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MANET Simulation: Level of Details

® MANET simulation in protocol design and development
® easy prototyping, good repeatability...

®m Protocol verification
® Write detailed protocol models
® Sufficient to use abstract models at other layers

® Abstract (probabilistic) models can create sequences of events
that can possibly but rarely happen in real networks

® Protocol performance evaluation
® Write detailed protocol models
® Important to use detailed models at other layers

® Effects of multiple layer interactions cannot be ignored for the
performance evaluation
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MANET Simulation: Protocol Performance
Evaluation

m Validity of simulation results depends on how
properly the system is modeled

® When an important aspect is missing, performance results
could be misleading

® Physical layer modeling in wireless network
simulation

® From bits to waves: very different from protocol modeling

® Not carefully verified even in commonly used network
simulators

® Effects of physical layer modeling are often underestimated
In higher layer protocol studies

®m [mpact of physical layer modeling in two commonly
used simulators: ns-2 (2.1b8) and GloMoSim (2.02)

© Copyright 2002, SNT, Inc. All Rights Reserved



Comparisons of Physical Layer Models in
Different Simulation Tools (1)

®m ns-2 (2.1b8) and GloMoSim (2.02)

® Share a common set of models, but they are developed
independently by different groups of people

® Path loss: two-ray

® Physical layer: IEEE 802.11 DSSS PHY
® MAC sub-layer: IEEE 802.11 DCF MAC
® Network layer:  static routing

® Application layer: CBR

m Parameter adjustment (GloMoSim set to ns-2)

® Radio frequency: 914 MHz in ns-2, 2.4 GHz in GloMoSim
® Transmit power: 24.5 dBm in ns-2, 15 dBm in GloMoSim
® Network and transport header sizes:

none in ns-2, IP+UDP in GloMoSim
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Comparisons of Physical Layer Models in
Different Simulation Tools (2)

® Running the simplest wireless scenario
® N (=50, 100, 200) nodes randomly placed in 10 x N/ 10

cells

® N CBR sessions at P (=1, 2, 5, 10) 512 byte packets per

second

® Static routes generated by DSDV prior to the comparison

® No mobility

® Three cases for each pair
of N and P (36 cases total)

® Minimal use of random

number generation
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Comparisons of Physical Layer Models in
Different Simulation Tools (3)

m PDRs (Packet Delivery Ratio) from ns-2 and GloMoSim
® The differences are significant under non-extreme network conditions

® Two major causes of PDR differences:
® Physical layer preamble and header lengths
® Noise and interference computation
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Physical Layer Preamble Lengths

m |EEE 802.11 physical layer preamble and header
® “SIGNAL” indicates the type of modulation to be used for MPDU
® DBPSK (1 Mbps) is used for modulating PLCP regardless of the data rate
® 144 + 48 = 192 bits = 192 us (at 1 Mbps) in GloMoSim
® 144 + 48 = 192 bits = 96 us (at 2 Mbps) in ns-2 (fixed in 2.1b9)

SYNC SFD SIGNAL SERVICE LENGTH CRC
128 bits 16 bits 8 bits 8 bits 16 bits 16 bits
PLCP Preamble PLCP Header
144 bits 48 bits MPDU
PPDU
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Noise and Interference Computation

m Power of interfering signals is cumulative
m Example: SINR at T,

® P/ (P, +P,+ P+ P,)in GloMoSim

® Py /Pinns-2
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Comparisons of Physical Layer Models in

Different Simulation Tools (4)

® Further adjustments made to

GloMoSim models:
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Effects of Physical Layer Modeling
iIn Multiple Layer Interactions

m Both differences make PDR predicted by ns-2 higher

®m Their contributions are quite different:

® Longer preamble length reduces the effective link capacity: more

queue overflow, less MAC drops

® More realistic interference computation causes many collisions:
more MAC drops, less queue overflow
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Impact of Physical Layer Modeling on Higher
Layer Protocol Performance (1)

® 100 node scenario (Das et al INFOCOM 2000)

® Mobility: Random waypoint model (0-20 m/s with 100s pause)
® Propagation: two-ray with Rayleigh, Ricean (K = 5) and no fading
® Physical layer: IEEE 802.11 DSSS PHY with BER and SNRT

% MAC sub-layer: IEEE 802.11 DCF MAC

® Network layer: IP with FIFO queue (100 packets max)

® Routing: AODV and DSR

® Application layer: CBR (40 sessions, 512 byte packets, 2.666 pps)

ISNR Threshold
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Impact of Physical Layer Modeling on Higher
Layer Protocol Performance (2)

m Result for the SNRT and No fading case consistent with the
corresponding data point in the INFOCOM paper

m AODV decimates its performance as predicted channel conditions
become severe

B DSR degrades its performance, but not as dramatically as AODV
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QualNet

®m Commercial derivative of GloMoSim
® Substantially expanded MANET models:

® AODV, DSR, OLSR, TBRPF, 802.11 DCF, 802.11 PCF,
802.11a, directional antennas, ...

® GUI-based model design, animation, & analysis
® Commercial protocol & device models

® Military comm models

® Training, support, custom services

B SNT Focus: accurate, real-time network simulation &
management

® Accuracy via high-fidelity models (incorporating production code to
model protocols) & detailed validation

® Speed and scalability via research into efficient scheduling and
(parallel) simulation algorithms
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Accuracy

Data Plane
m Use an architecture that is [ CBR, ftp, telnet, ... ]
similar to one used in physical Application
networks with well-defined APIs |
between neighboring layers TCP. UDP. RSVP
: : Transport
® Provide capability for network
emulation by supporting direct i P
code migration between the
model and operational OSPF, AODV, ...
networks. Network
Packet Store/Forward .
EEE 802.11, 802.3 Link Layer
" ~— MAC Layer

Radio, bus, point-point...

/ \ Physical

wired Free space, TIREM
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Accuracy & Scalability

Evaluate scalability of ad hoc networks
® Constant Bit Rate (CBR) application traffic using UDP
® Each flow generates 1460 B(ytes)ps
® Wireless ad hoc routing protocol
® MAC Layer: IEEE 802.11 DCF with a channel bandwidth of 2Mbps
® Two-ray propagation path loss
® Radio range is approximately 375 meters

m Varied network sizes:10, 100, 1000, 2000, 5000, and 10000 nodes

Node placement: uniform in square terrain with node density 253
meters squared per node

Number of randomly selected CBR sources and destinations: one
third that of the total network size

Simulated time: proportionate to number of nodes from 900 seconds
to 90000 seconds

Stabilized network load: proportionate to the number of nodes from

4380bytes/s to 4866180 bytes/s
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Accuracy & Scalability

Throughput vs. Network Size
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Accuracy & Speed

m Successfully parallelized ITM; incorporated into QualNet

® Preliminary performance study
® Node density ~ 100 nodes / (km)?
® Neighboring nodes about 100m apart
® Uniform distribution

® ITM (Longley-Rice) using a terrain map ~ 50 mi. north of Santa
Barbara in DTED format

® 802.11b radios; AODV routing

® 8kbps voice traffic: every node has a 10% chance of transmitting
for 0-15 seconds to a random destination, per 60 second period
since the last transmission; 50B payload/pkt

® Two Experiments
® Varied signal propagation models: ITM & plane earth
® varied number of nodes
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Comparison of ITM and Two Ray results

B Mean end-to-end delay differed by 3x

® Effective transmission range much less for ITM than for 2-

ray, which requires more hops between sources and
destinations

® |P forwarding statistics seem to confirm this

Mean end-to-end delay for each CBR session
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Mean number of packets forwarded by IP for each
20 node
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Execution Time

Higher fidelity ITM model improves accuracy at the cost of
increased execution time.

Efficient, parallel model execution can produce substantial
benefits

Comparison of execution time between ITM and 2-ray
propagation models
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Simulator Performance with ITM

Time (seconds)
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Linux-Mandrake 7.2 (2.2.x
kernel)

$12-15K
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QualNet Physical Layer Overview (1)

m PHY components (completed + in future release)

MAC sub-layer

Tx| Data rate RxA SINR computation
Channel coding BER (demodulation)
Spreading DBPSK DQPSK
Modulation BPSK/QPSK GMSK
Channel BER (channel decoding)
Power Turbo

Carrier sensing

Air interface (antenna)
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QualNet Physical Layer Overview (2)

® Antenna models
® Omni-directional uniform gain

® Switched beam multiple patters
(circular array with 8 patterns)

® Steerable multiple steerable patterns
(triangular array with 4 different beamwidths)
® Adaptive patterns on the fly plus nulling

® The use of directional antenna models is currently receiver side only
due to (omni-directional) MAC
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QualNet Propagation Models

Non terrain based pathloss models

Free space Two-ray (+ Log-normal shadowing)
Terrain based pathloss models

ITM (Longley-Rice) TIREM
Fading models

Rayleigh distribution Ricean distribution

Results given to the physical layer
(antenna models)

Propagation delay AOQOA (anqgle of arrival)
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Noise and Interference Modeling

m Parameters for noise and interference
® temperature of the radio T (290 K by default)
® nhoise factor of the radio F (10 by default)

® SINR (signal to interference and noise ratio) calculation

SINR = d
> P, +FkTB

all others

where k: Boltzmann’s constant (1.379 x10-23 [W Hz' K-1])
B : effective noise bandwidth of the system (data rate) [HZz]

® All the interfering signals are assumed to conform Gaussian noise
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BER / PER Computation (1)

m BER (bit error rate) for a given SNR on Gaussian
noise (AWGN) channel is retrieved from a
precomputed look-up table

B Four BER tables are included in the QualNet release package
Net release package

nd without turbo coding

without turbo coding
PERhoyttJrq tedB@R, )"

thout turbo coding

hout turbo coding
where n : number of changes in the interference power level

gflevel
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BER / PER Computation (2)

m BER is changed every time a signal (even if it is too small to
receive or sense) arrives at the node, thus table lookup is done
very frequently

® N signal arrivals = 2N interference power changes
m Example: 8 changes in the interference power level by 4 signals

Interference power
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Physical Layer Parameters

® Parameters for transmiting
® transmit power
® data rate
® channel
® modulation

® Parameters for receiving
® BER table for demodulation and decoding
® thermal noise

® receiver sensitivity (radio returns sensing to MAC inquiries if
it detects power above the sensitivity on the channel)

® receive threshold (radio does not try to receive signals if
their power is below this threshold)

® antenna beam (radiation pattern)

© Copyright 2002, SNT, Inc. All Rights Reserved



Physical Layer Parameters
and Radio Communication Range

m Relationship of parameters to determine the radio range
(under no interference)

® Range can be determined by Rx threshold or required SNR

4 A
Tx powery Tx power
' Rx threshold
o Rx sensitivity
2 Rx thermal noise
Q.
©
(-
fo) |
w ~J X power
| Rx threshold
Rx sensitivity
, Min SNR .
> W Distance  (Rx thermal noise)
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IEEE 802.11 MAC Communication Range

m Set TX power to 80 dBm (100 kW)
® PHY RX range: 15888 m

® How long can the IEEE 802.11 MAC radio (with
DSSS PHY reference parameters) reach?

® Speed of light: 3.0e108 m/s
® aAirPropagationTime (1 us): 300 m
® aSIFSTime (10 us): 3000 m
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RTS/CTS Option in IEEE 802.11 (1)

® Based on the PHY parameters (two-ray):
® RX range: 376.7m
® CS range: 670.0m

®m Vary the distance D in the configuration below
®D=100-380
® Two heavy CBR sessions (1 -> 2, 3 -> 2)
® With and without RTS / CTS control frames

PP _¢

D [m] | D [m]
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RTS/CTS Option in IEEE 802.11 (2)

, x|
O H |gher File i File
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RTS/CTS Option in IEEE 802.11 (3)

Data frame loss
w/o RTS/CTS

RTS frame loss
otherwise

What is the
benefits of
RTS/CTS?

Hidden terminal
problem
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RTS/CTS Option in IEEE 802.11 (4)

m CSrange/2= |m-
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Case Study: Turbo Code Model (1)

m A turbo code model has been implemented in Matlab to
generate SNR - BER lookup table

® Interleaving size: 4192 bits

® Interleaving method: Random interleaving

® Decoding algorithm: Log Maximum A Posteriori

® Number of iterations: 5

® Rate: 12

® RSC (Recursive Systematic Convolutional) generator:
111,101
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Case Study: Turbo Code Model (2)

® Encoder | w
B
i
2
Q
- RSCI -
o,
! +
<
2
Interleaver =
=
=
> | =
m Decoder RSC 2 >
oNn
R=
3 Interleaver
Q
5
(I:}_‘ y A 4
08 |, LogMAPI . ||
+ De-interleaver s
<
% \ 4
% Interleaver
E A\ 4 y
(]
a Log MAP 2
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Case Study: Turbo Code Model (3)

Encoder and decoder are modeled in Matlab
BER performance with and without the turbo code model

6+ dB coding gain
with DBPSK

8+ dB coding gain
with BPSK

at BER = 106
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Case Study: Turbo Code Model (4)

m Case study with turbo coding
® 100 nodes spread over flat terrain (83,000 m2/node)

® 100 CBR sessions (160 bytes, 50 pps)

® AODV routing protocol
® 802.11 MAC DCF
® 802.11 PHY DSSS

® Rx threshold fixed
at —81 dBm

® Varying sensitivity
from =91 dBm to
—85 dBm

PDR improvement
(no coding with -91 dBm

== 1.0)
~ 5 =

o
oo
I

©c ©
~ (o]
I I

o
N
|

o

-91

-89 -87
Radio sensitivity [dBm]

-85

@ no channel coding
@ with turbo code
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Common Propagation Models (1)

Simple Path Loss Models

® Free space
® really means that its path loss exponent is 2.0
® can be combined with shadowing and fading
® Two-ray
® considers a ray bounced back from the ground
® uses the free space path loss model for near sights
® becomes 4.0 exponent for far sights

® |ts path loss becomes frequency independent (function of distance
and antenna heights) for far sights
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Common Propagation Models (2)

Consideration of Terrain Effects
m |TS (Institute for Telecommunication Sciences)
ITM (Irregular Terrain Model)
® a.k.a. Longley-Rice
® has both point-to-point mode and area mode
® Point-to-point mode works very similarly to TIREM
® No release restrictions unlike TIREM
m TIREM

® considers terrain intrusion to the Fresnel zones to determine the levels
of diffraction
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Common Propagation Models (3)

Terrain Database Types

m CTDB (Compact Terrain Database)

® Gridded posts or TIN (Triangulated Irregular Network) polygons for
elevation data

® Terrain features in the database
in the feature list for gridded database, or
as terrain elements for TIN only database

m USGS DEM (DTED) interface
® Only elevation data in mesh
® Grid size: 3 arc-seconds
® Terrain data are available via USGS web site
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Common Propagation Models (4)

Shadowing model
® |Log-normal distribution with standard deviation o [dB]

m Updates shadowing values independently from the previous
values

(Flat) Fading models
m Applies to only narrowband channels (flat fading)
® No ISI (inter-symbol interference)

® Rayleigh distribution
(highly mobile, no line of sight signal)

® Ricean distribution with Rice factor (K)
® Rayleigh case when K = 0 : no line of sight component
® No fading case when K = « : strong line of sight component
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Antenna Models

® Antenna models determine antenna gains for each signal on
both transmitter and receiver ends

B The antenna gain is determined as:
G (DOA,, DOA,) [dBi], or approximately
G,(DOA,) + G (DOA,) [dBi]
where DOA_ and DOA, are direction of arrival on azimuth and

elevation planes respectively, and G, and G, are the corresponding
gains for these angles

® Antenna models return the gain for an angle closest to the given
angle
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Antenna Models Provided in QualNet

® Omni-directional
always returns a fixed gain for all directions

m Switched beam
stores multiple radiation patterns and returns G, and G, for a
given direction (AOA) with a specified pattern

m Steerable beam
can store different radiation patterns and steer them to maximize
the gain for a given direction (AOA)
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Switched Beam Antenna Model

® Switched beam antenna
® can have multiple radiation patterns
® can specify the pattern to use for each signal

® can scan all the patterns
and return the pattern
with the highest gain
for a given signal or
for a given direction

1
1

\ i
\ Pattern 2
\\\
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Steerable Beam Antenna Model

B Steerable beam antenna
® can have multiple radiation patterns with different beam widths

® can specify the pattern to use
for each signal

® can steer each pattern and
return the angle that yields
the highestgan 7~ -~/ |
foragivensignal 7 T | A
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Case Study: Electrically Steerable Beam
Antenna (1)

Circular antenna array with 6 isotropic antenna elements
Only phase shifting (no amplifier with each element)

0.4 wavelength spacing at 2.4 GHz ISM band

Patterns created using MATLAB and fed into QualNet
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Case Study: Electrically Steerable Beam
Antenna (2)

m Case study with typical MANET environment:
® 100 nodes over 1500 x 1500 flat terrain
® Two-ray path loss model (1.5m antenna height)
® |IEEE 802.11 DCF MAC with RTS/CTS option
® AODV
® 40 CBR sessions with 512 byte packets at 1 to 40 pps
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