RouteTimeout

Handling function
for FlushTables

event

msg

newMsg

5

9

Qualnet’s Protocol Modeling

Initialization Function
• Allocate memory for each node’s

local variables
• Initialize local variables
• Process configuration file(s)
• Schedule the first event

Idle

Message (packet or timer)
processing function
• Modify state variables
• Update local statistics
• Generate/forward packets

Finalization Function
• Output statistics

Packet arrival or
timer expiration

10

Adding a Protocol to Qualnet
Determine what layer your protocol will
operate at

Implement four/five main functions
� Initialization function
� Packet/event handling function
� Router function (for routing protocol)
� Finalization function

Hook up the above functions to the
protocol dispatching functions of the
corresponding layer

6

11

Example: Adding a New Routing Protocol

Simplified Routing Information Protocol
(SRIP)

� Table-driven, distance vector protocol
� Using periodic route update, no triggered

update, no split horizon
� Working properly in static networks with only

a small number of nodes (no node failure)
� Supporting only one interface (wireless) per

node

12

Distributed Bellman-Ford Algorithm
What local information is maintained by each node?

�

What information is exchanged between neighboring
nodes?

�

How a node processes a route advertisement?
� A node A updates its entry for destination D only when the

advertised cost to D is lower than its current cost

Routing Table

:

Cost

::

Next hopDestination

Initial routing table for A

�-:

�-B

0

Cost

AA

Next hopDestination

Route Advertisement

:

Cost

:

Destination

7

13

SRIP Header File (network/srip.h)

#ifndef _SRIP_H_

#define _SRIP_H_

#define SRIP_INFINITY 16

typedef struct srip_table_entry

{

NodeAddress destination;

NodeAddress nextHop;

unsigned int distance;

} SripTableEntry;

typedef struct srip_str

{

clocktype updateInterval;

SripTableEntry* routingTable;

/* statistic */

unsigned int numRouteUpdatesBroadcast;

} SripData;

void SripInit(Node* node, SripData** sripPtr,

const NodeInput* nodeInput, int interfaceIndex);

void SripHandleProtocolEvent(Node* node, Message* msg);

void SripHandleProtocolPacket(Node* node, Message* msg,

NodeAddress sourceAddress);

void SripFinalize(Node *node);

void SripRouterFunction(Node* node, Message* msg, NodeAddress destAddr,

NodeAddress previousHopAddress, BOOL* packetWasRouted);

#endif

#ifndef _SRIP_H_

#define _SRIP_H_

#define SRIP_INFINITY 16

typedef struct srip_table_entry

{

NodeAddress destination;

NodeAddress nextHop;

unsigned int distance;

} SripTableEntry;

typedef struct srip_str

{

clocktype updateInterval;

SripTableEntry* routingTable;

/* statistic */

unsigned int numRouteUpdatesBroadcast;

} SripData;

void SripInit(Node* node, SripData** sripPtr,

const NodeInput* nodeInput, int interfaceIndex);

void SripHandleProtocolEvent(Node* node, Message* msg);

void SripHandleProtocolPacket(Node* node, Message* msg,

NodeAddress sourceAddress);

void SripFinalize(Node *node);

void SripRouterFunction(Node* node, Message* msg, NodeAddress destAddr,

NodeAddress previousHopAddress, BOOL* packetWasRouted);

#endif

Local SRIP variables per nodes

Function prototypes to be recognized
by Qualnet’s network layer (IP)

Routing table entry

14

SRIP Initialization Function
Called when each node is initialized by Qualnet

void SripInit(Node* node,

SripData** sripPtr,

const NodeInput* nodeInput,

int interfaceIndex)

{

int i; BOOL retVal;

Message* newMsg;

SripData* srip;

if (MAC_IsWiredNetwork(node, interfaceIndex))

ERROR_ReportError("SRIP supports only wireless interfaces");

if (node->numberInterfaces > 1)

ERROR_ReportError("SRIP only supports one interface of node");

/* allocate memory for SRIP's variables for this node */

(*sripPtr) = (SripData*) MEM_malloc(sizeof(SripData));

srip = *sripPtr;

/* read parameter from the configuration file */

IO_ReadTime(node->nodeId,

ANY_ADDRESS,

nodeInput,

"SRIP-UPDATE-INTERVAL",

&retVal,

&(srip->updateInterval));

if (retVal == FALSE)

ERROR_ReportError("SRIP-UPDATE-INTERVAL not specified!");

void SripInit(Node* node,

SripData** sripPtr,

const NodeInput* nodeInput,

int interfaceIndex)

{

int i; BOOL retVal;

Message* newMsg;

SripData* srip;

if (MAC_IsWiredNetwork(node, interfaceIndex))

ERROR_ReportError("SRIP supports only wireless interfaces");

if (node->numberInterfaces > 1)

ERROR_ReportError("SRIP only supports one interface of node");

/* allocate memory for SRIP's variables for this node */

(*sripPtr) = (SripData*) MEM_malloc(sizeof(SripData));

srip = *sripPtr;

/* read parameter from the configuration file */

IO_ReadTime(node->nodeId,

ANY_ADDRESS,

nodeInput,

"SRIP-UPDATE-INTERVAL",

&retVal,

&(srip->updateInterval));

if (retVal == FALSE)

ERROR_ReportError("SRIP-UPDATE-INTERVAL not specified!");

(to be continued)

Allocate memory for local SRIP
variables within each node

Read SRIP parameter
from the main config file

Make sure the node has
exactly one wireless interface

8

15

SRIP Initialization Function

/* allocate and initialize the routing table for this node */

/* Note: (n+1) entries are allocated for convenience */

srip->routingTable = (SripTableEntry*)

MEM_malloc(sizeof(SripTableEntry)*node->numNodes + 1);
for (i = 1; i <= node->numNodes; i++) {

srip->routingTable[i].destination = i;

srip->routingTable[i].nextHop = INVALID_ADDRESS;

srip->routingTable[i].distance = SRIP_INFINITY;
}

srip->routingTable[node->nodeId].nextHop = node->nodeId;

srip->routingTable[node->nodeId].distance = 0;

/* Initialize statistic */
srip->numRouteUpdatesBroadcast = 0;

/* Tell IP to use our function to route packets */

NetworkIpSetRouterFunction(node,

&SripRouterFunction,
interfaceIndex);

/* schedule the very first route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, pc_nrand(node->seed)%srip->updateInterval);

}

/* allocate and initialize the routing table for this node */

/* Note: (n+1) entries are allocated for convenience */

srip->routingTable = (SripTableEntry*)

MEM_malloc(sizeof(SripTableEntry)*node->numNodes + 1);
for (i = 1; i <= node->numNodes; i++) {

srip->routingTable[i].destination = i;

srip->routingTable[i].nextHop = INVALID_ADDRESS;

srip->routingTable[i].distance = SRIP_INFINITY;
}

srip->routingTable[node->nodeId].nextHop = node->nodeId;

srip->routingTable[node->nodeId].distance = 0;

/* Initialize statistic */
srip->numRouteUpdatesBroadcast = 0;

/* Tell IP to use our function to route packets */

NetworkIpSetRouterFunction(node,

&SripRouterFunction,
interfaceIndex);

/* schedule the very first route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, pc_nrand(node->seed)%srip->updateInterval);

}

(continued)

Initialize routing table

Initialize statistic

Register router
function with IP

Schedule the first route
advertisement timer

16

SRIP Event Handling Function

Called when a node’s timer expires

void SripHandleProtocolEvent(Node* node, Message* msg)

{

int i, numEntries = 0, pktSize;

Message* newMsg;

char* pktPtr;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

for (i = 0; i < node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY)

numEntries++;

}

newMsg = MESSAGE_Alloc(node, 0, 0, 0);

pktSize = sizeof(unsigned int) + sizeof(SripTableEntry)*numEntries;

MESSAGE_PacketAlloc(node, newMsg, pktSize, TRACE_ANY_PROTOCOL);

pktPtr = newMsg->packet;

memcpy(pktPtr, &numEntries, sizeof(unsigned int)); /* number of entries */

pktPtr += sizeof(unsigned int);

/* Fill the packet with the valid table entries */

for (i = 1; i <= node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY) {

memcpy(pktPtr, &(srip->routingTable[i]), sizeof(SripTableEntry));

pktPtr += sizeof(SripTableEntry);

}

}

void SripHandleProtocolEvent(Node* node, Message* msg)

{

int i, numEntries = 0, pktSize;

Message* newMsg;

char* pktPtr;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

for (i = 0; i < node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY)

numEntries++;

}

newMsg = MESSAGE_Alloc(node, 0, 0, 0);

pktSize = sizeof(unsigned int) + sizeof(SripTableEntry)*numEntries;

MESSAGE_PacketAlloc(node, newMsg, pktSize, TRACE_ANY_PROTOCOL);

pktPtr = newMsg->packet;

memcpy(pktPtr, &numEntries, sizeof(unsigned int)); /* number of entries */

pktPtr += sizeof(unsigned int);

/* Fill the packet with the valid table entries */

for (i = 1; i <= node->numNodes; i++) {

if (srip->routingTable[i].distance < SRIP_INFINITY) {

memcpy(pktPtr, &(srip->routingTable[i]), sizeof(SripTableEntry));

pktPtr += sizeof(SripTableEntry);

}

} (to be continued)

Count the number of
valid entries

Prepare a route advertisement packet

Obtain pointer to local
variable space

9

17

SRIP Event Handling Function

/* Send the route update packet to MAC layer */

NetworkIpSendRawMessageToMacLayer(

node, /* node pointer */

newMsg, /* raw message */
node->nodeId, /* source address */

ANY_DEST, /* destination address */

CONTROL, /* priority */

IPPROTO_SRIP, /* IP Protocol */
1, /* TTL */

DEFAULT_INTERFACE, /* output interface */

ANY_DEST); /* next hop address */

/* update statistic */
srip->numRouteUpdatesBroadcast++;

/* schedule the next route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, srip->updateInterval);

}

/* Send the route update packet to MAC layer */

NetworkIpSendRawMessageToMacLayer(

node, /* node pointer */

newMsg, /* raw message */
node->nodeId, /* source address */

ANY_DEST, /* destination address */

CONTROL, /* priority */

IPPROTO_SRIP, /* IP Protocol */
1, /* TTL */

DEFAULT_INTERFACE, /* output interface */

ANY_DEST); /* next hop address */

/* update statistic */
srip->numRouteUpdatesBroadcast++;

/* schedule the next route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,

ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send(node, newMsg, srip->updateInterval);

}

(continued)

Ask IP to add header and
send packet to MAC layer

Update local statistic

Schedule the next
broadcast event

18

SRIP Packet Handling Function
Called when a node receives a route advertisement

void SripHandleProtocolPacket(Node* node,

Message* msg,

NodeAddress sourceAddress)

{

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

int i, numEntries;

char *pktPtr;

SripTableEntry entry;

pktPtr = msg->packet;

memcpy(&numEntries, pktPtr, sizeof(unsigned int));

pktPtr += sizeof(unsigned int);

/* scan the entry list and update routing table only with entries with

* shorter distance */

for (i = 0; i < numEntries; i++)

{

memcpy(&entry, pktPtr, sizeof(SripTableEntry));

entry.distance++;

if (entry.distance < srip->routingTable[entry.destination].distance) {

srip->routingTable[entry.destination].distance = entry.distance;

srip->routingTable[entry.destination].nextHop = sourceAddress;

}

pktPtr += sizeof(SripTableEntry);

}

MESSAGE_Free(node, msg);

}

void SripHandleProtocolPacket(Node* node,

Message* msg,

NodeAddress sourceAddress)

{

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

int i, numEntries;

char *pktPtr;

SripTableEntry entry;

pktPtr = msg->packet;

memcpy(&numEntries, pktPtr, sizeof(unsigned int));

pktPtr += sizeof(unsigned int);

/* scan the entry list and update routing table only with entries with

* shorter distance */

for (i = 0; i < numEntries; i++)

{

memcpy(&entry, pktPtr, sizeof(SripTableEntry));

entry.distance++;

if (entry.distance < srip->routingTable[entry.destination].distance) {

srip->routingTable[entry.destination].distance = entry.distance;

srip->routingTable[entry.destination].nextHop = sourceAddress;

}

pktPtr += sizeof(SripTableEntry);

}

MESSAGE_Free(node, msg);

}

#entries 1st entry 2nd entry …

Packet format

Free the message since this is its
final destination

Obtain pointer to local
variable space

10

19

SRIP Router Function

Called when IP layer receives a data packet from
MAC or transport

void SripRouterFunction(Node* node,

Message* msg,

NodeAddress destAddr,

NodeAddress previousHopAddress,

BOOL* packetWasRouted)

{

IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

/* do not route any SRIP packet, or any packets destined to myself */

if (ipHeader->ip_p == IPPROTO_SRIP || ipHeader->ip_dst == node->nodeId)

return;

/* route the packet only when the destination is considered reachable */

if (srip->routingTable[ipHeader->ip_dst].distance < SRIP_INFINITY)

{

*packetWasRouted = TRUE;

NetworkIpSendPacketToMacLayer(

node,

msg,

DEFAULT_INTERFACE,

srip->routingTable[ipHeader->ip_dst].nextHop);

}

}

void SripRouterFunction(Node* node,

Message* msg,

NodeAddress destAddr,

NodeAddress previousHopAddress,

BOOL* packetWasRouted)

{

IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

/* do not route any SRIP packet, or any packets destined to myself */

if (ipHeader->ip_p == IPPROTO_SRIP || ipHeader->ip_dst == node->nodeId)

return;

/* route the packet only when the destination is considered reachable */

if (srip->routingTable[ipHeader->ip_dst].distance < SRIP_INFINITY)

{

*packetWasRouted = TRUE;

NetworkIpSendPacketToMacLayer(

node,

msg,

DEFAULT_INTERFACE,

srip->routingTable[ipHeader->ip_dst].nextHop);

}

}

Ignore SRIP packets
and my own packets

Route the packet if
the destination is
reachable

20

SRIP Finalizing Function

Called at each node when Qualnet is
terminating

void SripFinalize(Node *node)

{

char buf[MAX_STRING_LENGTH];

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

sprintf(buf, "Number of Route Updates Broadcast = %u",

srip->numRouteUpdatesBroadcast);

IO_PrintStat(node, "Network", "SRIP", ANY_DEST, -1, buf);

}

void SripFinalize(Node *node)

{

char buf[MAX_STRING_LENGTH];

/* Obtain a pointer to the local variable space */

SripData* srip = (SripData*)

NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP);

sprintf(buf, "Number of Route Updates Broadcast = %u",

srip->numRouteUpdatesBroadcast);

IO_PrintStat(node, "Network", "SRIP", ANY_DEST, -1, buf);

}

Report statistic

11

21

Make SRIP Recognized by Qualnet

Let Qualnet know SRIP as a network layer
protocol

� In the file include/network.h

typedef

enum

{

NETWORK_PROTOCOL_IP = 0,
NETWORK_PROTOCOL_MOBILE_IP,

:

:

ROUTING_PROTOCOL_IGRP,
ROUTING_PROTOCOL_SRIP,

//InsertPatch ROUTING_PROTOCOL_TYPE

:

ROUTING_PROTOCOL_ALL,

ROUTING_PROTOCOL_NONE
}

NetworkRoutingProtocolType;

typedef

enum

{

NETWORK_PROTOCOL_IP = 0,
NETWORK_PROTOCOL_MOBILE_IP,

:

:

ROUTING_PROTOCOL_IGRP,
ROUTING_PROTOCOL_SRIP,

//InsertPatch ROUTING_PROTOCOL_TYPE

:

ROUTING_PROTOCOL_ALL,

ROUTING_PROTOCOL_NONE
}

NetworkRoutingProtocolType;

22

Make SRIP Recognized by Qualnet

Let IP module know SRIP as an IP protocol
� In the file network/ip.h

//

// IP protocol numbers for network- and transport-layer protocols.

//

#define IPPROTO_ICMP 1
#define IPPROTO_IGMP 2

:

#define IPPROTO_DVMRP 200

#define IPPROTO_SRIP 234
//InsertPatch ROUTING_IPPROTO

//

// IP protocol numbers for network- and transport-layer protocols.

//

#define IPPROTO_ICMP 1
#define IPPROTO_IGMP 2

:

#define IPPROTO_DVMRP 200

#define IPPROTO_SRIP 234
//InsertPatch ROUTING_IPPROTO

12

23

Make SRIP Recognized by Qualnet

Have IP module recognize the five entry
functions of SRIP

� Have network/ip.c include srip.h

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>
:

:

#include "pim.h"

#include "access_list.h"

//#define DEBUG_FIX

#include "srip.h"
//InsertPatch HEADER_FILES
:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>
:

:

#include "pim.h"

#include "access_list.h"

//#define DEBUG_FIX

#include "srip.h"
//InsertPatch HEADER_FILES
:

(file network/ip.pc)

24

Make SRIP Recognized by Qualnet

Have IP initialize SRIP if specified in the configuration file
� In the file network/ip.c, function NetworkIpInit()

void

NetworkIpInit(Node *node, const NodeInput *nodeInput)
{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
:

IO_ReadString(
node->nodeId,

NetworkIpGetInterfaceAddress(node, i),

nodeInput,
"ROUTING-PROTOCOL",

&retVal,
protocolString);

if (retVal)
{

:
else
if (strcmp(protocolString, "SRIP") == 0) {

NetworkIpAddUnicastRoutingProtocolType(node, ROUTING_PROTOCOL_SRIP, i);

if (!NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP)) {
SripInit(node,

(SripData **) &ip->interfaceInfo[i]->routingProtocol,
nodeInput, i);

}
else {

NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
node, ROUTING_PROTOCOL_SRIP, i);

}
}

//InsertPatch NETWORK_INIT_CODE

:

void

NetworkIpInit(Node *node, const NodeInput *nodeInput)
{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
:

IO_ReadString(
node->nodeId,

NetworkIpGetInterfaceAddress(node, i),

nodeInput,
"ROUTING-PROTOCOL",

&retVal,
protocolString);

if (retVal)
{

:
else
if (strcmp(protocolString, "SRIP") == 0) {

NetworkIpAddUnicastRoutingProtocolType(node, ROUTING_PROTOCOL_SRIP, i);

if (!NetworkIpGetRoutingProtocol(node, ROUTING_PROTOCOL_SRIP)) {
SripInit(node,

(SripData **) &ip->interfaceInfo[i]->routingProtocol,
nodeInput, i);

}
else {

NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
node, ROUTING_PROTOCOL_SRIP, i);

}
}

//InsertPatch NETWORK_INIT_CODE

:

13

25

Make SRIP Recognized by Qualnet

When the network layer receives an event for SRIP,
dispatch it to SRIP’s event handling function

� In the file, network/ip.c, function NetworkIpLayer()

void

NetworkIpLayer(Node *node, Message *msg)

{

switch (msg->protocolType)
{

:

case ROUTING_PROTOCOL_ALL:

{
ERROR_Assert(FALSE, "IP event error");

//HandleSpecialMacLayerStatusEvents(node, msg);

break;

}

case ROUTING_PROTOCOL_SRIP:
{

SripHandleProtocolEvent(node, msg);
break;

}
//InsertPatch NETWORK_IP_LAYER

:

void

NetworkIpLayer(Node *node, Message *msg)

{

switch (msg->protocolType)
{

:

case ROUTING_PROTOCOL_ALL:

{
ERROR_Assert(FALSE, "IP event error");

//HandleSpecialMacLayerStatusEvents(node, msg);

break;

}

case ROUTING_PROTOCOL_SRIP:
{

SripHandleProtocolEvent(node, msg);
break;

}
//InsertPatch NETWORK_IP_LAYER

:

26

Make SRIP Recognized by Qualnet

When IP receives an SRIP route advertisement packet,
dispatch it to SRIP’s packet handling function

� In the file, network/ip.pc, function DeliverPacket()

static void //inline//

DeliverPacket(Node *node, Message *msg,

int interfaceIndex, NodeAddress previousHopAddress)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

ipHeader = (IpHeaderType *) msg->packet;

ipProtocolNumber = ipHeader->ip_p;

if (ipHeader->ip_tos & IPTOS_CE) {

aCongestionExperienced = TRUE;

}

switch (ipProtocolNumber)

{

:

case IPPROTO_SRIP:
{

SripHandleProtocolPacket(
node,
msg,
sourceAddress);

break;
}

//InsertPatch NETWORK_HANDLE_PACKET

:

static void //inline//

DeliverPacket(Node *node, Message *msg,

int interfaceIndex, NodeAddress previousHopAddress)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

ipHeader = (IpHeaderType *) msg->packet;

ipProtocolNumber = ipHeader->ip_p;

if (ipHeader->ip_tos & IPTOS_CE) {

aCongestionExperienced = TRUE;

}

switch (ipProtocolNumber)

{

:

case IPPROTO_SRIP:
{

SripHandleProtocolPacket(
node,
msg,
sourceAddress);

break;
}

//InsertPatch NETWORK_HANDLE_PACKET

:

14

27

Make SRIP Recognized by Qualnet

Call SRIP’s finalizing function when IP is terminating
� In the file network/ip.pc, function NetworkIpFinalize()

void

NetworkIpFinalize(Node *node)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

for (i = 0; i < node->numberInterfaces; i++)

{

switch (NetworkIpGetUnicastRoutingProtocolType(node, i))

{

case ROUTING_PROTOCOL_LAR1:

{

Lar1Finalize(node);

break;

}

:

case ROUTING_PROTOCOL_SRIP:
{

SripFinalize(node);
break;

}
//InsertPatch FINALIZE_FUNCTION

:

void

NetworkIpFinalize(Node *node)

{

NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;

:

for (i = 0; i < node->numberInterfaces; i++)

{

switch (NetworkIpGetUnicastRoutingProtocolType(node, i))

{

case ROUTING_PROTOCOL_LAR1:

{

Lar1Finalize(node);

break;

}

:

case ROUTING_PROTOCOL_SRIP:
{

SripFinalize(node);
break;

}
//InsertPatch FINALIZE_FUNCTION

:

28

Compiling Qualnet with SRIP

Edit main/Makefile-common
� Add srip.h and srip.c to SIM_HDRS and

SIM_SRCS macros, respectively

SIM_HDRS = \

$(ADDON_HDRS) \

\

:
../mac/aloha.h \

\

../network/srip.h \
#InsertPatch HEADER_FILES

:

SIM_SRCS = \

$(ADDON_SRCS) \

\
:

\

../mac/aloha.c \

\

../network/srip.c \
#InsertPatch SOURCE_FILES

SIM_HDRS = \

$(ADDON_HDRS) \

\

:
../mac/aloha.h \

\

../network/srip.h \
#InsertPatch HEADER_FILES

:

SIM_SRCS = \

$(ADDON_SRCS) \

\
:

\

../mac/aloha.c \

\

../network/srip.c \
#InsertPatch SOURCE_FILES

15

29

Compiling Qualnet with SRIP

Rebuild the .h dependencies:

Rebuild Qualnet executable:

cd $QUALNET_HOME/main

make depend

cd $QUALNET_HOME/main

make depend

makemake

30

Creating a configuration file for SRIP

In $QUALNET_HOME/bin directory, copy
default.config into srip.config, then

modify/add the following parameters:

EXPERIMENT-NAME srip
:
ROUTING-PROTOCOL SRIP
SRIP-UPDATE-INTERVAL 10S
:

EXPERIMENT-NAME srip
:
ROUTING-PROTOCOL SRIP
SRIP-UPDATE-INTERVAL 10S
:

16

31

Testing the Protocol

In $QUALNET_HOME/bin directory, run qualnet
with SRIP configuration file:

Check srip.stat file to see applications’

statistics

cd $QUALNET_HOME/bin

./qualnet srip.config

cd $QUALNET_HOME/bin

./qualnet srip.config

32

Obtaining SRIP Example

Two files, srip.h and srip.c, are located in
/m/buckwheat/qualnet/examples

Check README file for instructions

17

33

Programming Tips
MESSAGE_Free() must be called only once per

message

Run make depend to rebuild .h dependencies whenever

different header files are included

Filling data into a packet or a packet header can be tricky
� A field may span across a word boundary, causing ‘bus error’ in

some systems
� Use memcpy() instead of an assignment operation (i.e., =)

Use message’s info field to carry extra information
internally (within the same node)

A good way to learn Qualnet is to study the code of some
provided protocols

