Green Streams for Data-Intensive Software

Thomas W. Bartenstein and Yu David Liu
SUNY Binghamton
Binghamton, NY 13902, USA
{tbartenl, davidL } @binghamton.edu

Abstract—This paper introduces GREEN STREAMS, a novel
solution to address a critical but often overlooked property
of data-intensive software: energy efficiency. GREEN STREAMS
is built around two key insights into data-intensive software.
First, energy consumption of data-intensive software is strongly
correlated to data volume and data processing, both of which
are naturally abstracted in the stream programming paradigm;
Second, energy efficiency can be improved if the data processing
components of a stream program coordinate in a “balanced”
way, much like an assembly line that runs most efficiently when
participating workers coordinate their pace. GREEN STREAMS
adopts a standard stream programming model, and applies
Dynamic Voltage and Frequency Scaling (DVFS) to coordinate
the pace of data processing among components, ultimately
achieving energy efficiency without degrading performance in a
parallel processing environment. At the core of GREEN STREAMS
is a novel constraint-based inference to abstract the intrinsic
relationships of data flow rates inside a stream program, that
uses linear programming to minimize the frequencies — hence
the energy consumption — for processing components while still
maintaining the maximum output data flow rate. The core
algorithm of GREEN STREAMS is formalized, and its optimality
is established. The effectiveness of GREEN STREAMS is evaluated
on top of the StreamlIt framework, and preliminary results show
the approach can save CPU energy by an average of 28% with
a 7% performance improvement.

I. INTRODUCTION

From megabyte-scale Youtube Apps on smart phones, to
gigabyte-scale Netflix applications on laptops, and to terabyte-
scale NASA scientific computations on servers [l], data-
intensive software is quickly becoming the new norm of
modern computing. Software engineering for “Big Data” is
an active area of research, with innovations addressing diverse
goals, such as architectural soundness [2], [3], programma-
bility [4], [5], performance [6], [7], and seamless database
integration [8], [9].

A critical goal that has received less attention than it
deserves is the energy efficiency of data-intensive software.
According to US Environment Protection Agency (EPA), data
centers in 2007 were responsible for up to 1.5% of the total
US electricity consumption [10], and recent reports show the
percentage has increased to 1.7-2.2% in 2011 [11]. In the
consumer sphere, battery-powered hand held devices such as
smart phones and tablets are experiencing explosive growth
in popularity. On both high-end and low-end platforms, data-
intensive software is widely used: data center applications are
predominately data-intensive in nature; smart phone Apps re-
lated to video, music, and maps are among the most commonly
used. In recent years, a number of software-centric solutions

978-1-4673-3076-3/13 © 2013 IEEE

532

have been proposed to address energy efficiency, through
design patterns [12], [13], programming language designs [14],
[15], [16] and compiler and runtime optimizations [17], [18],
[19], but none has focused on data-intensive software. This is
unfortunate because the root cause of energy consumption for
data-intensive software is often a combination of high-volume
data processing and complex data flows, distinctive traits not
sufficiently addressed by solutions built around control-flow-
centric models.

In this paper, we propose GREEN STREAMS, a novel energy-
efficient solution that addresses data-intensive software. At its
essence, GREEN STREAMS is an energy-efficient “twist” to
standard stream programming models [4], [20], [21]. Stream
programming is a general-purpose paradigm where software is
composed as a stream graph, where nodes of the graph are data
processing components called filters, and edges of the graphs
are data flows called streams. Compared with control-flow-
centric models (e.g. Java and C), the streaming model exposes
data processing and data flow at the forefront of programming.
Its friendliness to parallelism — crucial in the multi-core era
— has been well articulated. GREEN STREAMS elucidates yet
another beneficial trait of the stream paradigm — its friendliness
for improving energy efficiency — crucial in the “Big Data” era.

The energy efficiency solution of GREEN STREAMS is based
on a key insight into stream programming: a stream graph,
like a manufacturing assembly line, can be operated with
more efficiency if the rates of streams can be coordinated,
so that, one filter may output a data item to a stream “just-
in-time” for consumption by the next filter on the receiving
end of the stream. GREEN STREAMS optimizes the trade-
offs between performance and energy consumption through
judicious adjustment of the stream rates, a goal achieved by
a novel combination of static inference and dynamic scaling
of CPU frequencies through Dynamic Voltage and Frequency
Scaling (DVES). Concretely, this paper makes the following
technical contributions:

e a novel constraint-based rate inference algorithm to
statically compute the intrinsic relationships among data
streams and coordinate them in an energy-efficient fash-
ion;

o the use of linear programming to compute the minimal
frequencies necessary to execute individual filters while
at the same time maintaining the maximum output rate
of the whole application;

o a formal account of the GREEN STREAMS core, and more
importantly, a formal analysis of the optimality of all

ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

(c)

Fig. 1. Stream Composition: (a) Sequence (b) Split/Join (c) Loop

frequency selections, which intuitively translates to the
analytical optimality of energy reduction;

e a prototype implementation that involves DVFS instru-
mentations on top of a parallel stream processing infras-
tructure;

o an evaluation that demonstrates the effectiveness of our
approach in saving energy without degrading perfor-
mance.

Broadly, GREEN STREAMS explores the unbeaten path of
constructing energy-efficient software where innovations on
programming models, program analyses, and runtime systems
converge. To the best of our knowledge, this unified software-
centered approach is unique in addressing energy efficiency of
data-intensive software.

II. BACKGROUND
A. Stream Programming Model

The stream paradigm organizes software into basic units of
first-in-first-out (FIFO) data streams flowing through stream
filters. A data stream is simply a list of data objects of fixed
size. A stream filter is a unit of software which consumes
data from a single input data stream, and produces data on a
single output data stream. The description of the details of a
stream filter is implementation dependent, but can be viewed
abstractly like a function, with internal computation. Stream
filters pop a fixed number of data items from their input stream
when that data is available, process the input data, and push a
fixed number of derived data items onto their output stream.

A stream program is represented as a stream graph, which
can be decomposed as sub-graphs, which ultimately decom-
poses to simple filters. There are three common forms of
composition, as represented in Figure 1. The simplest is
sequential composition, in which the output stream of one
sub-graph feeds the input stream of the second sub-graph
(Figure 1(a)). The split/join composition (Figure 1(b)) first
“splits” a single input stream to two or more streams, each of

Fig. 2. An Example Stream Graph (BeamFormer)

which will be fed to different sub-graphs. The output streams
of these sub-graphs will be “joined” together into a single
output stream. A third, less commonly used composition style
is a loop configuration (Figure 1(c)). Here, the output of the
”body” sub-graph is split into an output stream and a feedback
stream. The feedback stream feeds a ”’loop” sub-graph, whose
output is joined to the input stream, and the result feeds the
body sub-graph. For instance, the full stream graph for the
BeamFormer benchmark [22] is graphically represented in
Figure 2. In this figure, each colored oval represents a stream
filter, and sub-graphs are surrounded by rectangles.

It is well known that a major benefit of stream programming
is its natural support for parallelism. For instance, two filters
with different functionalities can be deployed as different
threads running on different CPU cores, achieving task par-
allelism, whereas two instances of the same filter code can
take different data and run in parallel as well, achieving data
parallelism. Logically speaking, every filter — such as every
oval box in Figure 2 — can be mapped to a separate thread and
run in parallel. In real-world stream programming systems,
optimizations exist to map muliple logical filters into one
thread [4].

B. The Stream Paradigm: Expressiveness and Applicability

Popular terms such as “video streaming” are both a boon
and a burden to the stream paradigm. It vividly demonstrates
what one streaming application looks like, but at the same time
may lead to misconceptions about the generality of stream
programming. Is the stream paradigm a general-purpose soft-
ware development paradigm? We answer this question in two
dimensions.

From the perspective of language expressiveness, the stream
model is a variant of the data-flow programming model
[23]. The namesake difference between control-flow and data-
flow programming highlights the individual strengths of each
model, but in terms of language expressiveness, the two
models are on par: commonly used control flows are either

533

supported or encodable in the dataflow model, and data-flow
analysis is a standard semantic analysis for the control flow
model [24]. Most of the recently developed stream languages
are extensions from Java/C-like languages [4], [20], [21], a
hybrid of both paradigms. Below the surface, the most non-
trivial semantic difference between the two models is the data-
flow model generally assumes a non-shared memory model
between filters: different filters only access the same mem-
ory through explicit input/output stream connections. With a
growing awareness off the vulnerabilities of shared-memory
models (e.g. race conditions and atomicity violations), non-
shared memory models are becoming more popular in new
languages such as Scala [25] and Go [26]. The combination
of non-shared memory models and the explicit identification
of parallelism in stream languages make them naturally con-
ducive to constructing highly effective parallel software.

From the perspective of applicability, any software where
the program can be decomposed as a graph of data flows
will naturally fit into a stream programming paradigm. In
modeling, this application style is among the most classic
software architectures [27], and resonates in current research
on software processes and work flows. In programming, the
stream paradigm is known to be relevant to Graphical User
Interface (GUI) programming (“GUI events as streams” [28]),
sensor network programming (‘“sensing data as streams” [29]),
database programming (“query results as streams” [30]), and
robotics programming (‘“‘signals as streams” [31]).

C. Dynamic Voltage and Frequency Scaling (DVFS)

DVES [32] is a common CPU feature where the opera-
tional frequency and the supply voltage of the CPU can be
dynamically adjusted. Virtually all CPUs being used today —
from ARM Cortex on Droid smartphones, Intel Core 2 on
laptops and desktops, to high-end clusters in data centers —
support DVFS. It the era of multi-core CPUs, the frequencies
of individual cores can often be adjusted separately, a feature
known as multiple frequency domain support. For instance,
the AMD Zambezi family, a family of 8, 6, or 4-core CPUs
shipped in 2011, supports this feature.

DVES is often used as an effective power management
strategy in VLSI and architecture research. In addition to small
portions related to static leakage, the vast majority of a CPU’s
power consumption P results from its dynamic operation,
which can be (roughly) computed as P = C x V? % F,
where V is the voltage, F' is the frequency, and C' is the
capacitance. The energy consumption E is an accumulation
of power consumption over time, roughly £ = P %t where
t is the operating time. Due to the innate nature of CPU
VLSI design, voltage and frequency are often scaled together.
In a multi-core context, it has been known that power has
a somewhat cubic relation to DVFES scaling [33]. Scaling
down the CPU frequency is thus effective in saving power.
Saving energy however is slightly more complex, because a
reduction of frequency may increase the execution time, t.
DVEFS-based energy management thus often deals with the
trade-off between energy consumption and performance.

A == (S;P) stream application
P == PP stream graph

| Vi H(nsaynsbanjaanjb> P

| P Otnjongimgoms) P!

| F(&ﬂi,no)
F filter
S u= (d;rt) stream
¢ € LAB filter label
d € INTEGER data element
n € NAT natural number
rt € FLOAT rate

Fig. 3. Stream Programming Core Abstract Syntax

III. THE GREEN STREAMS ALGORITHM

This section describes the algorithm used to statically de-
termine an optimal DVFES setting for multiple cores executing
a parallelized stream process.

A. Abstract Syntax

We formalize a small core of stream programming, whose
abstract syntax is represented in Figure 3. A stream applica-
tion, A, is represented as a tuple, (S; P), where S is the input
stream, and P is a stream graph. Each stream is represented
by tuple (d;rt), where d defines a sequence of data d and
rt represents data rate, i.e. the frequency the elements in
d become available. For convenience, we only formalize the
case where stream data are integers. A stream graph is either
a filter (Fig n; n,))> Or composed of two stream graphs P
and P’, via either sequential composition P > P’, or split-
join composition P ||, . n.,., y P’, or loop composition
P O(nj,nfi,nfo,ns) P

A filter Fy p, n.y is the basic building block of a stream
application. Each filter pops (consumes) n; data elements from
its input stream, and pushes (produces) n, data elements on
its output stream. To keep this presentation simple, we are
abstract about the internal implementation of filters, but a filter
is most easily pictured as a function taking n; input elements
as parameters, and returning n, output elements as the return
value. Each filter is explicitly labeled (¢). For a stream graph,
P, the set of all filter labels appearing in P is computed
by convenience function filters(P), whose definition is
obvious. Operationally, (S F<¢1ni7nﬂ>> feeds elements in d to
filter F' in a FIFO fashion at the rate of rt, where S = (d; rt).
An output stream — the result of applying F over d — is
implicit.

Stream application (S; P > P’) can be viewed as having S
as the input stream of P, whose output stream is then fed to
P" as input. Application (S; P || (n,,.n.y,n,.,n;,) ') first splits
the data elements in stream S into two streams in a round-
robin fashion, following the distribution factor (ngq;nsp): the

NjasNjb

534

computation waits until ng, + ng, data elements are available
on its input stream, S, and then writes the first ng, of these
data elements to the input stream of P, and the ng, data
elements to the input stream of P’. This process then repeats.

For instance, given S = ([1,2,3,...,], rt) for some rt, and
Nsa = 2, Nsp = 3, the data elements fed to the input of P
are [1,2,6,7,11,12,...], and those fed to the input of P’ are

[3,4,5,8,9,10,...]. The second part of the parallel operation
is to join the data elements output from P and P’ into a
single stream, again, in a round-robin fashion, following the
aggregation factor (n;q;n;p). The process waits until there
are at least n;, data items available on the output of P, and
at least nj;, data items available as the output of P’. When
both conditions are met, n;, data items from P and n;; data
items from P’ are transferred to the output of the composed
stream.

The meaning of (S;P O, nsinsom,) P') 18 to first join
S and the output stream of P’ (i.e. the output stream of
the feedback loop) following the aggregation factor (n;;ny,),
then feed the joined stream as the input stream of P, and
finally divide the output stream of P into two following the
distribution factor (ny;;ns), one of which becomes the final
output stream, while the other of which is the input stream
of P’. Note that there are some restrictions on the values of
ny; and ny, in order to ensure that a feedback loop stream
graph can achieve a steady-state schedule [22], a topic out of
the scope of this paper.

rou= mwl| | r | ro rate variable
X =7 constraint set
o linear constraint over r
rv rate variable name

Fig. 4. Inference Elements

B. Constraint-Based Rate Inference

We define a novel constraint-based algorithm to infer the
intrinsic rate dependencies of different elements of a stream
program. The inference algorithm represents the data stream
rates as rate variables, defined in Figure 4.

A rate variable, r, is the abstract representation of a stream
rate, used to constrain and reason about stream rates statically.
The most basic form of a rate variable is rv, simply a name that
the inference algorithm can internally generate, where every
fresh generation specifies the creation of a distinct rate variable
with a distinct name. The second form of a rate variable is
a filter label ¢. When a filter label appears in a constraint, it
doubles as a rate variable that abstractly represents the natural
rate of a filter. The natural rate is the intrinsic rate at which a
filter can process a single set of data, i.e. the inverse of time
required to take n; data items from the input stream, process
it through the filter, and put n, data items onto the output
stream. When a filter executes at its natural rate, the rate at
which items are consumed from the input stream is ¢ X n,,

and the rate at which items are added to the output stream is
¢ x n,. For convenience, we further provide two pre-defined
rate variables, r; and ro to represents the input rate and output
rate of the entire stream graph, respectively.

The core inference rules for rate constraints are defined in
Figure 5. Function RC(r, P,7’) collects the constraints for
stream graph P when its input stream rate and output stream
rate are represented by r and r’ respectively. Each rule is
defined over a particular syntactical construct, and represents
a principle of GREEN STREAMS that we now elaborate.

a) Principle of Natural Bound: Clearly, the output rate of
a filter is dependent on the input rate to that filter. It might be
tempting to consider a filter as a pipeline whose output stream
rate can be infinite given an infinite input stream rate. This
naive view ignores the execution model of a stream program:
a filter cannot start processing a second set of input data items
until it has finished with the first. Therefore, even if data items
arrive at the input to a filter very fast, the filter cannot execute
faster than its natural rate. Thus, the maximum output rate of
a filter is not only constrained by the rate of the input stream
(r" < 7 x 2 in (R-Filter)), but also the natural rate of the
filter itself (r’ < ¢ x n, in the same rule).

b) Principle of Sequential Balance: Given a stream
graph involving sequential composition P; > P5, it would be a
waste of energy if P; can output data items at the rate of 100
items a second whereas P» can only take in data items at the
rate of 10 items a second. It would also be a waste of energy
if P» can only output 10 items a second, and P; could take in
data items at the rate of 100 items a second. In both cases, the
party with a faster rate has no positive impact on the overall
output rate of the stream graph — the ultimate “throughput” that
matters. GREEN STREAMS balances the output of P; with the
input of P,. Observe that in (R-Seq), rv is used both as the
output rate of P; — as in RC(r, P1,rv) — and the input rate
of P, —as in RC(rv, Py, 17).

¢) Principle of Join Balance: Given a split-join com-
position of two streams P4 and Pp, in the form of
Pa |ltnou nepinjangey P> let us first assume nj, = 1 and
nj, = 1. It would be a waste of energy if the output rate
of P4 were vastly greater than that of Pp, because in this
case, the two streams are “joined” together by taking items
from the two streams in a round-robin fashion, 1 from Pj4
and 1 from Ppg, and the P4 branch would have to wait for
the Pp branch. More generally in (R-Par), we use rv/, and
rv}, to represent the output rates of P4 and Pp respectively,
where the balanced execution would conform to the constraint
:LVJ“ = % The rest of the generated constraints of the same
rule describes the intrinsic dependencies of rates. Here rv, and
rvy, are the input rates of P4 and Pp respectively. The first two
constraints denote how the rates of the two are “split” from
the input rate of the whole stream graph, whereas the last
constraint describes how the output rate of the whole stream
graph is combined.

Notice that the (R-Loop) rule is simply a variation of the
(R-Par) rule because a loop composition can be viewed as a
“reversed” split-join configuration. In this case, rv; is the rate

535

(R-Filter) RC(r,Flumimoy,r') = {r'<rxZe o’ <Uxn,}
(R-Seq) RC(r, Py > Py, 1") o RC(r, Py,rv) U RC(rv, Py, 1")
if rv fresh
e = nslbj’ansb
def vy =1 X ‘nSb -
(R-Par) RC(r,Pa |[(n o) Poot’) % RC(va, Pa, i) URC(rvy, Po, i) UQ g "
Nja Njb
M, 4+ v, =ro
if vy, rvp, 1), rvy fresh
o vy
n; ngo
def Ve =71 '
(RLoop) RO(r Prz Otu,msumpumy Per’) S RO(rva, Pty URC(vy, Perp) U g 0T ™
nfitns
PV = rvp X nfilj_”ns

if rvp, vy, v, v’ fresh

Fig. 5. Constraint-Based Rate Inference

for the joined stream combining the input stream of the graph
and the output stream of the feedback loop, and v} is the rate
of the stream to be split into the output stream of the graph
and the input stream of the feedback loop.

Since any stream graph is inductively defined over the 3
forms of compositions of filters, the inductive definition in
Figure 5 is sufficient to compute constraints over arbitrary
stream graphs.

C. Relating Frequency and Natural Rate

Our ultimate goal is to select appropriate frequencies for
individual filters, a task that we will tackle in Sec. III-D.
First, we must elucidate how frequencies are related to our
rate inference.

Let us abstractly represent the supported frequencies of a
CPU core as a total order (FREQ; <), where each element
freq € FREQ in the concrete scenario would be an available
frequency supported by the CPU (in Hertz). For simplicity,
we only consider homogeneous architectures where all cores
support the same number of available frequencies for DVFS.
We use max(FREQ) to compute the upper bound of FREQ.
We further define a mapping function II : LAB x FREQ —
FLOAT that, given a filter label ¢ € LAB, and a frequency
freq € FREQ, II(¢, freq) computes the natural rate for filter
labeled ¢ under operating frequency freq. Intuitively, I records
how fast a data item can be output by filter £ when the filter
is running on a CPU core of a particular frequency.

We rely on profiling to compute II. Concretely, we profile
a filter to determine the natural rate of that filter at the max-
imum CPU frequency, and assume an inversely proportional
relationship between frequency and elapsed time of the filter.
This relationship can be defined with the equation:

freq
max(FREQ)

We elaborate on this implementation detail in Section IV-C.

I1(¢, freq) = T1(¢, max(FREQ)) x

D. Linear Programming for Optimal Frequency Selection

From an abstract perspective, GREEN STREAMS follows
two steps to select frequencies for specific filters. First, we
assume every filter runs at the highest CPU frequency, and
compute the maximum possible output rate of the whole
stream graph. This is described as Algorithm 1 below. Second,
we compute the lowest possible frequency at which individual
filters can execute, assuming we must maintain the maximum
possible rate computed in the first step. This is conducted
by Algorithm 2 below. The central idea here is both steps
can be achieved by performing linear programming over the
constraints we inferred earlier (Section III-B).

Before we explain the details, let us first introduce some
notation related to linear programming. Notation mzin obf

represents an instance of linear programming to minimize
an objective function obf over constraints Y. It computes
a mapping whose domain coincides with the rate variables
that appear in obf, and whose range is the floating point
numbers for rates (rt). In other words, all rate variables
in all constraints are now ‘“solved”, including the subset of
variables we care about. For example, a typical result looks
like [r; — 3.3,72 — 4.0], meaning r; should be of rate 3.3
and 7o should be of rate 4.0 if we wanted to achieve the
minimality of obf. Objective function obf takes the form of
a linear expression. For convenience, we use symbol & to
represent the AST expansion of addition, i.e. rv is

rve{rvy,rva}
equivalent to objective function “rvqy 4 rvo.” The meaning of

notation mZaX obf 1is identical to mzin obf except that we
are maximizing the objective function.

Next let us define the constraints of a stream graph assuming
that all filters are executing at the maximum frequency possi-
ble. In other words, each filter can operate at its highest natural
rate. The definition is a simple substitution of all rate variables
that represent filter natural rates with a concrete rate when

536

the maximum frequency is used. Notation ¥{rt/r} means
substitute every occurrence of r in ¥ with rt.

Definition 1 (Global Constraints with Maxed-Out Fil-
ters): Given a stream graph P, mofCons(P) is defined
as RC(rr, Pyro){Il({y,freq)/t1} . . . {11(€y, freq) /€y }, where
filters(P) = [(1,...,¥{,] and freq = max(FREQ).

With this, the maximum output rate of a stream graph P
is an instance of linear programming of maximizing ro over
global constraints with maxed-out filters:

Algorithm 1 (Max Output Rate): Given a stream graph P,
max0ut(P) denotes the maximum output rate with unbounded

input rate. It is defined as rt, where max ro =[ro —
mofcons(P)

rt].

Note that we do not bound the input rate of the stream graph
here. This is not necessary because, intuitively, the natural
rate of individual filters — and the constraints associated with
them — will limit the output rate of the whole stream graph.
Hence, linear programming cannot yield unbounded results.
Obviously, for users of GREEN STREAMS who would like to
artificially bound the input rate of the stream graph, a variant
algorithm can be provided as follows:

Definition 2 (Max Output Rate with bounded Input Rate):
Given a stream graph P and a pre-defined input rate
rto, maxOutB(P,rtg) denotes the maximum output rate
with bounded input rate rto. It is defined as rt, where

max ro =[ro— rt].
mofcons(P){rto/rr}
Finally, given that we know the maximum output rate, the

issue of reducing individual frequencies of filter executions —
and hence energy consumption — is a matter of minimizing
the natural rate of individual filters:

Algorithm 2 (Minimal Frequency): Given a stream graph P,
the minimal frequency required for filter ¢ without affecting
the overall output rate, denoted as minFreq(P, /), is defined
as the least value freq in FREQ such that II(¢, freq) > rt and
¥ = RC(rr, P,ro){max0ut(P)/ro}, and mzin (=l —

rt].

E. Global Optimality and Algorithm Optimization

Algorithm 2 leaves two issues to be resolved. First, it only
says how to find the minimal frequency for a particular
filter. Does this localized optimality — seemingly greedy to
the particular filter being subjected to linear programming —
also lead to global optimality? Second, the algorithm requires
linear programming to be used for every filter in the stream
graph, which is not an efficient solution.

The following theorem addresses the first issue with Al-
gorithm 2 above, namely, Algorithm 2 is a globally optimal
algorithm.

Theorem 1 (Natural Rate Independence for Fixed Output):
Given a stream graph P and a pre-determined output rate
rt, then if ¥{rt,/¢;} has solutions, and ¥{rts/¢>} has
solutions, then X{rt;/¢;}{rto/l2} has solutions, where
01,0 € filters(P), and ¥ = RC(ry, P,ro){rt/ro}.

This important theorem states the independence of satis-
fiability of filter natural rates given a fixed output rate of

the stream graph. Here X represents the necessary constraints
to allow the stream graph to maintain an output rate rt,
and ¢, and /5 are two filter natural rate variables (¢1,¢s €
filters(P)). The fact that X{rt;/¢1} has solutions implies
that by setting the natural rate of the filter represented by ¢;
to rt;, the output rate of the stream graph is maintained.
Similarly, the fact that ¥{rto/¢>} has solutions means that
by setting the natural rate of the filter represented by /5 to rto,
the output rate of the stream graph is maintained as well. The
theorem thus tells us that the settings of ¢; and ¢ — hence
the minimal frequency selections of the two — do not interfere
with each other, and by setting ¢; to rt; and setting /5 to
rto at the same time, the stream graph can still maintain it
output rate rt.

Finally, the independence of natural rate variables intuitively
tells us that minimizing the natural rates of filters one by one
is no better than minimizing the sum of all of them together.
This leads to an optimized algorithm where one instance of
linear programming can compute all minimal natural rates of
all filters, and hence compute all minimal frequencies:

Theorem 2 (Linear Programming Compositionality): Given
a stream graph P and some pre-defined rate constant rt, and
Y = RC(r;,P,ro){zt/ro}, mzin 6 = [t; — rty] for

D

L;efilters(P)
by — rt]], then rtq = rtf, ..., and rt,, = rt),.

each ¢; € filters(P) and mgn b =1l —

rt'l,..

IV. EXPERIMENTAL RESULTS
A. Implementation

We implemented GREEN STREAMS as an extension to
Streamlt! (version 2.1.1), a sophisticated stream programming
infrastructure. There were several significant modifications to
Streamlt required in order to implement GREEN STREAMS,
including the following:

e The inclusion of run-time monitors for profiling natural
rate (Section III-C).

« The ability to perform and manipulate DVFS for StreamIt
applications. To demonstrate the effectiveness of our
approach in context, support was added to select one of
four different DVFS configurations:

— A GREEN STREAMS configuration, which sets DVFS
frequencies based on the results of our static analysis.

— A ”fast” configuration in which all DVFES frequencies
are forced to the highest possible frequency. This
configuration is likely to deliver the fastest possible
performance, but also consume the most energy.

— An “on-demand” configuration in which all DVFS
frequencies are managed by the standard “on-
demand” governor in Linux. The on-demand gov-
ernor modulates DVFS frequency based on demand.
Cores with a high work-load are run at a high DVFS
frequency to improve performance. Cores with a
low workload are run at a low DVFS frequency to

Uhttp://groups.csail. mit.edu/cag/streamit/

537

save energy. The on-demand DVFS configuration is
the configuration most often used in DVFS-capable
microprocessors, and is considered the default con-
figuration.

— A ”’slow” configuration in which all DVFS frequen-
cies are forced to the lowest possible frequency.
This configuration is likely to deliver the slowest
performance.

o The implementation of the filter frequency selection al-

gorithm (Section III-D).

o The ability to assign a filter to a core, and set DVFS for

that core at run time.

The Streamlt compiler is equipped with an optimization
performed during an intermediate pass called partitioning.
Partitioning transforms and load-balances the source-program
stream graph into a stream graph that contains a small number
of relatively independent filters that can be mapped to inde-
pendent cores in a multi-core architecture. The load balancing
optimizations of Streamlt partitioning enable high parallel ef-
ficiency on multi-core hardware. The GREEN STREAMS algo-
rithm is implemented over the post-partitioning stream graph.

B. Experimental Environment

All experiments were performed on an AMD FX-8510
(Bulldozer) microprocessor running Debian Linux Version
6.0.5. The processor was configured as an 8-core multi-
processor with the Turbo-boost feature disabled. All normal
operating system tasks were executing in the background, but
all experiments were performed with no other load on the
system.

Our experiments consisted of running five Streamlt bench-
marks in each of the four DVFS configurations five times,
while measuring the system current draw using a current meter
on the CPU power cable of the microprocessor. Since the CPU
is supplied at a constant voltage of 12V, the power is directly
proportional to the measured current, and the energy consists
of the power consumed over time. We used a Fluke©i30
AC/DC Current Clamp which accurately measures current
with a resolution of ImA using Hall Effect technology. Current
measurements were taken every 1/100th of a second, and
stored on an independent system. These measurements were
then post-processed to isolate each trial run, where a trial run
consists of a single execution of a benchmark program in a
single DVFS configuration. Five trials were collected for each
benchmark in each DVFES configuration to avoid intermittent
errors or current draw based on external factors such as cache
latencies. We automated the testing of a single benchmark
by creating a loop that cycled through each DVFS state with
a three second sleep between each trial, and then executing
that loop five times. This ensured that there were no latencies
between DVES states.

The benchmark programs we tested were a subset of bench-
marks developed for the Streamlt compiler [22]. The five
benchmark programs we selected were as follows.

o Beamformer - An implementation of standard beam-

forming or spatial filtering. This is a signal processing

Fi

&

g. 6. Error between Computed Natural Rate and Profiled Natural Rate

technique that combines signals in such a way as to
achieve constructive interference or destructive interfer-
ence, depending on the spatial relationship of the signals.
Beamforming is used in several applications, including
seismology, radio astronomy, etc.

« BitonicSort - An implementation of Batcher’s bitonic sort
network for sorting power-of-2 sized key sets.

e DCT - An implementation of a two-dimensional 8x8
inverse Discrete Cosine Transfer, which transforms a 16x
16 signal from frequency domain to signal domain. DCT
is used in both JPEG and MPEG-2 coding.

« DES - An implementation of a Data Encryption Standard
block cipher. This implementation uses 4 stages of pro-
cessing rather than the 16 required by the US government
DES standard.

e Vocoder - An implementation of a the speech filter
analysis portion of a source-filter model. The analysis
includes Fourier analysis, a low-pass filter, a bank of
band-pass filters, and a pitch detector.

C. Experimental Results

In Section III-C, we introduced a formula to calculate
natural rate with the assumption that the relationship between
DVES frequency and the elapsed time of a specific filter is
inversely proportional: GREEN STREAMS profiles the active
elapsed time using the maximum CPU frequency, but assumes
that the active elapsed time for lower frequencies can be
estimated proportionally. In order to validate this assumption,
we profiled each of the filters in the five benchmarks at all
valid DVFS frequencies: 3.6Ghz, 3.3Ghz, 2.7Ghz, 2.1Ghz,
and 1.4Ghz, monitoring the active elapsed time. We compared
our estimated elapsed time with the monitored elapsed time.
The graph in Figure 6 shows the percentage of error (Z axis)
resulting from this assumption. Filters are on the X axis, and
frequencies on the Y axis. While there are some filters at some
frequencies that show significant error, the average error is
well below 10%.

538

TABLE I
DVFS FREQUENCIES ASSIGNED TO BENCHMARK FILTERS

Frequency in Ghz
Benchmark 36 33 27 21 14
BeamFormer | 4 1 2 1
BltonicSort 2 2 1 3
DCT 2 6
DES 2 3 3
Vocoder 1 4 3

The GREEN STREAMS compiler was run against the five
benchmarks described above, each of which contains 8 filters
that can be independently scheduled as threads after StreamlIt
partitioning (see Section IV-A). The GREEN STREAMS al-
gorithm determines the optimum frequency for each of the
8 filters. Table I shows the DVFS frequencies computed
according to our algorithm, and the number of filters for each
benchmark assigned to each frequency.

Our 8-core CPU has 4 independently adjustable frequency
domains, i.e. every pair of cores need to share a single
frequency. Due to this hardware constraint, GREEN STREAMS
needs to map the 8 filters (threads) to 4 DVFS frequency
domains. In doing so, one filter in each benchmark (except
DCT) was forced to a higher frequency than the one computed
by our algorithm. We then collected current measurements for
all benchmarks in all DVFS configurations.

The first observation is that the results show a remarkable
consistency. The results from the 20 trials of the BeamFormer
benchmark appear in Figure 7, grouped by different DVFS
configurations. Observe that the instantaneous current fluctua-
tions (which, given constant voltage, is proportional to power
consumption) over time are very similar for different trials
of the same DVFS configurations. Other benchmarks showed
similar consistency. This consistency reinforces the concept
that our experimental environment produced reliable results.
Given this consistency, we are able to consolidate results from
different trials of the same DVFS configuration and the same
benchmark by taking the average current at each time.

The consolidated graph for the BeamFormer benchmark is
in Figure 8. Following our discussion earlier, the instantaneous
current readings (Y axis) are proportional to the instantaneous
power consumption because the CPU has a constant voltage
of 12V. The figure demonstrates the effect of running all
cores at their top speed (the purple line), which consumes
high power but finishes the fastest, versus running all cores
at their lowest speed (the blue line), which incurs the lowest
power consumption but takes significantly longer to complete.
The GREEN STREAMS line (green) shows performance that
almost matches the fast line, but with significantly less power
consumption. The only surprising data in this graph is the
on-demand line (in red). The on-demand DVFS configuration
consumes more power than the fast state, but performs slightly
slower. We speculate this is because the on-demand DVFS
governor spends extra energy to switch DVFS frequencies,

0.4

Slow Trials 12

On-Demand Trials

Fast Trials

1 1

400 0 100 200 300 400

Fig. 7. BeamFormer Trial Consistency (X unit: 0.01 second; Y unit: 1mA)

12 4

—Slow Avg

0.8
—OnDemand Avg

GreenStream Avg

0.6 - —Fast Avg

04 -

0.2 -

Fig. 8. BeamFormer Execution over Different DVFS Configurations (X unit:
0.01 second; Y unit: ImA)

and the somewhat erratic resource demand of the BeamFormer
benchmark may cause the on-demand governor to switch too
frequently.

Figure 9 contains the DVFS configuration comparison for
the other four benchmarks. In this figure, the DCT benchmark
is the most interesting graph. The GREEN STREAMS DVEFS
configuration not only requires less power than either the
fast state or the on-demand state, but also finishes signifi-
cantly sooner than either the fast or the on-demand DVFS
configuration. The DES graph is also interesting because it
demonstrates the static nature of GREEN STREAMS. In the
DES case, the on-demand DVFS configuration is better at
handling an application for which the resource requirements
change over time.

The energy consumption of each benchmark/DVFS con-
figuration is proportional to the area under each curve in
Figure 8 and Figure 9. Since the CPU is supplied at a

539

! Bitonic 1 DCT
—SLOW Avg
0.8 0.8
—OnDemand Avg
06 GreenStream Avg 06
0.4 —FAST Avg 0.4 -
02 ‘T 02 - "\
0 T y T 0 T T T
0 100 200 300 0 2000 4000 6000
! DES 12 Vocoder

0.8 1
06

0.4

0.2 1\& \\\ 0:2 +|1Al'\’|ll““ll‘}HM‘N\WM\
0 T T T T 1 0

T T
0o 100 200 300 400 500 0o 300 600 900

A

1200

Fig. 9. Other Benchmarks over Different DVFS Configurations (X unit: 0.01
second; Y unit: ImA)

constant voltage of 12V, the power is directly proportional to
the measured current, and the energy consists of the power
consumed over time. Our data collection method enabled
simple energy consumption calculations, based on summing
the current measurements for the entire time span of a given
trial. Since current measurements were taken every 1/100th of
a second, we can compute the “instantaneous energy consump-
tion” for that measurement by multiplying the measurement
value, 1/100 sec, and 12 V. The total energy consumed by
the CPU for that trial is the sum of all instantaneous energy
consumption values.

Energy Consumption

mSlow mOnDemand GreenStream M Fast

200
150
100 -
50 ~ o fl
. t- — -:- .

beamformer

Energy

bitonic vocoder

Performance

60
%50 d
i 40 7,
T30 -
8 20
o
s h S il h “

0 =
beamformer

N

bitonic vocoder

Fig. 10. Energy and Performance

Figure 10 and Tables II and III present the results of
average performance and CPU energy consumption for all five
benchmarks. In three of the five benchmarks (Beamformer,
DCT, and Vocoder), the energy consumption with GREEN
STREAMS was less than the on-demand energy consumption,
and in all benchmarks except Vocoder, the performance of

TABLE II
ENERGY CONSUMPTION PER BENCHMARK

BenchMark Slow OnDem GreenStr Fast
BeamFormer | 25.79 37.22 25.16 32.13
BitonicSort 10.02 13.62 14.76 13.94
DCT 192.74 199.59 124.82 199.76
DES 14.19 10.82 17.83 15.05
Vocoder 49.71 61.40 46.88 82.82
TABLE III
TIME CONSUMPTION PER BENCHMARK
Benchmark Slow OnDem GreenStr Fast
BeamFormer | 6.88 3.64 3.29 3.23
BitonicSort 2.90 1.71 2.03 1.64
DCT 59.12 28.31 21.32 27.93
DES 4.61 1.72 2.35 2.00
Vocoder 13.45 6.30 11.23 8.63

GREEN STREAMS was comparable or better than all other
DVES states. Clearly, the DCT benchmark, which was the
most computation-intensive and had the most stable resource
requirements, was the best demonstration of the advantages of
GREEN STREAMS.

V. RELATED WORK

A number of energy management strategies have been
proposed for stream applications, primarily from the systems
community. Benoit ez. al. [34] considers a subset of stream
programs that can be modeled as serial-parallel workflows,
and studies the problem of mapping such workflows to CMPs
to minimize energy. Eprof [35] designs an energy-efficient
scheduling algorithm for stream applications, with a non-
DVES based solution. Rangasamy et. al. [36] used stream
programs as the context to evaluate the effectiveness of three
DVES schemes: one based on a Petri net performance model,
one based on profiling, and one based on hardware. None of
these efforts reduce the problem to a program analysis over
stream programs as we do, nor do they perform constraint-
based inference over stream rates.

DVES as an implementation strategy has been used in
compiler and run-time optimizations. Hsu et. al. [18] defines
a compiler optimization algorithm where memory-intensive
regions of the program control flow are identified, and a CPU’s
frequency is scaled down in these regions to reduce energy
consumption. Xie et. al. [17] evaluates the limitations and
opportunities of DVFS in a control-flow-centric setting. An
operating system solution [19] is proposed to reduce energy
efficiency by scheduling fixed-deadline tasks judiciously.

Several energy-aware programming models have been pro-
posed as extensions to Java-like languages. Green [14] de-
fines a framework where programmers can customize quality
of service (QoS) to balance the trade-off QoS and energy
consumption. Ener] [15] allows data to be approximated,
and applies hardware techniques to approximate data to save

540

energy. Energy Types [16] defines a type system to reason
about program energy-phase behaviors and energy states. Both
EnerJ and Energy Types use DVFS as an implementation
strategy; they are otherwise unrelated to our approach. Clause
et. al. [12] explores the impact of different design patterns on
energy consumption. The impact of different synchronization
patterns on energy consumption was also explored [13].

Related work on stream programming and its applications
was summarized in Sec. II-B.

VI. CONCLUSION

GREEN STREAMS provides a practical and effective solution
to save energy for data-intensive software. The stream pro-
gramming paradigm not only provides appropriate language
abstractions for developing data-intensive software, but also
offers the ideal structure and predictability for effective energy
management.

In the future, we plan to extend GREEN STREAMS to
support dynamic adaptability. Instead of relying on off-line
profiling and static inference, frequency selections can be
adaptive to the fluctuations of the run-time and changing
resource requirements.

ACKNOWLEDGMENTS

We thank Tyler Stachecki for helping us set up the experi-
ment environment. We thank Michael Gordon, Bill Thies, and
anonymous reviewers for their useful suggestions. This work
is supported by NSF CAREER Award CCF-1054515 and a
Google Faculty Award.

REFERENCES

[1] J. J. Tran, L. Cinquini, C. A. Mattmann, P. A. Zimdars, D. T. Cuddy,
K. S. Leung, O.-1. Kwoun, D. Crichton, and D. Freeborn, “Evaluating
cloud computing in the NASA DESDynl ground data system,” in
Proceedings of the 2nd International Workshop on Software Engineering
for Cloud Computing, ser. SECLOUD ’11, 2011, pp. 36-42.

[2] C. A. Mattmann, D. J. Crichton, N. Medvidovic, and S. Hughes, “A
software architecture-based framework for highly distributed and data
intensive scientific applications,” in ICSE '06, 2006, pp. 721-730.

[3] R. Mahjourian, “An architectural style for data-driven systems,” in
Proceedings of the 10th international conference on Software Reuse:
High Confidence Software Reuse in Large Systems, ser. ICSR 08, 2008,
pp. 14-25.

[4] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A language
for streaming applications,” in Proceedings of the 11th International
Conference on Compiler Construction, 2002, pp. 179-196.

[5] K. Fisher and R. Gruber, “PADS: a domain-specific language for
processing ad hoc data,” in PLDI ’05, 2005, pp. 295-304.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in OSDI’04, 2004.

[7]1 Nvidia, “Compute unified device architecture programming guide,”
NVIDIA: Santa Clara, CA, 2007.

[8] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007.

[91 W.R. Cook and S. Rai, “Safe query objects: statically typed objects as

remotely executable queries,” in /CSE, 2005, pp. 97-106.

E. S. P. U.S. Environmental Protection Agency, “Report to congress on

server and data center energy efficiency public law 109-431,” 2007.

J. Koomey, “Growth in data center electricity use 2005 to 2010,” August

2011.

J. Clause, C. Sahin, F. Cayci, I. L. M. Gutierrez, F. Kiamilev, L. Pol-

lock, and K. Winbladh, “Initial explorations on design pattern energy

usage,” in Proceedings of Workshop on Green and Sustainable Software

(GREENS’12), 2012.

[10]
(1]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]
[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

[36]

541

Y. D. Liu, “Energy-efficient synchronization through program pat-
terns,” in Proceedings of Workshop on Green and Sustainable Software
(GREENS’12), 2012.

W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI ’10, 2010, pp. 198-209.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in PLDI’11, Jun. 2011.

M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu, “Energy types,” in
OOPSLA ’12, October 2012.

F. Xie, M. Martonosi, and S. Malik, “Compile-time dynamic voltage
scaling settings: opportunities and limits,” in PLDI ’03, 2003, pp. 49—
62.

C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for CPU energy reduction,” in PLDI "03, 2003,
pp. 38-48.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in OSDI '94. Berkeley, CA, USA: USENIX
Association, 1994, p. 2.

J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek, “Streamflex: high-
throughput stream programming in java,” in OOPSLA ’07, 2007, pp.
211-228.

J. Zhou and B. Demsky, “Bamboo: a data-centric, object-oriented
approach to many-core software,” in PLDI’10. ACM, 2010, pp. 388-
399.

M. I. Gordon, “Compiler techniques for scalable performance of stream
programs on multicore architectures,” Ph.D. dissertation, Massachusetts
Institute of Technology, Cambridge, MA, May 2010.

W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Comput. Surv., vol. 36, pp. 1-34, March
2004.

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in POPL ’95, 1995, pp. 49-61.

P. Haller and M. Odersky, “Scala Actors: Unifying thread-based and
event-based programming,” Theor. Comput. Sci., vol. 410, no. 2-3, pp.
202-220, Feb. 2009.

Google, “The Go language, http://golang.org/.”

M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1996.

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi, “Flapjax: a programming language
for Ajax applications,” in OOPSLA '09, 2009, pp. 1-20.

A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas: efficient
and robust aggregation in sensor network streams,” in SIGMOD 05,
2005, pp. 287-298.

S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously
adaptive continuous queries over streams,” in SIGMOD ’02, 2002, pp.
49-60.

Z. Wan and P. Hudak, “Functional reactive programming from first
principles,” in PLDI *00, 2000, pp. 242-252.

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” in Proceedings of the 1998 in-
ternational symposium on Low power electronics and design (ISLPED),
1998, pp. 76-81.

C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2006, pp. 347—
358.

A. Benoit, P. Renaud-Goud, Y. Robert, and R. Melhem, “Energy-aware
mappings of series-parallel workflows onto chip multiprocessors,” in
2011 International Conference on Parallel Processing (ICPP), 2011,
pp. 472 —481.

Y. Yetim, S. Malik, and M. Martonosi, “EPROF: An energy/perfor-
mance/reliability optimization framework for streaming applications,” in
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific, 2012, pp. 769 —774.

A. Rangasamy and Y. N. Srikant, “Evaluation of dynamic voltage and
frequency scaling for stream programs,” in Proceedings of the 8th ACM
International Conference on Computing Frontiers (CF), 2011, pp. 40:1—
40:10.

