Using Qualnet — Part II

Adding a Custom Protocol

Qualnet’s Directory Structure

application | — code for the application layer protocols and traffic generators
in — executable and configuration or input/output files
ui — the Visual Environment Toolset

include — common include files

a — the code for the MAC layer protocols

— the basic framework design
mobility — the code for the mobility models

network — the code for the network layer protocols and routing protocols
— the code for the physical layer models

transport — the code for the transport layer protocols (TCP/UDP, RSVP, etc)

k)
< el a -
]

verification |— Sample files and outputs to verify protocol correctness

tcplib — User models for simulating TCP applications such as FTP and Telnet

Qualnet Layered Architecture

4 The simulation is a collection of network nodes, each
with its own protocol stack parameters and statistics
s File addons/seq/node.h

_ General node’s info |

struct struct node str {

/ﬁnsigncd nodeIndex;

NodeAddress nodelId; /* the network address of the node */
unsigned short seed[3]; /* seed for random number generator */
\10ng numNodes; /* number of nodes in the simulation */
//* Layer-specific information for the node. */

PhyData* phyData [MAX_NUM PHYS]; // phy layer

MacData* macData[MAX NUM_INTERFACES]; // MAC layer
MacSwitch* switchData; // MAC switch
NetworkData networkData; // network layer
TransportData transportData; // transport layer
AppData appDbata; // application layer

);K 7

Layer-specific info

Messages, Packets, and Timers

#A message is a unit defining an interaction
between protocols and between nodes
#Two types of messages

m Packets — used for communication between
nodes

= Timers — allow protocols to schedule events in
a future time

Message-Related API Functions

MESSAGE_Alloc()

Allocate a message and provide it with standard
event, layer, protocol info

MESSAGE_InfoAlloc()

Allocate additional user-specified space for optional
information about the event

MESSAGE_PacketAlloc()

Allocate space for the packet within the message

MESSAGE_AddHeader()

Add a header to the packet (usually called by each
layer in the protocol stack)

MESSAGE_RemoveHeader()

Remove a header from the packet

MESSAGE_AddVirtualPayload()

Add virtual payload to a Message (increase tx delay
without increasing array size)

MESSAGE_Duplicate()

Copy the message, including its packet and user-
specified space (info field)

MESSAGE_Send()

Send the message as an event to the specified
layer and protocol

MESSAGE_Free()

Free the message, once it has reached its final
destination

Packet Life Cycle

Application

MESSAGE_Alloc(....)

Application
MESSAGE_Free(...)

I| | MESSAGE_PacketAlloc(...) [

Transport

MESSAGE_Send(...)

Transport
MESSAGE_AddHeader() MESSAGE_RemoveHeader()

(|| MESSAGE_Send(...)

MESSAGE_Send(...) e

V
(Routing ={ 1P| (Routing }={ 1P| 1P
/\ MESSAGE_RemoveHeader()

MESSAGE_AddHeader()
[T} | MESSAGE_Send(...) MESSAGE_Send(...) [
V
MAC (MAC) MAC
MESSAGE_AddHeader() /\ MESSAGE_RemoveHeader()
(T} | MESSAGE_Send(...) MESSAGE_Send(...) (T
V
Radio Radio

Creating Messages

Message* A pointer to the node creating
the message
MESSAGE Alloc(

Node *node,

The stack layer at which this message
. L — will be processed next
int layerType, e.g., NETWORK_LAYER

int protocol ’\\ The specific protocol at the layer

which will process this message
int eventType)wx e.g., ROUTING_PROTOCOL_DSR

The event that this message represents
e.g., MSG_NETWORK_FlushTables

Message Processing

Handling function

for FlushTables @ @ CheckReplied

event

’ Check eventType field ‘

’ Check protocolType field ‘

(o) () o) e ()

| Check 1ayerType field |

I

Event queue

Qualnet’s Protocol Modeling

Initialization Function
« Allocate memory for each node’s

local variables
Packet arrival or
timer expiration

« Initialize local variables

« Process configuration file(s)

« Schedule the first event
Message (packet or timer)
processing function

« Modify state variables

+ Update local statistics

« Generate/forward packets

| ==
§ =

Finalization Function
« Output statistics

Adding a Protocol to Qualnet

#Determine what layer your protocol will
operate at

#Implement four/five main functions
» Initialization function
» Packet/event handling function
= Router function (for routing protocol)
» Finalization function

#Hook up the above functions to the
protocol dispatching functions of the
corresponding layer

10

Example: Adding a New Routing Protocol

#Simplified Routing Information Protocol
(SRIP)
= Table-driven, distance vector protocol

» Using periodic route update, no triggered
update, no split horizon

= Working properly in static networks with only
a small number of nodes (no node failure)

= Supporting only one interface (wireless) per
node

11

Distributed Bellman-Ford Algorithm

4 What local information is maintained by each node?

Routing Table Initial routing table for 4
Destination | Next hop Cost Destination | Next hop | Cost
A A 0
B - 0
o0

What information is exchanged between neighboring

nodes?
od Route Advertisement

=iy Destination Cost

How a node processes a route advertisement?

= A node A updates its entry for destination D only when the
advertised cost to Dis lower than its current cost

12

SRIP Header File (network/srip.h)

#ifndef SRIP H_
#define SRIP H_

#define SRIP_INFINITY 16
typedef struct srip_table_entry
{
NodeAddre destination;
NodeAddre nextHop;

unsigned int distance;
} SripTableEntry;

typedef struct srip_str
{

updateInterval;
routingTabl

clocktype
SripTableEntry*

/%

statistic */
insigned int numRouteUpdatesBroadcast
pData;

sripPtr,
int interfaceIndex);
Mes

void SripInit (Node* node, SripData**
const NodeTnput* nodeTnput,
SripHandleProtocolEvent (Node* node,
SripHandleProtocolPacket (Node* node,
NodeAddress sourceAddress);

SripFinalize (Node *node);
SripRouterFunction (Node* node,
NodeAddress

id
void

void
void Message* msg,

previousHopAddress,

#endif

NodeAddress destAddr,
BOOL* packetWasRouted) ;

Routing table entry

‘ Local SRIP variables per nodes ‘

Function prototypes to be recognized
by Qualnet’s network layer (IP)

13

SRIP Initialization Function

Called when each node is initialized by Qualnet

node,
sripPtr,
nodeInput,
interfaceIndex)

void SripInit (Node*
SripData**
const NodeInput*
int i

BOOL retVal;
Message* newMsg;
SripData* srip;

int i;

if (MAC_IsWiredNetwork(node, interfaceIndex))

ERROR_ReportError ("SRIP
if (node->numberInterfaces >
ERROR_ReportError ("SRIP

/* allocate memory for for th
(*sripPtr) = (SripData*) MEM malloc(sizeof (SripData));
srip = *sripPtr;

/* read parameter from file */

I0_ReadTime (node->nodelId,
ANY_ADDRESS,
nodeInput,
"SRIP-UPDATE-INTERVAL",
sretval,
->updateInterval));
)

if == FA

(retval

supports only wireless interfaces");

ERROR_ReportError ("SRIP-UPDATE-INTERVAL not specified!™);

Make sure the node has
exactly one wireless interface

]

Allocate memory for local SRIP
variables within each node

|

Read SRIP parameter
from the main config file

(to be continued)

14

SRIP Initialization Function

(continued)

/* allocate and initialize the routing table for this node */
/* Note: (n+l) entries are allocated for convenience */
srip->routingTable = (SripTableEntry*)

MEM malloc(sizeof (SripTableEntry) *node->numNodes + 1);

for (1 = 1; i <= node->numNodes; i++) { .)
srip->routingTable[i] .destination = 1i; Initialize routlng table
srip->routingTable[i] .nextHop = INVALID ADDRESS;
srip->routingTable[i].distance = SRIP_INFINITY;

}

srip->routingTable [node->nodelId] .nextHop = node->nodeld;

srip->routingTable [node->nodeld] .distance = 0;

/* Initialize statistic */ Initialize statistic
srip->numRouteUpdatesBroadcast = 0;

I
/* Tell IP to use our function to route packets */ Regi
NetworkIpSetRouterFunction (node, eg|5_ter |'0_Uter
&SripRouterFunction, function with IP

interfaceIndex) ; [

Schedule the first route

/* schedule the very first route date broadcast */ . .
. Rt oe b advertisement timer

newMsg = MESSAGE_Alloc (node, NETWORK_LAYER,
ROUTING_PROTOCOL_SRIP, MSG_NETWORK_RTBroadcastAlarm);
MESSAGE_Send (node, newMsg, pc_nrand(node->seed) %srip->updatelnterval) ;

}
15
SRIP E t Handli F ti
#Called wh de’s ti '
void SripHandleProtocolEvent (Node* node, Message* msg)
{
int i, numEntries = 0, pktSize;
Message* newMsg;
char* pktPtr;
/* Obtain a pointer to the local variable space */ Obtain pointer to Iocal
SripData* srip (SripData*) .
NetworkIpGetRoutingProtocol (node, ROUTING_PROTOCOL_SRIP); variable space
for (i 0; < node->numNodes; i++) { l
if (srip->routingTable[i].distance < SRIP_INFINITY) Prepare a route advertisement packet
numEntries++;
}
newMsg MESSAGE_Alloc (node, 0, 0, 0);
pktSize sizeof (unsigned int) + sizeof ableEntry) *numEntries;
MESSAGE_PacketAlloc (node, newMsg, pktSize, TRACE_ANY PROTOCOL) ;
pktPtr = newMsg->packet;
memcpy (pktPtr, &numEntries, sizeof (unsigned int)); /* number of entries */
pktPtr += sizeof (unsigned int);
/* Fill the packet with t Count the number of
for (i 1; <= node->numN vaIid entries
if (srip->routingTable[i].distance < SRIP_INFINITY) {
m py (pktPtr, &(sr >routingTable[i]), sizeof (SripTableEntry));
pktPtr += sizeof (SripTableEntry);
} .
} (to be continued)

16

SRIP Event Handling Function

(continued)

/* Send the route update packet to MAC layer */

NetworkIpSendRawMessageToMacLayer (
node, /* node pointer */
newMsg, /* raw message */
node->nodeld, /* source address */
ANY_ DEST, /* destination address */
CONTROL, /* priority */
IPPROTO_SRIP, /* IP Protocol */
1, /* TTL */
DEFAULT_ INTERFACE, /* output interface */
ANY DEST); /* next hop address */

/* update statistic */
srip->numRouteUpdatesBroadcast++;

/* schedule the next route update broadcast */

newMsg = MESSAGE_Alloc(node, NETWORK_LAYER,
ROUTING_PROTOCOL_SRIP,

MESSAGE_Send (node, newMsg, srip->updateInterval);

MSG_NETWORK_RTBroadcastAlarm);

Ask IP to add header and
send packet to MAC layer

Update local statistic

Schedule the next
broadcast event

17

SRIP Packet Handling

Function

Called when a node receives a route advertisement

void SripHandleProtocolPacket (Node*

Message*

node,
msg,
NodeAddress sourceAddress

SripData* srip = (SripData*)
NetworkIpGetRoutingProtocol (node,
i, numEntries;

- *pktPtr;

SripTableEntry entry;

pktPtr = msg->packet;
memcpy (&numEntries, pktPtr, sizeof (unsigned int));
pktPtr += sizeof (unsigned int);

t and update routing table only wi
rter dist

0; i < numEntries;

i++)

memcpy (&entry, otr,
entry.dista
(entry.distance < srip->routingTable[entry.d
srip->routingTable[entry.destination].dista
srip->routingTable[entry.destination] .nextHop

sizeof (SripTableEntry));

if

}

pktPtr += sizeof (SripTableEntry);

ROUTING_PROTOCOL_SRIP) ;

tination].distance) {

Obtain pointer to local
variable space

l
Packet format

‘ #entries

1t entry

2nd entry ‘ ‘

th entries with

entry.distan

sourceAddress;

}

MESSAGE_Free (N0de, MSY); m—

} final destination

Free the message since this is its

18

SRIP Router Function

MAC or transport

void SripRouterFunction (Node*

IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;

/* Obtain a pointer to the local variable space */
SripData*
NetworkIpGetRoutingProtocol (node, ROUTING PROTOCOL_SRIP) ;

Called when IP layer receives a data packet from

/* do not route any SRIP pac or any packets destined to mys
if == IPPROTO_SRIP || ipHeader->ip dst == node->nodeld)

Lf */ | Ignore SRIP packets
and my own packets

/* route the packet only when the des

if (srip->routingTable[ipHeader->i stance < SRIP_INFINITY)

{

*packetWasRouted = TRUE; Route the packet if
NetworkIpSendPacketToMacLayer (the destination is
node,
nsg, reachable

DEFAULT_INTERFACE,
srip->routingTable[ipHeader->ip_dst].nextHop);

19
SRIP Finalizing Functi
void SripFinalize (Node *node)
{
char buf[MAX_ STRING_ LENGTH];
/* Obtain a pointer to the local variable space */
SripData* srip = (SripData*)
NetworkIpGetRoutingProtocol (node, ROUTING_PROTOCOL_SRIP);
sprintf (buf, "Number of Route Updates Broadcast = %u",
srip->numRouteUpdatesBroadcast) ; Reportstahsnc
IOiPrintSta:(node, "Network", "SRIP", ANY DEST, -1, buf);
}
20

4 r

~Make SRIP Recognized by Qualnet

#Let Qualnet know SRIP as a network layer
protocol
m In the file include/network.h

Networ

typedef

ROUTING_PROTOCOL_IGRP,

ROUTING PROTOCOL SRIP,
InsertPatch ROUTING_PROTOCC

ROUTING PROTOCOL ALL,

ROUTING_PROTOCC L:I]CIIE

kRoutingProtocolType;

L_TYPE

21

Make SRIP Recognized by Qualnet

#Let IP module know SRIP as an IP protocol
= In the file network/ip.h

IP protoc

Jefine IPPROTO ICMP
jefine IPPROTO_IGMP

#define IPPROTO_DVMRP
#define IPPROTO_SRIP
InsertP

itch ROUTING_IPPROTO

234

ol numbers for network- an

| transport-layer protocols.

22

~Make SRIP Recognized by Qualnet

Have IP module recognize the five entry
functions of SRIP
» Have network/ip.cinclude srip.h

1ud
1clud
1ud
1ud

#include "srip.h"
InsertPatch HEADER FILES

(file network/ip.pc)

23

Make SRIP Recognized by Qualnet

» Inthe file network/ip.c, function NetworkIpInit ()

else
if (stremp(protocolString, "SRIP") == 0) {
NetworkIpAddUnicastRoutingProtocolType (node, ROUTING_PROTOCOL_SRIP, i);

if (!NetworkIpGetRoutingProtocol (node, ROUTING PROTOCOL SRIP)) {
SripInit(node,
(Sri **) &ip->i Info[i]->routi. 1,

nodeInput, i);

}
else {

1 i ingPro
node, ROUTING PROTOCOL SRIP, i);
}
}

Have IP initialize SRIP if specified in the configuration file

24

-

~Make SRIP Recognized by Qualnet

When the network layer receives an event for SRIP,
dispatch it to SRIP’s event handling function
= In the file, network/ip.c, function NetworkIpLayer ()

case ROUTING PROTOCOL SRIP:
{
SripHandleProtocolEvent (node, msg);
break;
}
InsertPatch NETWORK IP LAYER

25

Make SRIP Recognized by Qualnet

When IP receives an SRIP route advertisement packet,
dispatch it to SRIP’s packet handling function
» In the file, network/ip.pc, function DeliverpPacket ()

ket (Node *n

case IPPROTO SRIP:
{
SripHandleProtocolPacket (
node,
msg,
sourceAddress) ;

break;
}
Pat

26

-

Make SRIP Recognized by Qualnet

4 Call SRIP’s finalizing function when IP is terminating
s In the file network/ip.pc, function NetworkIpFinalize ()

case ROUTING PROTOCOL SRIP:
{
SripFinalize (node);
break;
}

27

Compiling Qualnet with SRIP

#® Edit main/Makefile-common

s Add srip.h and srip.c to SIM_HDRS and
SIM_SRCS macros, respectively

SIM HDRS =
S (ADDON_HDRS)

../network/srip.h \
nsertpatct ER F

../network/srip.c \

28

~ Compiling Qualnet with SRIP
#Rebuild the .h dependencies:

cd $QUALNET HOME/main
make depend

#Rebuild Qualnet executable:

make

29

Creating a configuration file for SRIP

@In $SQUALNET HOME/bin directory, copy
default.configinto srip.config, then
modify/add the following parameters:

EXPERIMENT-NAME srip

ROUTING-PROTOCOL SRIP
SRIP-UPDATE-INTERVAL 10S

30

Testing the Protocol

In $QUALNET_HOME/bin directory, run qualnet
with SRIP configuration file:

cd $QUALNET_HOME/bin
./qualnet srip.config

Check srip.stat file to see applications’
statistics

31

Obtaining SRIP Example

Two files, srip.h and srip.c, are located in
/m/buckwheat/qualnet/examples

Check README file for instructions

32

Programming Tips

@ MESSAGE Free () must be called only once per
message

4 Run make depend to rebuild .h dependencies whenever
different header files are included

Filling data into a packet or a packet header can be tricky

= A field may span across a word boundary, causing ‘bus error’ in
some systems
= Use memcpy () instead of an assignment operation (i.e., =)

Use message’s info field to carry extra information
internally (within the same node)

4 A good way to learn Qualnet is to study the code of some
provided protocols

33

