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MANET Simulation: Level of Details

g MANET simulation in protocol design and development
ieasy prototyping, good repeatability...

g Protocol verification
iWrite detailed protocol models
iSufficient to use abstract models at other layers

• Abstract (probabilistic) models can create sequences of events 
that can possibly but rarely happen in real networks

g Protocol performance evaluation
iWrite detailed protocol models
iImportant to use detailed models at other layers

• Effects of multiple layer interactions cannot be ignored for the
performance evaluation
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MANET Simulation: Protocol Performance 
Evaluation

g Validity of simulation results depends on how 
properly the system is modeled
iWhen an important aspect is missing, performance results 

could be misleading
g Physical layer modeling in wireless network 

simulation
iFrom bits to waves: very different from protocol modeling
iNot carefully verified even in commonly used network 

simulators
iEffects of physical layer modeling are often underestimated 

in higher layer protocol studies
g Impact of physical layer modeling in two commonly 

used simulators: ns-2 (2.1b8) and GloMoSim (2.02)
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Comparisons of Physical Layer Models in 
Different Simulation Tools (1)

g ns-2 (2.1b8) and GloMoSim (2.02)
iShare a common set of models, but they are developed 

independently by different groups of people
iPath loss: two-ray
iPhysical layer: IEEE 802.11 DSSS PHY
iMAC sub-layer: IEEE 802.11 DCF MAC
iNetwork layer: static routing
iApplication layer:CBR

g Parameter adjustment (GloMoSim set to ns-2)
iRadio frequency: 914 MHz in ns-2, 2.4 GHz in GloMoSim
iTransmit power: 24.5 dBm in ns-2, 15 dBm in GloMoSim
iNetwork and transport header sizes:

none in ns-2, IP+UDP in GloMoSim
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Comparisons of Physical Layer Models in 
Different Simulation Tools (2)

g Running the simplest wireless scenario
iN (= 50, 100, 200) nodes randomly placed in 10 x N / 10 

cells
iN CBR sessions at P (= 1, 2, 5, 10) 512 byte packets per 

second
iStatic routes generated by DSDV prior to the comparison
iNo mobility
iThree cases for each pair

of N and P (36 cases total)
iMinimal use of random

number generation
(MAC DCF)
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Comparisons of Physical Layer Models in 
Different Simulation Tools (3)

g PDRs (Packet Delivery Ratio) from ns-2 and GloMoSim
g The differences are significant under non-extreme network conditions
g Two major causes of PDR differences:
iPhysical layer preamble and header lengths
iNoise and interference computation
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Physical Layer Preamble Lengths

g IEEE 802.11 physical layer preamble and header
i “SIGNAL” indicates the type of modulation to be used for MPDU
iDBPSK (1 Mbps) is used for modulating PLCP regardless of the data rate
i144 + 48 = 192 bits = 192 us (at 1 Mbps) in GloMoSim
i144 + 48 = 192 bits = 96 us (at 2 Mbps) in ns-2 (fixed in 2.1b9)
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Noise and Interference Computation

g Power of interfering signals is cumulative
g Example: SINR at T3
iPS / (PI1 + PI2 + PI3 + PN) in GloMoSim
iPS / PI3 in ns-2

Noise(PN)

In
te

rf
er

en
ce

 P
ow

er

PI3

PI2

T1 T2 T3 T4 T5 T6

Signal of Interest(PS)

PI1



© Copyright 2002, SNT, Inc.  All Rights Reserved

Comparisons of Physical Layer Models in 
Different Simulation Tools (4)

g Further adjustments made to
GloMoSim models:
i96 us preamble
iNo interference power

accumulation
g Interference modeling made
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Effects of Physical Layer Modeling
in Multiple Layer Interactions

g Both differences make PDR predicted by ns-2 higher
g Their contributions are quite different:
iLonger preamble length reduces the effective link capacity: more

queue overflow, less MAC drops
iMore realistic interference computation causes many collisions: 

more MAC drops, less queue overflow
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Impact of Physical Layer Modeling on Higher 
Layer Protocol Performance (1)

g 100 node scenario (Das et al INFOCOM 2000)
iMobility: Random waypoint model (0-20 m/s with 100s pause)
iPropagation: two-ray with Rayleigh, Ricean (K = 5) and no fading
iPhysical layer: IEEE 802.11 DSSS PHY with BER and SNRT
iMAC sub-layer: IEEE 802.11 DCF MAC
iNetwork layer: IP with FIFO queue (100 packets max)
iRouting: AODV and DSR
iApplication layer: CBR (40 sessions, 512 byte packets, 2.666 pps)

SN
R

SNR Threshold

{(1 – BER1)^N1}     X     …     X     {(1 – BER7)^N7 }
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Impact of Physical Layer Modeling on Higher 
Layer Protocol Performance (2)

g Result for the SNRT and No fading case consistent with the 
corresponding data point in the INFOCOM paper

g AODV decimates its performance as predicted channel conditions 
become severe

g DSR degrades its performance, but not as dramatically as AODV
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QualNet
g Commercial derivative of GloMoSim
iSubstantially expanded MANET models: 

• AODV, DSR, OLSR, TBRPF, 802.11 DCF, 802.11 PCF, 
802.11a, directional antennas, …

iGUI-based model design, animation, & analysis
iCommercial protocol & device models
iMilitary comm models
iTraining, support, custom services

g SNT Focus: accurate, real-time network simulation & 
management
iAccuracy via high-fidelity models (incorporating production code to 

model protocols) & detailed validation
iSpeed and scalability via research into efficient scheduling and 

(parallel) simulation algorithms
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Accuracy

CBR, ftp, telnet, …

Free space, TIREM

Radio, bus, point-point...

IEEE 802.11, 802.3, …

OSPF, AODV, …

IP

TCP, UDP, RSVP

Packet Store/Forward

Data Plane

wired

Physical

MAC Layer

Network

IP

Transport

Application

Link Layer

g Use an architecture that is 
similar to one used in physical 
networks with well-defined APIs
between neighboring layers

g Provide capability for network 
emulation by supporting direct 
code migration between the 
model and  operational 
networks.
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Accuracy & Scalability

g Evaluate scalability of ad hoc networks
iConstant Bit Rate (CBR) application traffic using UDP 
iEach flow generates 1460 B(ytes)ps
iWireless ad hoc routing protocol
iMAC Layer: IEEE 802.11 DCF with a channel bandwidth of 2Mbps
iTwo-ray propagation path loss 
iRadio range is approximately 375 meters

g Varied network sizes:10, 100, 1000, 2000, 5000, and 10000 nodes 
g Node placement: uniform in square terrain with node density 253 

meters squared per node
g Number of randomly selected CBR sources and destinations: one 

third that of the total network size
g Simulated time: proportionate to number of nodes from 900 seconds 

to 90000 seconds
g Stabilized network load: proportionate to the number of nodes from 

4380bytes/s to 4866180 bytes/s
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Accuracy & Scalability

Throughput vs. Network Size
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Accuracy & Speed
g Successfully parallelized ITM; incorporated into QualNet
g Preliminary performance study
iNode density ~ 100 nodes / (km)2

• Neighboring nodes about 100m apart
iUniform distribution
iITM (Longley-Rice) using a terrain map ~ 50 mi. north of Santa 

Barbara in DTED format 
i802.11b radios;  AODV routing
i8kbps voice traffic: every node has a 10% chance of transmitting

for 0-15 seconds to a random destination, per 60 second period 
since the last transmission; 50B payload/pkt

g Two Experiments 
iVaried signal propagation models: ITM & plane earth
ivaried number of nodes
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Comparison of ITM and Two Ray results

g Mean end-to-end delay differed by 3x
iEffective transmission range much less for ITM than for 2-

ray, which requires more hops between sources and 
destinations
iIP forwarding statistics seem to confirm this
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Execution Time

Higher fidelity ITM model improves accuracy at the cost of 
increased execution time.

Efficient, parallel model execution can produce substantial 
benefits

Comparison of execution time between ITM and 2-ray 
propagation models
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Simulator Performance with ITM

Completion Time, ITM (Longley-Rice), waypoint
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QualNet Physical Layer Overview (1)

g PHY components (completed + in future release)

MAC sub-layer

Tx Data rate Rx SINR computation

Carrier sensing

BER (demodulation)

Power
Channel
Modulation
Spreading
Channel coding

DBPSK
BPSK/QPSK
BER (channel decoding)

DQPSK
GMSK

Turbo

Air interface (antenna)
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QualNet Physical Layer Overview (2)

g Antenna models
iOmni-directional uniform gain
iSwitched beam multiple patters

(circular array with 8 patterns)
iSteerable multiple steerable patterns

(triangular array with 4 different beamwidths)
iAdaptive patterns on the fly plus nulling

g The use of directional antenna models is currently receiver side only 
due to (omni-directional) MAC
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QualNet Propagation Models

g Non terrain based pathloss models
Free space Two-ray (+ Log-normal shadowing)

g Terrain based pathloss models
ITM (Longley-Rice) TIREM

g Fading models
Rayleigh distribution Ricean distribution

g Results given to the physical layer
(antenna models)
Propagation delay AOA (angle of arrival)
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Noise and Interference Modeling

g Parameters for noise and interference
itemperature of the radio T (290 K by default)
inoise factor of the radio F (10 by default)

g SINR (signal to interference and noise ratio) calculation

where  k : Boltzmann’s constant (1.379 ×10-23 [W Hz-1 K-1])
B : effective noise bandwidth of the system (data rate) [Hz]

iAll the interfering signals are assumed to conform Gaussian noise

FkTBP
PSINR
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BER / PER Computation (1)

g BER (bit error rate) for a given SNR on Gaussian
noise (AWGN) channel is retrieved from a 
precomputed look-up table

g Four BER tables are included in the QualNet release package
Net release package

nd without turbo coding
without turbo coding
ithout turbo coding
thout turbo coding
hout turbo coding

where n : number of changes in the interference power level
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BER / PER Computation (2)

g BER is changed every time a signal (even if it is too small to 
receive or sense) arrives at the node, thus table lookup is done
very frequently

g N signal arrivals = 2N interference power changes
g Example: 8 changes in the interference power level by 4 signals
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Physical Layer Parameters

g Parameters for transmiting
itransmit power
idata rate
ichannel
imodulation

g Parameters for receiving
iBER table for demodulation and decoding
ithermal noise
ireceiver sensitivity (radio returns sensing to MAC inquiries if 

it detects power above the sensitivity on the channel)
ireceive threshold (radio does not try to receive signals if 

their power is below this threshold)
iantenna beam (radiation pattern)
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Physical Layer Parameters
and Radio Communication Range

g Relationship of parameters to determine the radio range
(under no interference)

g Range can be determined by Rx threshold or required SNR

Tx power
Rx threshold
Rx sensitivity
Rx thermal noise
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IEEE 802.11 MAC Communication Range

g Set TX power to 80 dBm (100 kW)
iPHY RX range: 15888 m

g How long can the IEEE 802.11 MAC radio (with 
DSSS PHY reference parameters) reach?
iSpeed of light: 3.0e108 m/s
iaAirPropagationTime (1 us): 300 m
iaSIFSTime (10 us): 3000 m
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RTS/CTS Option in IEEE 802.11 (1)

g Based on the PHY parameters (two-ray):
iRX range: 376.7m
iCS range: 670.0m

g Vary the distance D in the configuration below
iD = 100 - 380
iTwo heavy CBR sessions (1 -> 2, 3 -> 2)
iWith and without RTS / CTS control frames

1 2 3

D [m]D [m]
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RTS/CTS Option in IEEE 802.11 (2)

g Higher
throughput
w/o RTS/CTS

g No difference
in throughput
between
D = 180
and 200
(RX range/2 =
188)

g High drop in
throughput for
D = 360
and higher
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RTS/CTS Option in IEEE 802.11 (3)

g Data frame loss
w/o RTS/CTS

g RTS frame loss
otherwise

g What is the
benefits of
RTS/CTS?

g Hidden terminal
problem
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RTS/CTS Option in IEEE 802.11 (4)

g CS range / 2 =
335 (+ noise)

g Hidden terminal
problem shows
in cases with
D = 345 to 375

g What if
(RX range) <
(CS range / 2)?
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Case Study: Turbo Code Model (1)

g A turbo code model has been implemented in Matlab to 
generate SNR - BER lookup table
iInterleaving size: 4192 bits
iInterleaving method: Random interleaving
iDecoding algorithm: Log Maximum A Posteriori
iNumber of iterations: 5
iRate: ½
iRSC (Recursive Systematic Convolutional) generator:

1 1 1; 1 0 1
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Case Study: Turbo Code Model (2)

g Encoder

g Decoder
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Case Study: Turbo Code Model (3)

g Encoder and decoder are modeled in Matlab
g BER performance with and without the turbo code model
g 6+ dB coding gain

with DBPSK
g 8+ dB coding gain

with BPSK
at BER = 10-6
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Case Study: Turbo Code Model (4)

g Case study with turbo coding
i100 nodes spread over flat terrain (83,000 m2/node)
i100 CBR sessions (160 bytes, 50 pps)
iAODV routing protocol
i802.11 MAC DCF
i802.11 PHY DSSS
iRx threshold fixed

at –81 dBm
iVarying sensitivity

from –91 dBm to
–85 dBm 0
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Common Propagation Models (1)

Simple Path Loss Models
g Free space
ireally means that its path loss exponent is 2.0
ican be combined with shadowing and fading

g Two-ray
iconsiders a ray bounced back from the ground
iuses the free space path loss model for near sights
ibecomes 4.0 exponent for far sights
iIts path loss becomes frequency independent (function of distance 

and antenna heights) for far sights

d

d’
hTX

hRX
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Common Propagation Models (2)

Consideration of Terrain Effects
g ITS (Institute for Telecommunication Sciences)

ITM (Irregular Terrain Model)
ia.k.a. Longley-Rice
ihas both point-to-point mode and area mode
iPoint-to-point mode works very similarly to TIREM
iNo release restrictions unlike TIREM

g TIREM
iconsiders terrain intrusion to the Fresnel zones to determine the levels 

of diffraction
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Common Propagation Models (3)

Terrain Database Types
g CTDB (Compact Terrain Database)
iGridded posts or TIN (Triangulated  Irregular Network) polygons for 

elevation data
iTerrain features in the database

in the feature list for gridded database, or
as terrain elements for TIN only database

g USGS DEM (DTED) interface
iOnly elevation data in mesh
iGrid size: 3 arc-seconds
iTerrain data are available via USGS web site
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Common Propagation Models (4)

Shadowing model
g Log-normal distribution with standard deviation σ [dB]
g Updates shadowing values independently from the previous 

values

(Flat) Fading models
g Applies to only narrowband channels (flat fading)
iNo ISI (inter-symbol interference) 

g Rayleigh distribution
(highly mobile, no line of sight signal)

g Ricean distribution with Rice factor (K)
iRayleigh case when K = 0 : no line of sight component
iNo fading case when K = ∞ : strong line of sight component
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Antenna Models

g Antenna models determine antenna gains for each signal on 
both transmitter and receiver ends

g The antenna gain is determined as:
G (DOAa, DOAe) [dBi], or approximately
Ga(DOAa) + Ge(DOAe) [dBi]

where DOAa and DOAe are direction of arrival on azimuth and 
elevation planes respectively, and Ga and Ge are the corresponding 
gains for these angles

g Antenna models return the gain for an angle closest to the given
angle
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Antenna Models Provided in QualNet

g Omni-directional
always returns a fixed gain for all directions

g Switched beam
stores multiple radiation patterns and returns Ga and Ge for a 
given direction (AOA) with a specified pattern

g Steerable beam
can store different radiation patterns and steer them to maximize 
the gain for a given direction (AOA)
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Switched Beam Antenna Model

g Switched beam antenna
ican have multiple radiation patterns
ican specify the pattern to use for each signal
ican scan all the patterns

and return the pattern
with the highest gain
for a given signal or
for a given direction

φ

Pattern 0

Pattern 1Pattern 2

Pattern 3
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Steerable Beam Antenna Model

g Steerable beam antenna
ican have multiple radiation patterns with different beam widths
ican specify the pattern to use

for each signal
ican steer each pattern and

return the angle that yields
the highest gain
for a given signal

φ

Pattern 0

Pattern 1Pattern 2
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Case Study: Electrically Steerable Beam 
Antenna (1)

g Circular antenna array with 6 isotropic antenna elements
g Only phase shifting (no amplifier with each element)
g 0.4 wavelength spacing at 2.4 GHz ISM band
g Patterns created using MATLAB and fed into QualNet
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Case Study: Electrically Steerable Beam 
Antenna (2)

g Case study with typical MANET environment:
i100 nodes over 1500 x 1500 flat terrain
iTwo-ray path loss model (1.5m antenna height)
iIEEE 802.11 DCF MAC with RTS/CTS option
iAODV
i40 CBR sessions with 512 byte packets at 1 to 40 pps

g
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