Rate Types for Stream Programs

Thomas W. Bartenstein and Yu David Liu

SUNY Binghamton
Binghamton, NY 13902, USA

{tbarten1, davidL}@binghamton.edu

Abstract

We introduce RATE TYPES, a novel type system to reason
about and optimize data-intensive programs. Built around
stream languages, RATE TYPES performs static quantita-
tive reasoning about stream rates — the frequency of data
items in a stream being consumed, processed, and produced.
Despite the fact that streams are fundamentally dynamic,
we find two essential concepts of stream rate control —
throughput ratio and natural rate — are intimately related
to the program structure itself and can be effectively rea-
soned about by a type system. RATE TYPES is proven to
correspond with a time-aware and parallelism-aware oper-
ational semantics. The strong correspondence result toler-
ates arbitrary schedules, and does not require any synchro-
nization between stream filters. We further implement RATE
TYPES, demonstrating its effectiveness in predicting stream
data rates in real-world stream programs.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications — Data-flow lan-
guages; D.4.8 [Programming Languages]: Performance —
Modeling and Prediction; F.3.3 [Theory of Computation]:
Studies of Program Constructs — Type structure

Keywords Stream programming; data processing rates;
data throughput; performance reasoning; type systems

1. Introduction

Big Data and parallelism are two dominant themes in mod-
ern computing, both of which call for language support
offered naturally by the stream programming model. A
stream program consists of data-processing units (called fil-
ters) connected by paths to indicate the data flow. At run
time, each such path is occupied by an ordered, potentially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

OOPSLA 14, October 20-24, 2014, Portland, Oregon, USA.

Copyright © 2014 ACM 978-1-4503-2585-1/14/10. .. $15.00.
http://dx.doi.org/10.1145/2660193.2660225

—Measured Rate
— Natural Rate Bound

Throughput Ratio Bound

Output Rate

Input Rate

Figure 1. Throughput Ratio and Natural Rate

large sequence of data items, called data streams. Stream
programming — together with its close relatives of signal
programming and (more generally) dataflow programming
— are successful in scientific computing [1], graphics [2],
databases [3], GUI design [4, 5], robotics [6], sensor net-
works [7], and network switches [8]. Its growing popularity
also generates significant interest in developing theoretical
foundations for stream programming [9-11].

In this paper, we develop a novel theoretical founda-
tion and practical implementation to reason about the data
rate aspect of stream programming. The centerpiece of this
work is RATE TYPES, a type system to reason about stream
rates, i.e., how frequently data can be consumed, processed,
and produced. Despite the fundamentally dynamic nature of
streams, we show that two crucial characteristics of stream
applications can be reasoned about:

Throughput Ratio: the relative ratio between the output
stream rate and the input stream rate of a stream program.

Natural Rate: the output stream rate of a stream program
given an unlimited input stream rate.

We use Figure 1 to illustrate these concepts. Intuitively,
as the the rate of data flowing into the stream program (the
input stream rate) increases, the rate of data flowing out the
same program (the output stream rate) should increase. The
proportionality of increase is represented by the throughput
ratio, with a bound illustrated by the slope of the slanted
dotted (green) line in Figure 1. However, the output stream
rate cannot grow infinitely even if the input stream rate

keeps increasing, because it takes time to process data, i.e.,
taking data from the input stream, performing calculations
on that data, and putting the results on the output stream.
Eventually, the output stream will reach a “plateau” — the
bound of the natural rate — as illustrated by the horizontal
dotted (red) line in Figure 1. This phenomenon is supported
by our experiments. The solid (blue) curve in the same
Figure illustrates the experimentally measured output stream
rates during a real program execution, as measured for many
different input stream rates.

Our key insight is that both throughput ratio and natu-
ral rate are closely related to the program structure, which
in turn can be effectively reasoned about by type systems.
RATE TYPES models both concepts as types, and provides a
unified type checking and inference framework to help an-
swer a wide range of performance-related questions, such
as whether a video “decoder” stream program can produce
3241 data items (e.g., pixels) a second when being fed with
1208 raw data items per second. Make no mistake: it would
be unreasonable to expect such performance-focused ques-
tions to be answered completely without any knowledge
of the run-time. What is less obvious — and what RATE
TYPES illuminates — is how [ittle such knowledge is re-
quired to enable full-fledged reasoning, so that crucial per-
formance questions such as data throughput can largely be
answered analytically rather than experimentally. Along this
line, RATE TYPES is an instance of quantitative reasoning
about performance-related properties, an active area of re-
search (e.g., [12-15]), with a focus on data-flow program-
ming models. To the best of our knowledge, RATE TYPES
is the first result for stream rate reasoning, in a general con-
text that requires neither static scheduling [16] nor inter-filter
synchronization [17].

RATE TYPES promotes a type-theoretic approach to rea-
son about data rates, bringing benefits long known to type
system research to the emerging application domain of data-
intensive software: (1) type systems excel at relating and
propagating information characteristic of program struc-
tures, throughput ratio and natural rate in our system; (2)
type systems have strong support for modularity, which in
our case spearheads a flavor of compositional performance
reasoning; (3) type systems have “standard” and provably
correct ways to construct and connect a series of algorithms
— such as establishing the connection between type check-
ing and type inference, and determining principal types —
which in RATE TYPES happen to unify many interesting
practical algorithms in stream rate control.

To bring RATE TYPES closer to real-world computing,
we implement our type inference system on top of the
Streamlt language [18], predicting data throughput under
different settings of data input/output stream rates. Our ex-
perimental results demonstrate close resemblance between
the reasoning results and the measured results.

This paper makes the following contributions:

* It develops a type system to reason about throughput
ratio and natural rate of stream programs, and formally
establishes the correlation between the stream rates from
the reasoning system and those manifest at run time — as
a strong correspondence property between the static and
the dynamic.

It defines a type inference to infer the throughput ratio
and the natural rate. The inference is sound and complete
relative to type checking, and further enjoys principal
typing — the existence of upper bound for throughput
ratio and natural rate.

It describes a prototyped implementation of the type sys-
tem, with experimental results demonstrating the effec-
tiveness of the formal reasoning in predicting runtime
stream program behaviors.

2. Stream Programming and Reasoning

We now outline the basics of stream programming, and in-
formally describe how RATE TYPES can help reason about
stream programs. Our type system can be built around a va-
riety of programming languages. Here we choose Streamlt
[18] as the host language, and discuss other applicable lan-
guages at the end of the section as well as in later sections of
the paper.

Stream Programming Figure 2 outlines an example stream
program for simulated annealing [19], a classic optimization
algorithm that probabilistically finds globally optimal solu-
tions using a randomized locally optimal search. Given seed
coordinates as the input stream, this program fragment (en-
try at anneal in Line 3) takes each input coordinate, checks
its 8 neighbors in the 2D space, and picks the coordinate in
the neighborhood with best benefit (checkNeighbors in
Line 10). This coordinate is fed back for the next round of
space search. The neighborhood-based strategy may trap the
search to a local, but not global, optimality. Thus, the pro-
gram has with a “jump” strategy to allow some coordinates
to be randomly mutated (randomJump in Line 45).

The base processing unit of a stream program is a filter,
like getNeighbors in Line 15, whose body is a function
labeled with keyword work. A filter execution instance,
informally called a filter firing, takes in a pre-defined finite
number of data items from the input stream (through pop)
and places a finite number of data items to the output stream
(through push). For instance in Lines 17-21, the filter places
9 coordinates on the output stream for each coordinate it
reads from the input stream. A filter can only be launched
when there are enough data items on the input stream, as
specified by the pop declaration in the filter signature (the
declarations immediately after the keyword work).

A filter such as getNeighbors can execute in parallel
with a different filter, such as evalNeighbors, as long
as each filter has sufficient data items in their respective
input streams, Similar to other concurrency models such as

struct xy { int x; int y; int ben; } 15 xy—xy filter getNeighbors() { 35 xy—xy filter evalNeighbors() {
16 work push 9 pop 1 { 36 work push 1 pop 9 {
xy—xy feedbackloop anneal() { 17 Xy p = pop(); 37 xy pl = pop(),
join roundrobin(1,99); 18 push(p); 38 p2=pop () ,
body checkNeighbors; 19 push({p.x+1, p.y, p.ben}); 39
loop randomJump; 20 push({p.x, p.y+1, p.ben}); 40 p9 = pop();
split roundrobin(1,99); 21 41 xy best = ...; // best of 9
} 2 }} 42 push(best);
23 xy—xy splitjoin computeProfits () { 43 }}
xy—xy pipeline checkNeighbors() { 24 split roundrobin(1.,1); 44
add getNeighbors; 25 add getProfit; 45 xy—-xy filter randomJump () {
add computeProfits; 26 add getProfit; 46 work push 1 pop 1 {
add evalNeighbors; 27 join roundrobin(1,1); 47 Xy p = pop();
} 2% } 48 xy rand = ...;
29 xy—xy filter getProfit() { 49 if (...) push(p)
30 work push 1 pop 1 { 50 else push(rand);
31 xy loc =pop(); st }}
32 loc.ben= ...; // find profit
33 push(xy);
!

Figure 2. A Streamlt Program for Simulated Annealing

actors [20], a filter execution instance abides by a “one firing
at a time” rule: the evaluation of each filter function body
upon application must be completed before the second filter
execution instance can start.

To stay neutral to the terminology of host languages,
we name the 3 most commonly used filter combinators as
follows:

* Chain (pipeline in Streamlt): connects the output
stream of one sub-program to the input stream of another.
For example, checkNeighbors in Line 10 “chains”
the output stream of getNeighbors with the input
stream of computeProfits.

Diamond (split join in Streamlt): dissembles and as-
sembles data streams. For example, computeProfits
in Line 23 says that the data items on the input stream
will be alternatively placed to the input streams of the
two getProfit execution instances, whose respective
output streams will be alternatively selected to assemble
the output stream of computeProfits. Declaration
roundrobin (1, 1) indicates a 1:1 alternation.

Circle (feedbackloop in Streamlt): a combinator
to support data feedback. For example, anneal in
Line 3 says that for every 100 coordinates produced
by checkNeighbors, 99 are fed back for random-
Jump processing. Every time 99 coordinates are pro-
duced by randomJump, 1 more new coordinate (addi-
tional “seed” coordinates) will be admitted for annealing.

Stream Reasoning For stream applications such as simu-
lated annealing, high performance is often a matter of ne-
cessity due to copious data volume. High on the wish list of
a data engineer is the ability to reason about performance,
with questions such as:

Q1: Is it possible for a program to sustain the production of
ng data items per second when its input is fed with n;
items per second?

Q2: Is it possible for a program to sustain the production
of n data items per second given unlimited rates for data
inputs?

Q3: If a program is targeted at producing n data items per
second, what is the minimal rate of feeding data at its
input?

Q4: Given the program is fed with n data items per second,
what is the expected rate for its data production?

RATE TYPES addresses Q1-2 through type checking, and
Q3-4 through type inference. It further demonstrates the
relationship among these questions in a unified, provably
correct framework.

For example, through answering Q4, RATE TYPES is
capable of demonstrating that the output rate is limited both
by the rate at which data items are supplied to the program,
and by the inherent limits of the program sub-components.
Overall, it provides a rigorous explanation to the shape of
the curve we introduced in Figure 1. Consider a simple filter
such as getProfit at line 29 in Figure 2 and assume
it takes three seconds from the pop to the push. If data
arrives at the input stream every five seconds, say at times
3, 8, 13, ..., then the filter will process that data and write
to the output stream once every five seconds as well, for
instance at times 6, 11, 16, Even though these times
are offset from the input, the rate at which they appear is
still directly proportional to the input rate. If, however, data
arrive at getProfit every two seconds, say at times 5,
7,9, ..., then the performance of the getProfit filter
dominates the output rate, and pushes to the output stream
will occur at times 8, 10, 12, ..., once every three seconds.
RATE TYPES generalizes this simple concept to reason about
the stream rates throughout the program, and shows that an
entire program can be characterized by the proportion of the
input rate to the output rate, or the throughput ratio, as well
as an internal stream program “speed limit” - the maximum
possible output rate, independent from the input stream rate,
which we call the natural rate of the program.

The formal sections of this paper define a stream-oriented
language core, and formally define

* an operational semantics (Section 3) where the notion of
stream rates can be established;

a type checking system (Section 4.1) where throughput
ratio and natural rate can be reasoned about, e.g., an-
swering questions such as if one filter has throughput
ratio of 1 and the other has throughput ratio of 1, then
the program with the two filters chained together should
have throughput ratio of 1—12 The type checking system is
important for compositional reasoning, in that through-
put ratio and natural rate of a program can still be rea-
soned about, even though the implementation of sub-
stream graphs of the program may not be known (as long
as their types are known).

a type inference algorithm (Section 4.2) where the de-
pendencies between the rates of individual streams in
a stream program runtime are abstracted as linear con-
straints. The type inference algorithm is important for an-
swering questions such as what the maximum throughput
ratio and natural rate are for a program.

The paper further establishes several important properties
of RATE TYPES. To highlight a few:

* Static/Dynamic Correspondence (Theorem 1): we show
that RATE TYPES correctly captures the dynamic behav-
ior as defined by the operational semantics: specifically,
both the throughput ratio and natural rate we reason about
statically are a faithful approximation of dynamic stream
rates.

Soundness and Completeness of Inference (Theorem 3
and Theorem 4): we show that the inference algorithm
correctly infers the throughput ratio and natural rate of a
program, and can infer any throughput ratio and natural
rate for which the type checking algorithm can establish
a type derivation.

* Principal Typing of Inference (Theorem 5): the maximum
throughput ratio and natural rate exist.

Assumption Every reasoning framework needs to address
the base case of reasoning: to type an arithmetic expression,
the assumption is that integers are of int type; to verify
a program is secure, one needs to know password strings
are properly associated with high security labels. In RATE
TYPES, the base case is the filter, and the assumption we
make is its execution time can be predetermined and speci-
fied.

At a first glance, this assumption may seem counter-
intuitive to what is conventionally considered as “static.” We
however believe this is reasonable because (a) filter behav-
iors are much more predictable than full-fledged programs,
thanks to the non-shared memory model they routinely adopt
and their lack of side effects often called for in real-world

stream languages [18, 21, 22]; (b) formal systems to rea-
son about individual filter behaviors exist [10]; (c¢) Experi-
mentally, filter execution time is known to be stable through
profiling; Core optimizations of the StreamlIt compiler [23]
rely on it; (d) real-world software development is iterative.
Profiling-guided typing is not new [24]. What ultimately
matters is to help programmers reason about performance
at some point during the software life cycle.

Applicability RATE TYPES is primarily designed for ex-
pressive and general-purpose stream languages. The frame-
work may be applied more broadly to systems where data
processing is periodic, and/or where rates matter: (a) sensor
network languages (e.g., [7]), where determining the low-
est sensing rate possible is relevant; (b) signal languages
such as FRP [6]. Even though the input signals are theoret-
ically continuous in this context, practical implementations
are still concerned with sampling rate. In addition, even if
all input signals are continuous — a case analogous to Q2
— the output signal is still discrete where rates may matter.
(c) high-performance-oriented dataflow composition frame-
works such as FlumeJava [25] and ParaTimer [26], where
single MapReduce-like units are composed together in ex-
pressive ways. In Section 6, we will have a more in-depth
discussion on how RATE TYPES can be mapped to a variety
of existing frameworks.

3. Syntax and Dynamic Semantics

Abstract Syntax The abstract syntax of our language is
defined as follows:

P = FLngn,)| P>*P'| program
POsoP' | POYs P

§ == (n;n') distribution factor

m= (nyn') aggregation factor

The building block of a stream program, a filter, takes the
syntactic form of F'“[n;, n,), where F is the filter function
body, and L is a unique program label called a filter label.
Filter labels range over the set of FLAB. Each filter is further
declared with two natural numbers: n; for the number of
items to be consumed by an invocation of the filter, and n,
for the number of items to be produced by an invocation. The
two numbers correspond to the pop and push declarations
in Figure 2. Let NAT represent natural numbers starting
from 1. Metavariable n ranges over NAT. For each filter, we
further require F' to be an element of DATA™* — DATA"°
where DATA is the set of data items.

The remaining syntactic forms of a program P corre-
spond to the three combinators in stream programming: a
chain composition, a diamond composition, and a circle
composition; represented in the grammar in that order. If a
program P takes the form of one of these combinators, we
informally say that P4 and Pg are sub-programs of P. For
the circle composition, Py Og:g Pg, we further informally

call P4 the forward sub-program and Pp the feedback sub-
program.

For both diamond and circle compositions, metavariables
d = (n;n') and a = (n; n’) represent the distribution factor
and the aggregation factor respectively. They correspond to
the tuples succeeding the split keyword and the join
keyword in the Figure 2 example respectively. Intuitively,
the distribution factor specifies the proportion of splitting a
data stream into two, and the aggregation factor specifies that
of joining two data streams into one.

For the purpose of formal development, each chain ex-
pression is associated with a distinct stream label, £, and
each circle expression is associated with two stream la-
bels. The motivation of representing them in the syntax
will be made clear later. Metavariable ¢ ranges over set
SLAB. Given a program P, we use flabels (P) to enu-
merate all filter labels in P, and slabels (P) to enumerate
all stream labels in P. The flabels definition is obvious,
and slabels is inductively defined as follows:

lI>

slabels (FL [ns, no}) 0

slabels (PA >* PB> £ slabels (Pa)U

slabels (Pp) U {¢}
slabels (Pa<s,4 PB) £ slabels (Pa) Uslabels (Pg)

slabels (PA Og,’f PB) £ slabels (Pa)U
slabels (Pp) U {¢,¢'}

In Appendix A, we show the simple syntax core is capa-
ble of encoding other programming patterns, such as k-way
split-join and non-round-robin distribution/aggregation.

The program in Figure 2 can be represented by our syntax
as Punnea1 Where:

_ Loy
Pa_nneal *PcheckNeighbors ©<1;99> (1;99) PrandomJu.mp

PcheckNeighbors :(PgetNeighbors Db PcomputeProfits)
DEB PevalNeighbors
PgetNeighbors :FL [1
PcomputeProfits :FL []- 1]
PevalNeighbors :FL4 [9a 1]
[1,1]

_ L
PrandomJu.mp =F"s

In the rest of the paper, we use notation [X1, ..., X,] to
represent a sequence with elements X4, ..., X,,, or sim-
ply X when sequence length does not matter. Furthermore,

we define |[X1,...,X,]]| 4 1 and use comma for se-
def
, Xul, (Y1, =

quence concatenation, i.e. [X1,... Y] =
[X1,...,X,,Y7,...Y,]. We call a sequence in the form
of [X; — Yi,...X, — Y,] a mapping sequence if X,

S| < (n+n')
SA(n;n’) wv@

Sz = Sa2,SB2
|SA2|:TL |SB2|:nl
S1 Mn,nry Sa1,Se1
51,82 Aninry Sai,Saz; SB1,SB2

(ISa] <m) v (ISs| <n)
SA;*S’B y(n;n’) 0

|SA2|:TL |SBQ|:nl
So = Saz2,SB2
Sa1,5B1 Y (ninty S1

Sa1,S42; 981,582 Y (nimry 51,52

Figure 3. Distribution and Aggregation

..., X, are distinct. We equate two mapping sequences if
one is a permutation of elements of the other. Let map-
ping sequence M = [X; — Yi,...X, — Y,]. We fur-
ther define dom (M) ' {Xy,...,X,} and ran (M)
{Y1,...,Y,} and use notation M (X;) to refer Y; for any
1 < ¢ < n. Binary operator ¥ is defined as M; W My =
My, My iff dom (M7) N dom (Ms) = (). The operator is oth-
erwise undefined.

Stream Runtime The following structures are used for
defining the stream runtime:

R = (—S program runtime
S = d stream
14 € SLABU {EINa KDUT} stream label
t € TIME C REAL+ time
d € DATA data item
II € FLAB+— TIME filter time mapping

The runtime, R, consists of a mapping sequence from stream
labels to streams. A stream is defined as a list of data items.
Two built-in stream labels, /1y and gyt are used to facilitate
the semantics development. Given a program P, {1y and {gyr
labels the input stream and the output stream of P. Mapping
function IT maps each filter (label) to its execution time.

Ternary predicate S As Sa,Sp holds when S can
be “split” to S4 and Sp using distribution factor ¢, and
S4,58 Ya S holds when S4 and Sp can be “joined” to-
gether as S with aggregation factor a. Their formal defini-
tions are in Figure 3. Some examples should demonstrate
the functionality of these predicates.

[1,2,3,4,5,6] An
[1,4],12,3,5,6] Yqu
[1,2,3,4,5,6,71 A,
(1,4,71,12,3,5,6] Y,

) [1,41,12,3,5,6]
) [1,2,3,4,5,6]
)
)

o [1,41,[2.3,5,6]
[1,2,3,4,5, 6]

R%R’ R’ti)R” tdts <t
1 2

[D-Reflex] [D-Trans]

R%R R%W

So2 = F(S:1) (L) <t

. = [D-Filter]
F~[n;,no
[lan = (Siz, Si1), o = Sor] ——2s (030 1 Sia, bour =+ (So2, So)]

|Szl| =N |S02| = No

R=RaWRB W [lzy = Si, lovr — So, £ — 5]
R = Ry W R W [l — S}, bour +— S, £+ S

S =85, S = S5, 5>
RaW [EIN — Si,KOUT — SQ] f—A) R;;] [KIN — SL&JUT — S,] ta <t
A
Rp W [lx — S, Lour — So) tiB;) R W [l So,bour — S, te <t
B [D-Chain]
R Pyt PR R
R=RaWYRpW [lw — Si, lovr — So]
R = R, W R [l — S}, bour — S}
Si Aé SA,SB S{ A& S‘{47SIB SC,SD Ya So SICHS/D Ya S(/7

RAH‘J[ZINI—)SA,KQUTHSC} IZ—A)R,AL‘H[ZIN'—)SQhEOUT'—)S,C] ta <t
A

}QMVWHS&%WHSM;&REMMW%SE%WHSH tp <t
5 [D-Diamond]

Pa®s aPB

R R’

R=RaWRBW [ly — Si,La — Sco, s — Spo, Lour — So]
R =Ry W R [l > Sl Ly — Sio, by — Sho, Loor +— SL)]
Sc As So, SB S, 5D Ya Sa Sc A S5, S5 Si,Sp Ya S
RA&N&NF>SA,%WF»(SOLSCMA§é>Rg&q&NF»sg,%mF»(s@hsgn ta <t
A

Rp W [ém = SB,KOUT —r (SDO7SD)] f—B> R/B] [ZIN — SlByétlUT — (SIDO,SID)] tp <t
B

[D-Circle]

La, by

PAOQ’5 Pp
_

Rl

Figure 4. Operational Semantics

(a) Chain

(b) Diamond

(c) Circle

Figure 5. Operational Semantics Illustrations

Operational Semantics Figure 4 defines operational se-
mantics, with relation R % R’ denoting that the runtime
of program P transitions from R to R’ in time ¢. To model
stream rates explicitly, we need to (1) “count the beans,” i.e.,
the number of data items on the input/output streams, and
(2) be aware of time. Since parallelism affects how time is

accounted for, we elect to explicitly consider the impact of
parallelism for every expression. (In contrast, standard op-
erational semantics for concurrent languages typically em-
ploys one single “context” rule to capture non-determinism.)

The reduction relation is reflexive and transitive. [D-
Filter] relies on a pre-defined II to obtain the execution

time of each filter. The reduction takes n; data items from
the “tail” of the input stream, applies function F' to it, and
places n, number of data items on the “head” of the out-
put stream. The rest of the rules are illustrated in Figure
5, where streams are illustrated as arrows and labeled with
metavariables appearing in rules. By convention, each time
we identify a pre-reduction semantic element with a symbol,
we use the same symbol with an apostrophe to indicate its
corresponding element after reduction.

Before we look into the details the last 3 rules, there are
two important high-level observations. First, the data flow
dependency of the two sub-programs P4 and Pp — be it in
a chain, diamond, or circle — does not prevent parallelism.
The reduction time for each rule is only bound by the longer
reduction of P4 and Pp. In particular, we wish to stress that
even in the case of chain composition — which is sometimes
termed as “serial composition” in existing literature — par-
allelism still exists between the two sub-programs. Second,
the reduction system does not require synchronization over
any sub-programs. For all three composition forms, a non-
reflexive reduction can happen to one sub-program indepen-
dently, given the other sub-program takes a [D-Reflex] step.
In other words, sub-programs of a stream program — includ-
ing all filters — can operate asynchronously, and no prede-
fined schedules [16] are required.

In [D-Chain], ¢ represents the stream in between Py
and Ppg, i.e., both the output stream of P4 and the input
stream of Pg. In [D-Diamond], A allows one stream to
be “viewed” as two, whereas Y allows two streams to be
“viewed” as one. This idea of “views” is inspired by lens
[27], as demonstrated in Figure 5(b)

As illustrated in Figure 5(c), a circle composition intu-
itively looks like a “reverse” diamond composition, in that
there is a “join” at input, and a “split” at output. The in-
put stream (.5;) and the output stream of the feedback sub-
program (Sp) is “joined” to form the input stream of the
forward sub-program, whose output stream (S¢) is “split”
to the output stream (S,) and the input stream of the feed-
back sub-program (Sp). The thorny issue is after reduction,
the additional data items produced by P4 and Pp need to be
properly represented. Unlike [D-Diamond], we cannot fur-
ther “lens” them because that would lead to the next iteration
of loop reduction. To address this, we introduce an imagi-
nary stream between P4 and the lensed stream, labeled £ 4,
and represented by S4 4 in Figure 5(c) — and use this stream
“buffer” for the additional data produced by P4 reduction.
The same scheme is used for treating the post-reduction out-
put of Pp. The stream labels of the two additional introduced
streams, S44 and Spp, are the two labels associated with
the circle construct, i.e., £, and £,

Properties The operational semantics enjoys several sim-
ple properties, which we state now. The proofs for all lem-
mas and theorems throughout this paper can be found in
[28].

Lemma 1 (Stream Count Preservation). If R % R/, then
dom (R) = dom (R’) = slabels (P) U {/y, four }-
Lemma 2 (Monotonicity of Input and Output Streams). If
R % R', then |R((w)| > |R'(fw)|, and |R(four)| <
| R/ (Lour)|-

Stream Rates Our operational semantics is friendly for

calculating stream rates. First, let us formalize the notion of
how fast the size of a stream changes:

Definition 1 (Stream Rates). Given a reduction from R to
R/ over time t, the rate for stream ¢ is defined by function
rchange():

! —
rchange(R, R',t,¢) def abs (|R (E)t‘ O]

where unary operator abs () computes the absolute value.

For instance during a reduction of 8 seconds, if the size
of a stream increases from 25 to 45, then the stream rate
is @ = 2.5 data items per second. Stream rates range
over non-negative floating point numbers, FLOAT+, and
from this point on, we will use metavariable r to represent a
stream rate.

Observe that according to Lemma 2, the input stream of
a program through a reduction is monotonically decreasing,
whereas the output stream of a program through a reduction
is monotonically increasing. Hence we define:

Definition 2 (Input/Output Stream Rates). Given a reduc-
tion from R to R’ over time ¢, we define:

rti (R, R/ t) def rchange(R, R’ t, (1y)

rto (R, R/ 1) ef rchange(R, R', t, {our)
Bootstrapping A technical detail for a program with cir-
cle compositions is that one needs to prime the loop. For
instance, the anneal circle composition in Figure 2 can-
not start until the output stream of randomJump contains
99 items. In practice, most languages allow programmers to
specify the initialization data items to “prime” the loop. To
model this, we say R is a primer of P iff dom (R) subsumes
{1y and the smallest set of ¢ where Py Oﬁ;’f Ppg is a sub-
program of P, & = (n;n’) and |R(¢)| = n’. Here, stream
label ¢’ intuitively identifies the output stream of the for-
ward sub-program (S in Figure 5(c)), and ¢ for the output
stream of the feedback sub-program (Spq in Figure 5(c)).

Definition 3 (Bootstrapping Runtime). Given program P,
and primer Ry, function init (P, Ry) computes the initial
runtime of P, defined as the smallest R satisfying the fol-
lowing conditions: Ry C R, R({oyr) = 0, and R(¢) = { for
any ¢ € slabels (P) A ¢ ¢ dom (Rp).

4. Rate Types

In this section, we describe our type system. We first present
a type checking algorithm, followed by a type inference

P T

b Py <9a;Va>

Fo P : (Op; vp)

HP:T [T-Sub}

Fo Pa>* Pp : (Ba X Op;min (v X Op,1))

[T-Chain]

Fo Pa : (Ba;va) Fo Pg : (6;vp)
0, = A1(S) x 0. x Y(a)
0, = A2(6) x Oy x Y3(a)

v =va x Yi(a)
vy = X Y3 ()

- [T-Filter]
Fo F2[ni,nol : (no/ms;mo/II(L))

02<01 1<

[T-Diamond]

b Pa$s,o P i (min (0;,60;) ;min (v, 1))

b Pyt <0a;l/a> F Pp: <6b§yb>
0, =min (Y'(a), 0, x Y*(a)) X 04

0 = 0, x A2(8) x O

V), =min (l/a, vh X Y2(a) x Ga)
Vi =min (vy, v, x A*(8) X 65)

Sub
(01;11) <: (02;12) [Sub]

Fo Pa Oel

[T-Circle]
7’5 Pgp : (0, x AM(0); vl x AM(5))

o1

Figure 6. Rate Type Checking Rules

(a) Chain Case 1

(b) Chain Case II

(d) Diamond Case I1

(f) Circle Case II

Figure 7. Reasoning about Throughput Ratios and Natural Rates (For throughput ratio reasoning, follow both the blue/lighter
arrows and the red/darker arrows. For natural rate reasoning, follow the red/darker arrows.)

algorithm proven to be sound and complete relative to the
former. Types in our system are defined as follows:

T = (6;v) stream rate type
0 € TR CFLOAT+ throughput ratio
v € FLOAT+ natural rate

The throughput ratio, 0, statically characterizes the ratio
of the output stream rate over the input stream rate. The
natural rate, v, statically approximates the output stream
rate when the program can “naturally” produce output, i.e.,
with no limitation on the input stream rate.

The type form here reveals a fundamental phenomenon
of stream rate control: the input stream rate and the output
stream rate can be correlated by a ratio 8, but the correlation
only holds when the input stream rate is low enough such
that its corresponding output stream rate does not reach v.

Just as we explained in Section 1, each filter execution takes
time, and each filter instance can only take “one firing at a
time.” The combined effect is that a program simply cannot
— in practice or in theory — produce output streams at an
unlimited rate.

4.1 Type Checking

Judgment - P : 7 denotes P has type 7. This is directly
related to two questions in Section 2. Question Q1 attempts
to determine whether a program P can sustain the produc-
tion of no data items per second when its input is fed with
n; items per second. That question is tantamount to find-
ing out whether a derivation exists for by P : (na/ny;na).
Question Q2 — determining whether the output stream can
sustain rate n with no limitation on the input stream rate —

can be answered by finding out whether a derivation exists
for - P : (6;n) for some 6.

The typing rules are summarized in Figure 6. Simple
functions A1(8), A2(8), Y1 () and Y 2(«) can be informally
viewed as computing a form of “normalized” distribution
and aggregation factors. They are defined as:

def def ’
AN ey e
€ 4 € ’
)\2(6) —= n?—n’ YQ(OZ) = nJTg/n

where 6 = (n,n’) where o = (n,n’)

[T-Sub] introduces subtyping. The <: relation in turn is
defined in [Sub] rule. Intuitively, if a program can sustain a
throughput ratio of 0.4, it can sustain throughput ratio 0.3. In
addition, if a program is known to be capable of producing
as much as 300 items a second, it can output 200 items a
second.

In [T-Filter], the throughput ratio of a filter is simply
the ratio between the number of data items placed on the
output stream through one filter firing and that of data items
consumed by the same firing. Following the “one-firing-
at-a-time” execution strategy, the natural rate for a filter is
achieved when it runs “non-stop”: the filter produces every
ng items for its execution time II(L). As a result, the natural
rate of the filter is ng /II(L).

As revealed by [T-Chain], the throughput ratio of a chain
composition is the multiplication of the throughput ratios of
the two chaining sub-programs. Consider an example where
the throughput ratio of P4 is 3 and that of Pp is 2 —
meaning P4 outputs 3 items for each 1 item on the input
where as Pp outputs 2 times for each 1 item on its input —
the composition program indeed has 6 items on the output
for each item on the input.

There are two cases for reasoning about the natural rate
for chain composition, illustrated in Figure 7(a) and Fig-
ure 7(b), respectively. In the first case, the rate of the input
stream to P4 (i.e., the rate for feeding data to P4) is higher
than what P4 can consume following the “one-firing-at-a-
time” strategy. Since we know the rate for the output stream
of P4 given unlimited input rate is its natural rate v 4, the
output stream rate of Pg — and hence also the output stream
rate of the entire program — is no higher than v4 x 6. In
the second case, Figure 7(b) shows the rate of feeding the
input stream of Pgp is high enough that the output stream of
Ppg reaches its natural rate, 1. In this case, v, becomes the
natural rate for the entire program. Combining the two cases,
the natural rate of the program should be the minimal of the
two, computed by the standard binary function min ().

In the [T-Diamond] rule, observe that throughput ratio
can be viewed as the “normalized” output stream rate rel-
ative to the input stream rate, through the two possible paths
from input to output. Figures 7(c) and 7(d) demonstrate these
cases. Consider Figures 7(c) for example. For simplicity,
let us consider the input stream rate of the composed pro-

gram be 1. Thanks to the simple operators we defined ear-
lier, the input stream rate for Py is thus A'(), and the cor-
responding output stream rate of Py is A'(d) x 6,. If the
output stream rate of P4 determines the output stream rate
of the entire program, the throughput ratio thus would be
AL(8) x 0, x Y1(a). On the other hand, if the output stream
rate of Pp determines the output stream rate of the entire
program, the throughput ratio would be A2(8) x 0, x Y2(a).
Overall, the throughput ratio is the minimum of the two. The
reasoning for the natural rate is simpler. The key insight is
that the natural rate of the program — the upper bound of
output stream — depends on the natural rates of P4 and Pp.

To see how [T-Circle] works, we first focus on the rea-
soning of natural rates. First let us consider how the rate at
the output stream of P4 and the rate at the output stream
of Pgp are bounded. Let the two be v, and v} respectively.
Observe that if we can determine v/, the natural rate of the
entire program is simply v/, x A(4). To determine v/, the
general philosophy we used for [T-Chain] reasoning can still
be applied, with two cases: (1) Figure 7(e): when P4 is fed
with an input stream whose rate is so high that its output
stream is already the natural rate of Py, then v/, = v,; (2)
Figure 7(f): otherwise, v/, is determined by the input stream
rate of P4, which in turn is determined by the natural rate of
Pg, i.e., v} X Y2 () x 0. In the more general case, v/, and v,
are mutually dependent. Let us consider an iterative scheme
where we compute v, and v} in iterations, with superscript
k on the left to indicate the number of iterations, then:

(k+1)y! = min (1/,17 Byl x v2(a) x 9a)
k+Dy! = min (v, B, x A2(8) x 6;)

The convergence of such iterations has been well-studied
in control theory as the stability of feedback loop. More gen-
eral solutions would determine the existence of — and if so
compute — the fix point. [T-Circle] adopts a simple scheme,
requiring convergence without iteration. From a type sys-
tem perspective, this implies we may conservatively reject
programs whose natural rate may stabilize after iterations.
Nonetheless, the simple rule here sufficiently demonstrates
our core philosophy: our type system is stability-aware, and
programs with unstable circle compositions should be re-
jected.

The throughput ratio reasoning of [T-Circle] follows sim-
ilar logic. Here 6/, intuitively captures the throughput ratio
between the output stream of P4 and the input stream of the
entire program, and 6; intuitively captures the throughput
ratio between the output stream of Pp and the input stream
of the entire program. The key insight is that circle compo-
sition resembles a “reverse diamond composition,” an anal-
ogy we used while introducing the operational semantics.
As a result, the particular assumptions related to through-
put ratio reasoning in [T-Circle] (those involving 6/, and 6,
in the rule) bear strong resemblance to their counterparts in
[T-Diamond].

Meta-Theories RATE TYPES correctly captures the dy-
namic behavior as defined by the operational semantics:
specifically, both the throughput ratio and natural rate we
reason about statically is a faithful approximation of dy-
namic stream rates:

Theorem 1 (Static/Dynamic Correspondence from an Initial
State). Given a program P

*If R = init (P, Ry) for some Ry and R % R,
then k¢ P : (ry1/rq;71) where rto (R, R',t) = r1 and
rti (R, R, t) = ro.

*If - P : (#;v), then for any small real numbers, €1, €2,
there exist some Ry and some reduction R % R’ such

that 6 — r1/ro < € and v — r; < ey where R =
init (P, Ry) and ; = rto (R, R',t) and where ro =
rti (R, R/,t).

This theorem relates program dynamic behaviors and typ-
ing. The first part of the theorem is analogous to the type
system completeness property, whereas the second part is
analogous to the soundness property.

The first part of the theorem says that if an execution ex-
hibits a particular input/output data rate, we can use the ob-
served rates to compute the throughput ratio and natural rate,
and the program should typecheck given the computed type.
The importance of this part of the theorem is its contrapos-
itive: if we cannot type a program given a throughput ratio
and natural rate, then no matter how many times the program
is executed (e.g., through testing), the same throughput ratio
and natural rate will not occur at run time.

The second part of the theorem says if a program is in-
deed typable, then at least one execution sequence exists to
exhibit a throughput ratio and natural rate “close enough” to
the ones used for typing. The definition indeed says types
are the limitation of the observed executions. Readers might
wonder why we cannot always find an execution sequence
whose throughput ratio and natural rate are equal to the
ones used by the type system. The root cause lies with the
beginning steps of the stream program execution: it takes
steps for a stream program to produce the first data item on
the output. Our theorem says, given the execution sequence
is long enough — also implying the input data stream con-
tains enough data items — the (detrimental) effect on output
stream rate during the initial execution stage will be mini-
mized, so that the throughput ratio and natural rate can be
(nearly) reached.

Theorem 1 is a strong result, but it requires relating a
runtime state with the initial state. Will the same theorem
hold for two arbitrary runtime states? The answer is nega-
tive. Observe that each stream program runtime may contain
“intermediate streams,” i.e., streams that are not identified by
{1y and {gyr. For instance, in a simple program that only in-
volves chaining two filters together, there is an intermediate
stream connecting the two filters. Such intermediate streams

may “buffer” data, potentially leading to localized “bursty”
behaviors. We now state a stronger result saying that the
throughput ratio and natural rate are effective in character-
izing arbitrary reduction steps as well, as long as a steadfast
condition is met:

Theorem 2 (Static/Dynamic Correspondence over Arbitrary
Reduction Steps). Given a program P

‘If R % R’ then - P
rto (R, R,t), and ro = rti(R,R’,t), and for any
¢ € dom (R) — {1y, lour }, rchange(R, R',t,£) =0

(r1/rg;r1) where r; =

*If b, P : (6;v), then for any small €, €s, there ex-
ists a reduction R % R’ such that — ri/ry < €
and v — 1 < e where rto(R,R';t) = r; and

rti(R,R',t) = ro, and for any ¢ € dom(R) —
{EINa EUUT}? rchange(R, R/, t,g) = O .

Here we call the rchange() assumption in the theo-
rem the steadfast condition. The theorem says that a re-
duction sequence beginning at any reduction step observes
the throughput ratio and natural rate reasoned about by our
type system, as long as the size of each intermediate stream
at the starting step is the same as its size at the end of the

. . P
reduction sequence. Since — is transitive, this theorem does
t

not require every small step maintain steadfastness: it only
requires the end state is “steadfast” relative to the beginning
step. In other words, the theorem is tolerant of temporary
“bursty” behaviors during the reduction(s) from R to R'.

4.2 Rate Type Inference

In this section, we define a constraint-based type inference
for RATE TYPES. The key element is throughput ratio type
variable p € TVAR and natural rate type variable q €
NVAR, the type variable counterparts of 6 and v. Each el-
ement in the set is either an equality constraint (e = e) or
an inequality one (e =< e) over expressions formed by type
variables and arithmetic expressions over them, such as mul-
tiplication (). To avoid confusion, we use different symbols
for syntactic elements in constraints and those in predicates,
whose pairwise relationships should be obvious: = and =, <
and <, e and x. We define a solution, o, as a mapping from
type variables to throughput ratios and natural rates. We use
predicate o || ¥ to indicate that o is a solution to X. For-
mally, the predicate holds if every constraint is a tautology
for a set identical to X, except that every occurrence of p is
substituted with o(p), and ¢ with o(q).

Type inference rules are given in Figure 8. Judgment
F; P : (p;q)\X says program P is inferred to have through-
put ratio represented by type variable p and natural rate rep-
resented by type variable ¢ under constraint . The rules
have a one-to-one correspondence with the type checking
rules we introduced in Figure 6. Indeed, the close relation-
ship between the two can be formally established:

p, q fresh

[I-Filter]

i FP i, mol = (p@)\{p < mo/ni, ¢ < no/TL(L)}

Fi Pa: (Pa;qa)\Xa i Pp:

(Po; @6)\X B

P, q fresh

Fi (Pa>* Pp): (p;g\ZaUS5U{p < pa®ps,qd =< qa®ps, ¢ = q}

Fi Pa: (Pa; qa)\Xa

Fi Pp : (pv; o) \XB
¥ = {p < pa e YH(@) x A1(8),p < b @ Y2(a) X)\2(6)}

[I-Chain]

p, q fresh
Se={qg=2qaev(a),g =g e Y(a)}

F; (PA<>5,D¢PB) : <p; q>\2A UXpUXi U

Fi Pa : (Pa; qa)\Xa Fi Pg : (py; q5)\XB

[I-Diamond]

D, 4s Pas o> Phs Gp Tresh

So={p=p,er'(6),q=2q, e ()}

1= {ph 2 paeY' (), ph X ppepae ()}
Sa={ap 2@, q5 = ¢, o pp @ A%(6)}

Y5 ={q\ < qa,q\ = g5 #pa ® ()}

Y2 ={p, 2 pheps e A*(0)}

Fi (Pa OL % Pe): (pig)\S0US1 US: US3 U USAU S

[I-Circle]

Figure 8. Rate Type Inference Rules

Theorem 3 (Soundness of Inference). If F; P : (p;q)\E
and o |} X then b P : (o(p),o(q)).

Theorem 4 (Completeness of Inference). If H P : (6, v),
then Jo such that o(p) = 0,0(q) = v and o || X, where

Fi P (p; @)\

A (trivial) solution clearly exists for the constraints pro-
duced by the inference: solving all p’s and ¢’s to 0. What is
more interesting is whether the “best” solution exists: this is
the existence of principal typing, a property our type infer-
ence algorithm enjoys:

Theorem 5 (Principal Typing). For any P such that -; P :
(p; @)\ X, there exists a unique o such that o |} 3, and for
any o’ || 2, (o(p);0(q)) <: (0/(p); 0’ (q)). We further call
(o(p); o(q)) the principal type of P.

This property has important consequence to stream rate
reasoning. Recall in the previous section, subtyping <: is
defined by comparing the values of throughput ratios and
natural rates. What the theorem here tells us is that there
exists the “highest” throughput ratio and natural rate for
every program. Given the theorem above, computing the
principal type is simple: for any program P, and ; P :
(p; @)\ X, the prinipal type can be computed by maximizing
p and g over constraints ..

The two questions — Q3 and Q4 — can be easily an-
swered given we can compute principal type for the pro-
gram. Observe that the principal type provides the highest
throughput ratio and natural rate for the program. Let it be
(0;v). The answer to Question Q3 — the minimal input
stream rate given the output stream is expected to produce
n items per second — is simply n/6 if n < v. The answer
to question Q4 — the expected output stream rate given the

input stream rate is n items per second — is either n x 6 or
v, whichever is less.

5. Experimental Validation
5.1 Implementation

We have implemented RATE TYPES on top of Streamlt ver-
sion 2.1.1 [18]. Our primary extension lies upon the imple-
mentation of the type inference algorithm itself, i.e., calcu-
lating the throughput ratio and natural rate of a stream pro-
gram. In addition, our implementation includes the follow-
ing components:

1. a profiler to measure the elapsed time consumed by the
work function of a filter (to prepare 1I in the formalism)

2. a data rate management module for measuring and con-
trolling the input stream rate, and measuring the output
stream rate

3. a modification from a file /O model to a memory-
mapped I/O model, in which file pages are populated
and pre-faulted before measurements start in order to
minimize the impact of file I/O on input or output stream
rates

A compiler optimization Streamlt performs is partition-
ing. A stream program typically has many programmer-
level filters which Streamlt can partition into a fixed num-
ber of work-balanced subgraphs, and mechanically trans-
form (“fuse”) each sub-graph into a single filter. Each par-
tition can then be deployed to a physical thread. In order to
preserve the multi-threading model adopted by Streamlt, we
choose to apply our type inference on the post-partitioned
stream program. We modified Streamlt to enable profiling on
either pre-partition (programmer level) or post-partitioning

(core level) filters. We also ensure each partition is appropri-
ately deployed and executed on a unique core. Our experi-
ments consider two partitioning scenarios: 8 partitions/cores
and 16 partitions/cores.

5.2 Benchmarks and Platforms

Our selection of benchmarks include both micro-benchmarks
and a number of existing Streamlt programs [29]. For micro-
benchmarking, we focused on demonstrating the effective-
ness of reasoning on the four basic stream graph configura-
tions:

* TRIV-Filter: a single filter that pops a single value
for each firing, performs a (parameterized amount of)
calculation, and pops a single result

* TRIV-Chain:two TRIV-Filter’sin achain compo-
sition

* TRIV-Diamond: two TRIV-Filter’s in a diamond
composition

* TRIV-Circle:two TRIV-Filter’s in a circle com-
position

The five real-world Streamlt programs we selected are:

* bitonic: an implementation of Batcher’s bitonic sort
network for sorting power-of-2 sized key sets

* dct: an implementation of a two-dimensional 8 x 8
inverse Discrete Cosine Transfer, which transforms a
16 x 16 signal from frequency domain to signal domain

* £ft: astreamed implementation of a Fast Fourier Trans-
form

* fm: a simulation of an FM radio with a multi-band equal-
izer

* vocoder: an implementation of a the speech filter anal-
ysis portion of a source-filter model. The analysis in-
cludes Fourier analysis, a low-pass filter, a bank of band-
pass filters, and a pitch detector

We made minor modifications to these benchmarks, pri-
marily to ensure each benchmark reads input data from a
file, and writes output data to a file. We equipped our file
reader with the capability to provide a constant number of
data items per second, based on a parameter, to provide a
controllable stream input rate. Our file writer measures the
number of data items written, and the elapsed time from the
first to the last write so we can calculate the average stream
graph output rate.

For each benchmark, we perform experiments and re-
port results running on two different platforms. The first
was an 8-core AMD FX-8150 processor (Bulldozer micro-
architecture) running Debian 3.2.46-1 Linux (kernel 3.2.0-4-
amd64) and 16GB memory. The second was a 32-core AMD
Opteron 6378 processor (Piledriver micro-architecture) run-

ning Debian 3.2.46-1 x86-64 Linux (kernel 3.2.0-4-amd64)
with 64GB memory.

5.3 Experimental Methodologies

Overall, our experiments for each benchmark are designed to
demonstrate the relationship between (1) the throughput ra-
tio bound and natural rate bound as computed by our imple-
mented type inference algorithm, and (2) the output stream
rates measured at various different input stream rates. For
example, the “throughput ratio bound” line and the “natural
rate bound” line in Figure 1 we showed at the beginning of
the paper are plotted by applying the type inference algo-
rithm on TRIV-Filter. The “measured rate” line in the same
Figure are computed by measuring output stream rates at dif-
ferent input stream rates. We now detail several practical is-
sues in the experimentation process.

Measurement Point Selection The first issue is to deter-
mine the range of input stream rates we wish to measure. The
maximum measurement input rate we benchmark is heuris-
tically determined to be the lower of the following two:

* Twice the computed natural rate bound divided by the
computed throughput ratio bound

* Twice the measured fastest practical output rate di-
vided by the computed throughput ratio bound, where
the fastest practical output rate is measured through a test
run where no restriction is placed on the input stream

We choose 200 measurement points decrementing from
the maximum measurement input rate down to zero in 200
equal steps. In some cases, benchmarks may not reach the
maximum measurement input rate due to system-level re-
strictions. In these cases, we selected the highest reachable
input rate as maximum measurement input rates.

When given very low input stream rates, the execution of
some benchmarks may take a long time. We choose to stop
measurements on a specific benchmark when the execution
time exceeds 5 minutes. Even though we sometimes dropped
the lowest one or two measurement points in some of our
benchmarks, it had no impact on the trends demonstrated in
our results.

Batch Size Selection In a stream program execution, each
(post-partition) filter runs in a separate thread, deployed on
a separate core. The streams flowing in between filters are
thus inter-thread data transfers across cores, via a buffer.
This leads to some practical issues: first, there is overhead
for data movement from one core to another, and second,
there is a need for synchronization for shared buffer access.
To reduce the overhead from data movement and synchro-
nization, Streamlt performs batching at data transfer time:
an “upstream” filter places a “batch” of data (instead of just
one element) in the shared buffer, before it becomes avail-
able for consumption by the “downstream” filter.

The effects of this implementation on our experiments are
twofold. On one hand, the effect is similar to the “bursty

behaviors” we described for Theorem 2. Given a long exe-
cution where the number of processed data far exceeds the
size of the batch, the “bursty” behavior from batching should
have little effect on the average stream rate, and should not
affect our reasoning. On the other hand, the idealized the-
oretical model does not consider the data transfer and syn-
chronization overhead which will occur in real-world imple-
mentations. The selection of batch size in fact has non-trivial
effect on this overhead.

Larger batch sizes (i.e., more data per movement) reduces
synchronization overhead, but its bursty nature results in
downstream idle time, waiting for a full batch. In some
cases, especially for stream graphs with circle constructs,
a very large batch size can delay execution of downstream
filters to the point where the entire stream graph stalls. Large
batch sizes also have the effect of reducing parallel activity.
Downstream filters must wait for a full batch before starting
execution. A smaller batch size resolves these problems,
but introduces more synchronization overhead, and hence
impacts the ability to achieve theoretical stream rates. We
tuned the batch size for our experiments. All experimental
results were produced with a batch size of 100 data items.

Overhead and Compensation There are several practical
considerations which can cause the measured rates to deviate
from the theoretical throughput ratio bound and natural rate
bound, including the following:

* The idealized model assumes zero time for data transfers
across filters. It further assumes there is no overhead
associated with checking whether there are sufficient data
available to invoke a filter.

The idealized model assumes infinite sized stream buffers,
with no overhead for synchronization. In practice, buffer
size is fixed, resulting in occasional “back pressure”
where a filter must wait for available stream buffer space
in order to push a new data item. There is also locking
and unlocking overhead for synchronizing the transfer of
data batches.

There may also be a limit on the fastest rate that an output
stream can be consumed, caused by the mechanics of the
output stream I/O. In our experiments, the output stream
is consumed by memory mapped file output, so is limited
by memory transfer rates.

The impact of these effects are most prominent on filters
which run very fast. In order to compensate for these effects,
we increase the elapsed times for “fast” filters linearly, by
a constant compensation ratio. Heuristically, we consider a
filter as “fast” if its execution time (per firing) is less than 2
microseconds.

We determine the compensation ratio as follows. We first
find whether the “fast” filter happens to be a “limiting” fil-
ter: we consider a filter as limiting if changes in its elapsed
time have direct impact on the output stream rate of the en-
tire program. We find limiting filters by re-calculating the

theoretical output rate under the assumption that the filter in
question has a higher natural rate and determining if such a
change would lead the type inference algorithm to compute a
different output rate. Second, for each filter that is both “fast”
and “limiting,” we plot an (x, y) point in a graph where z is
the natural rate (computed through the inverse of the pro-
filed elapsed time), and y is the observed data production/-
consumption rate, obtained through monitoring the changes
in low-level data buffers, both in units of “1/microsecond.”
Third, a linear regression is performed to determine the con-
stant compensation ratio. As expected, the compensation ra-
tio differs from platform to platform, depending factors such
as inter-core latency. Our linear regression resulted in the fit-
ting functions y = x x 0.686 4+ 0.028 on the 8-core machine,
and y = = X 1.6734 + 0.045 on the 32-core machine. Our
compensation only affects filters that are both fast and limit-
ing.

5.4 Experimental Results

Detailed experimental results are in Figure 9. The results of
micro-benchmarks are demonstrated in Figures 9(a)(b)(c)(d),
and the results for Streamlt benchmarks are in the rest of the
Figures. Overall, we believe the results experimentally con-
firm the effectiveness of our reasoning framework.

Microbenchmarking — Figures 9(a)(b)(c)(d) — shows
very close resemblance between the theoretical result and
the measured result: observe that the (blue) solid line lies
almost exactly on the boundaries carved out by the two dot-
ted lines. Since micro-benchmarks all have less than 8 fil-
ters, the results on both the 8-core machine and the 32-core
machine are similar, and we only present the 8-core ver-
sion. Relatively speaking, TRIV-Circle (and to some extent
TRIV-Diamond) experiences more frequent fluctuations, as
shown in Figures 9(c)(d). This phenomenon also recurs in
real-world Streamlt benchmarks with the same composition
operators. Recall that both forms of compositions involve
forking and joining of streams. We speculate the fluctuation
is related to the behaviors of forking and joining, especially
in the presence of batching.

For Streamlt benchmarks, Figures 9(e)(f)(g)(h)(i) show
the results when the benchmarks are partitioned into 8
partitions and run on the 8-core machine, whereas Fig-
ures 9(G)(k)(1)(m)(n) are their counterparts while being par-
titioned into 16 partitions and run on the 32-core machine.
Even though the 32-core machine has a higher level of par-
allelism, the 8-core machine runs at a higher frequency (3.6
GhZ) than the 32-core machine (2.4 GhZ), so the output
stream rates were typically higher for the 8-core versions. In
most cases — the exceptions are perhaps the two vocoder
benchmark results — the measured rates still closely fit the
theoretical results from type inference. For the fm bench-
mark, its 8-core execution is unable to consume more than
25,000 items per second due to I/O restrictions, so we are
unable to select the measurement points far to the right on
the X-axis, as demonstrated in Figure 9(h). We discussed

[10 20 30 40 50 60 70

0 100 200 300 400 500

0 100 200 300 400 500

600
(a) TRIV-Filter (e) bitonic - 8 filter (j) bitonic - 16 filter
20 8 3
25 -
g lmmmmmm s A
15 /
1
0.5
1 [T T T 1
0 5 10 15 20 0 10 20 30 40 0 2 4 6 8 10 12 14
(b) TRIV-Chain (f) dct - 8 filter (k) dct - 16 filter
40 8 45
35 - 7 > 4 .
30 — 6 I 35 e
e L7 - 3 Y
25 - 5 . s
L’ e 2.5 L7
20 — 4 D P e
__________ N e S, 2 AL
15 3
/ / 15 /
10 / 2 1
5 1 05
0 T T 1 [T 1 [T T T T 1
0 10 20 30 40 0 20 40 60 80 0 10 20 30 40 50
(¢) TRIV-Diamond (g) fft - 8 filter (1) fft- 16 filter
100 3 5
%0 45 -
o 25 > i
80 - s 4 s
70 - - glmmmmmm e J"W 35 S
60 e = 3 e <
* " e """"mfmww
w e % L S
30 ! 15 e
» / 05 / ! /
10 05
0 T T T 0 T 1 0 T T T T 1
0 20 40 60 80 100 0 5 10 15 20 25 30 0 10 20 30 40 50
(d) TRIV-Circle (h) fm - 8 filter (m) fm - 16 filter
4.5 7
4 L : 6 .
35 . < - e -
. 5 e
Measured Rate 3 7 e
= = = Natural Rate Bound 28 il ! L7
e o~ e glmmmmmmm= = b et P e e e =
— — — Throughput Ratio Bound * .’ : -
15 5 ’,
1 ;
0.5 1
0 T i 1 [i 1
0 500 1000 1500 0 500 1000 1500 2000

(i) vocoder - 8 filter

(n) vocoder - 16 filter

Figure 9. Benchmark Results (X axis: input stream rate in 1000 items/second; Y axis: output stream rate in 1000 items/second)

this issue in the “measurement point selection” subsection.
Note that this issue goes away for its 16-core execution in
Figure 9(m). The converse is true for the dct benchmark,
which runs at all input rates for the 8-core execution, but is
limited for the 16-core execution.

The least satisfying results are from the vocoder bench-
mark, in Figures 9(i)(n). We investigated the runtime of this
benchmark, and found that the filter that limits the over-
all output rate is being fed by a very high volume of input
stream data as compared with the other benchmarks. On the
16-core version, this filter has 7.5M data items per second
available, but can only consume 2.3M data items per second.
The computed natural rate says it should be able to consume
2.9M data items per second. We surmise that the high stream
data rates incur a higher batching and synchronization costs
than expected.

6. Generality and Limitations

In this section, we place RATE TYPES in a broader context
by evaluating the potential opportunities and limitations of
building a similar type system on top of several data-oriented
programming languages other than our current implementa-
tion. Our intent is to examine the generality of RATE TYPES
by probing how syntactic, semantic, and implementation
choices made by RATE TYPES impact its applicability.

Table 1 summarizes our investigation, where each row
characterizes a representative data-oriented programming
language based on columns that delineate syntactic or se-
mantic design choices of RATE TYPES. These design choices
are:

* Synchronous Input - characterizes the filter firing mecha-
nism where filter execution is triggered by the existence
of sufficient input data items for an instance of filter exe-
cution.

Static Items per Firing - identifies the design feature in
which the number of data items a filter will consume
and produce for each instance of execution is statically
known.

Non-Blocking Memory Access - indicates whether mem-
ory access within a filter execution is block-free, i.e.,
without waits or locks.

Graph Composition - explores whether the Chain, Dia-
mond, Circle operators that RATE TYPES supports are
sufficient to capture the stream graph composition mech-
anisms associated with the language.

The languages we investigated, including several lan-
guages not traditionally branded as “stream” languages,
are selected from a variety of sources from recent liter-
ature. The Category column groups these languages into
categories. The “stream” category is closest to our con-
text, where high-volume, high-throughput, potentially in-
finite data flow through program-defined data processing

units and data paths. The “signal” category is historically
used in contexts where continuous signals flow through
program-defined processing units and paths. Both stream
languages and signal languages belong to the broader cat-
egory of dataflow languages — those characterized by the
invocation of functional units based on the presence of in-
put data, rather than an imperative control flow. In dataflow
languages, data flow through program-defined data process-
ing units and data paths, even though data items might be
finite, and their volume and throughput may or may not be
high. Toward the end of Section 2, we described why signal
or dataflow languages may potentially benefit from RATE
TYPES.

We next describe the design choices in more detail in or-
der to assess their impact on the generality of RATE TYPES.

Impacts of Semantic Choices on Generality Two basic re-
quirements of synchronous dataflow (SDF) languages are
Synchronous Input and Static Items per Firing. Many lan-
guages we studied have not been categorized in the literature
as SDF languages, but as Table 1 shows, most support these
two basic semantic requirements.

In most cases, data processing units (i.e., filters in RATE
TYPES) are modeled as functions, and data read from the
input stream are modeled as function parameters. Further-
more, these languages have no capability to access input data
streams other than through parameters. The RATE TYPES
Synchronous Input requirement is trivially satisfied by a
combination of these two factors. The requirement of Static
Items per Firing is also satisfied thanks to the function-based
filter design. Most languages align the per-firing input data
items and the output data items with function parameters and
return values, whose sizes are statically known through func-
tion signatures.

The notable exception is StreamFlex, where input/out-
put streams are first-class values (called channels) within the
scope of filters. Data stream read is a first-class expression
in StreamFlex, and hence in the most general interpretation
of StreamFlex, a programmer can both determine when data
should be read from the input stream, and how many data
items can be read. In addition, StreamFlex allows program-
mers to circumvent the default synchronous input filter fir-
ing mechanism by overriding a method called trigger. RATE
TYPES in its current form cannot support this flexible de-
sign. It can be applied in limited cases where the default
trigger mechanism is used, and static analysis can determine
the number of channel reads/writes per-firing (e.g., when the
data stream read/write are not in recursions or loops). The
examples used in the Streamflex paper appear to fit into these
cases.

The majority of the reasoning ability of RATE TYPES —
such as the ability to determine the overall data throughput
when the characteristics of (base case) filters are known —
remains intact even when Static Items per Firing does not
hold. The primary limitation in a scenario like StreamFlex

Synchronous Static Items Non-Blocking Graph
Language | Category Input per Firing Memory Access Composition
Streamlt [18] stream Yes Yes Yes, except teleporting Chain/Diamond/Circle
Aurora [3] stream Yes Yes Yes Chain/Diamond
Borealis [30] stream Yes Yes Yes Chain/Diamond
STREAM [31] stream Yes Yes Yes Chain/Diamond
StreamFlex [22] stream No No Yes declarative channels
Elm [5] signal Yes Yes Yes function application
FlapJax [32] signal Yes Yes Yes function application
Pig Latin [33] | dataflow Yes Yes Yes Chain/Diamond
Eon/Flux [7] | dataflow Yes Yes Yes Chain/Diamond
FlumeJava [25] | dataflow Yes Yes Yes Chain/Diamond
Bamboo [34] | dataflow Yes Yes transactional locking typestate-based

Table 1. RATE TYPES Generality and Limitations

lies in when the characteristics of the filters — the leaf nodes
in a type derivation — can be known. In the future, we are
interested in developing a dynamic variant of RATE TYPES
that uses lightweight dynamic constraint solving for adaptive
stream rate control. We speculate the dynamic variant may
be more suitable for coping with flexible models where the
number of input/output items per firing fluctuates at run
time.

The Non-Blocking Memory Access column describes the
memory access semantics of each language in the presence
of concurrency. RATE TYPES does not place restrictions per
se on memory access, but blocking during filter execution
may impact a practical aspect of RATE TYPES: the stability
of profiling results. Most data-oriented programming mod-
els — especially those geared towards high data throughput
— either prevent or minimize blocking at the language level,
or caution against their common use. The former approach is
taken by both languages with a functional core (such as Elm
and FlapJax) and languages such as StreamFlex. Indeed, a
key design goal of StreamFlex is to implement non-blocking
semantics during filter execution, achieved through a combi-
nation of techniques including an ownership type system to
reason about memory disjointness, a non-blocking bounded
channel design, and preemptible atomic regions for Java
compatibility. Other languages minimize blocking, such as
Streamlt, which defers most blocking needs to an uncom-
mon message teleporting mechanism.

The exception here is Bamboo, a language where data
processing units (called fasks) can access global memory
and the language enforces atomicity through locks. Bamboo
acquires all locks required for transactional task execution
at the beginning of the task execution. In that sense, non-
blocking memory access is still maintained in Bamboo, good
news for profiling stability. The challenge of applying RATE
TYPES to Bamboo however is that task firing may not be
solely dependent on input data availability, but also lock ac-
quisition. Bamboo has a data-oriented programming model,

but its focus is on parallelism support and task scheduling,
not stream-like data processing.

Impacts of Syntactic Choices on Generality The Graph
Composition column addresses the syntactic choices used to
create the stream graph common to stream/signal/dataflow
programs: a directed graph in which processing units are
nodes and data streams are edges between nodes.

A significant number of languages we studied only al-
low acyclic dataflow/stream graphs, a design choice on par
with languages that support Chain and Diamond combina-
tors. The scope RATE TYPES considers is more expressive,
because it also considers feedbacks. Indeed, the concrete
grammar of different languages to construct dataflow/stream
graphs can be diverse, sometimes through algebraic combi-
nators like what RATE TYPES uses, or through conventional
node / edge representations, or simply through a sequence of
assignments (such as in Pig Latin). The difference, however,
is largely stylistic, in that though the combinator-based ex-
pressions are more friendly for formalization, different syn-
tactic styles can be transformed from one to another stati-
cally.

In terms of the dataflow graph topology, the flexible
languages are StreamFlex, Elm, FlapJax, and Bamboo. In
StreamFlex, a filter can declare the channels it interacts with,
and the topology of the underlying stream graph may in-
volve cycles. Interestingly, since the channels in StreamFlex
must be explicitly declared for each filter, the stream graph
can be statically inferred through a trivial program analy-
sis. We speculate RATE TYPES can be applied when the
static stream graph (which may or may not contain cycles)
is known. Elm and FlapJax follow the tradition of FRP lan-
guages, where function composition — when two functions
which take a stream as an argument and produce a stream
as a result are composed — can be viewed analogously as
a form of Chain, and the typing rule for Chain of RATE
TYPES can be built analogously for function composition
expressions. Notably, most signal languages come up with
well-defined combinators, which match well with the syn-

tactic choices of RATE TYPES. For example, mergeE in
FlapJax is similar to the joining of Diamond.

Bamboo adopts a syntax conceptually related to tuple
spaces, where (in the view of programmers) data live in the
global space. A Bamboo programmer defines fasks, each of
which specifies the types of data (streams) it reads from the
global space as input and the conditions associated with that
stream to fire the task. Once fired, the task processes the data
item and places the processed item back to the global space.
Since all streams are strongly typed and the conditions are
declarative similar to typestates, we speculate the task/data
dependency explicitly declared in Bamboo programs may
help induce the stream graph. Interestingly, Bamboo’s com-
piler infers a combined state transition graph for optimiza-
tion purposes. This data structure explicitly expresses the
data flows between tasks, which appears to be a refined form
of stream graphs.

An orthogonal issue is the expressiveness of the stream
manipulation operators themselves. For instance, FlumeJava
supports the groupByKeys operator to compute equiva-
lence classes for a finite set of data items, and Pig Latin
supports operators to compute the cross product of multi-
ple finite streams, such as the COGROUP operator. To in-
vestigate the applicability of RATE TYPES in these cases,
there are two separate issues: (1) whether such operators
can be encoded through the primitives currently in RATE
TYPES; (2) whether the program analysis enabled by RATE
TYPES can precisely predict performance over the encod-
ings of such operators. We believe (1) can be answered pos-
itively (see Appendix), but the answer to (2) relies on how
faithful the encodings are to the internal implementation of
these operators. For practical adoption of RATE TYPES to
these languages, the more direct route is to consider these
operators as language primitives, a direction open for fur-
ther research. This incompleteness should come as no sur-
prise: RATE TYPES considers the more general case of data
processing over dataflow graphs, whereas languages such as
FlumeJava and Pig Latin further refine/restrict the domain by
focusing on database programming with finite-sized tables.

Finally, even though unseen in formalisms, practical lan-
guages often allow multiple output streams, and sometimes
multiple input streams for increased programmability. In
these cases, RATE TYPES can be extended in a predictable
manner to construct constraints for each of the input/output
streams independently. In the inference algorithm, each in-
put/output stream should be represented by a separate rate
type variable.

Impacts of Implementation Choices on Generality Our
implementation base, Streamlt, is a relatively optimized
streaming infrastructure. It should be pointed out however,
the effectiveness of RATE TYPES reasoning in practice —
such as predicting the throughput of a stream program —
is largely orthogonal to whether the base infrastructure is
highly optimized or not. The key insight here is that RATE

TYPES reasoning can be effective as long as the overhead
introduced by the base stream infrastructure can be well ac-
counted for. Stream processing overhead can be divided into
two categories: a small fixed overhead required per firing,
and an often larger overhead proportional to the idle time
associated with a filter, such as the time required for polling.
The overhead proportional to idle time does not affect stream
rates because it consumes idle time, not the time required to
produce output data. The remaining fixed, per-firing over-
head will reduce the output rate only when the per-firing
overhead far exceeds that due to the idle time of a filter. As
long as the per-firing overhead is sufficiently compensated in
the inference, RATE TYPES will guide real-world systems to
produce experimental results with accuracy. Indeed, even in
a relatively optimized system such as Streamlt, the overhead
still needs to be compensated, in a fashion we described in
Section 5, and we believe similar overhead compensation
strategies can be constructed for other streaming language
systems, no matter what level of optimization is present.

Our implementation of RATE TYPES on top of the
Streamlt infrastructure interacts with three important fea-
tures of Streamlt, namely profiling, partitioning, and stream
batching. Among them, only Streamlt’s profiling feature is a
“helper” to our implementation, and the other two features in
fact complicated our implementation as we described in Sec-
tion 5. Take partitioning for instance, the feature that refac-
tors the stream graph so that the number of filters matches
the number of cores available on the hardware. Since our
operational semantics considers each filter as a separate
thread, we have to take Streamlt’s partitioning into consid-
eration and work with its post-partition graph. The StreamlIt
stream batching feature required significant tuning for RATE
TYPES, as discussed in the Batch Size Selection paragraph in
section 5. We used Streamlt’s profiler only after significant
modification, and surmise that similar modifications could
enable similar capabilities in other languages.

7. Related Work

Stream languages have their root in dataflow languages.
Earlier examples include Lucid [35], LUSTRE [36], and
Ptolemy [21], with well-known foundations such as Kahn
networks [37]. Among them, the operational semantics of
RATE TYPES is closest to the synchronous dataflow (SDF)
design of Ptolemy, which later influenced the design of
Streamlt, the system our implementation is built upon. A
classic static reasoning result on SDF is static scheduling,
by Lee and Messerschmitt [16]. The goal of static schedul-
ing is to compute a schedule, e.g., AAB to mean filter A
should be fired twice for every filter B execution. This al-
gorithm is influential in the design of stream languages. For
instance, Streamlt adopts a variant of the algorithm, called
steady-state scheduling [23]. Our type system is orthogo-
nal to static scheduling, both in goals and in methodologies.
RATE TYPES finds the best possible output rate, independent

of the firing order of the filters. A good schedule will come
close to achieving the best possible rate, but even the best
possible schedule cannot exceed that limit. RATE TYPES is
a type-based compositional reasoning framework, whereas
Lee and Messerschmit is based on graph theory through a
notion called a topology matrix.

Clock calculus [17] is based on a restrictive form of
SDF, where different sub-programs (filters) of a stream pro-
gram are synchronized. Their type system infers a “clock”
to synchronize filters. RATE TYPES does not require any
synchronization between sub-programs. Furthermore, un-
like clock calculus where filter execution time is treated
as “unit length,” RATE TYPES illuminates the relationship
between filter execution time and stream rates. Thiele and
Stoimenov [38] studied performance analysis in the presence
of cycles in SDF. They do not define a dynamic semantics to
formally relate the runtime and the analysis, and their ap-
proach is not type-based.

Some type systems exist to reason about non-quantitative
aspects of stream/dataflow/signal programs. StreamFlex [22]
has an ownership type system aimed at enforcing memory
safety, especially non-shared memory access from differ-
ent filters. A dependent type system [39] was designed for
FRP to enforce productivity: a liveness property to guaran-
tee the program continues to deliver output. Krishnaswami
et al. [40] introduced a linear type system to bound resource
usage (especially space) in higher-order FRP. Suenaga et
al. [11] designed a type system in the Hoare-style on top
of a stream language core as an example to demonstrate the
expressiveness of their discrete-continuous transfer frame-
work for verification. Elm [5] as a FRP-family language has
a type system to outlaw higher-order signals. None of the re-
lated work above reasons about the rate of data processing.

For control-flow languages, there is a large body of work
on qualitative and quantitative reasoning of performance-
related properties, e.g., WCET [12], cost semantics [13],
resource usage analysis [14], amortized resource analysis
[15], and Energy Types [41]. RATE TYPES focuses on the
data rates of data-flow programming models.

Our prior work Green Streams [42] achieves energy ef-
ficiency by DVFS through a program analysis on balancing
data rates. The analysis is not type-based, and with a differ-
ent goal. The two systems share the high-level observation
in analyzing stream programs: data rates can be abstracted.

8. Conclusion

This paper describes a novel type system for performance
reasoning over stream programs, focusing on a highly dy-
namic aspect — stream rate control. Our experimental results
show the reasoning framework can effectively predict stream
program behaviors in terms of data throughput.

The proofs of theorems and lemmas described in the pa-
per can be found in the accompanying technical report [28].

Acknowledgments We thank the anonymous reviewers for
their useful suggestions, and Amer Diwan and Jens Palsberg
for insightful discussions. This work is partially supported
by NSF CCF-1054515. Any opinions expressed here are
from the authors and do not necessarily reflect the views of
the sponsors.

References

[1] Thies, W., Amarasinghe, S.: An empirical characterization
of stream programs and its implications for language and
compiler design. In: PACT ’10. (2010) 365-376

[2] Nvidia: Compute unified device architecture programming
guide. NVIDIA: Santa Clara, CA (2007)

[3] Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee,
S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.:
Monitoring streams - a new class of data management appli-
cations. In: VLDB. (2002) 215-226

[4] Krishnaswami, N.R., Benton, N.: A semantic model for
graphical user interfaces. In: ICFP *11. (2011) 45-57

[5] Czaplicki, E., Chong, S.: Asynchronous functional reactive
programming for GUIs. In: PLDI’13. (June 2013)

[6] Elliott, C., Hudak, P.: Functional reactive animation. In: ICFP
’97. (1997) 263-273

[7] Sorber, J., Kostadinov, A., Garber, M., Brennan, M., Corner,
M.D., Berger, E.D.: Eon: a language and runtime system for
perpetual systems. In: SenSys *07. (2007) 161-174

[8] Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler
and run-time system for network programming languages. In:
POPL *12. (2012) 217-230

[9] Soulé, R., Hirzel, M., Grimm, R., Gedik, B., Andrade, H., Ku-
mar, V., Wu, K.L.: A universal calculus for stream processing
languages. In: ESOP’10. (2010) 507-528

[10] Botincan, M., Babi¢, D.: Sigma*: symbolic learning of input-
output specifications. In: POPL ’13. (2013) 443-456

[11] Suenaga, K., Sekine, H., Hasuo, I.: Hyperstream processing
systems: nonstandard modeling of continuous-time signals.
In: POPL *13. (2013) 417-430

[12] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing,
S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mi-
tra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Sten-
strom, P.: The worst-case execution-time problem — overview
of methods and survey of tools. ACM Trans. Embed. Comput.
Syst. 7(3) (May 2008) 36:1-36:53

[13] Blelloch, G.E., Greiner, J.: A provable time and space efficient
implementation of nesl. In: ICFP *96. (1996) 213-225

[14] Igarashi, A., Kobayashi, N.: Resource usage analysis. In:
POPL °02. (2002) 331-342

[15] Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amor-
tized resource analysis. In: POPL 11. (2011) 357-370

[16] Lee, E.A., Messerschmitt, D.G.: Static scheduling of syn-
chronous data flow programs for digital signal processing.
IEEE Trans. Comput. 36(1) (January 1987) 24-35

[17] Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau,
FE., Pouzet, M.: N-synchronous kahn networks: a relaxed

model of synchrony for real-time systems. In: POPL *06.
(2006) 180193

[18] Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamlt: A
language for streaming applications. In: CC’02. (2002) 179-
196

[19] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by
simulated annealing. Science 220 (1983) 671-680

[20] Agha, G.: ACTORS : A model of Concurrent computations
in Distributed Systems. MITP, Cambridge, Mass. (1990)

[21] Lee, E., Messerschmitt, D.: Synchronous data flow. Proceed-
ings of the IEEE 75(9) (Sept 1987) 1235-1245

[22] Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: StreamFlex:
high-throughput stream programming in Java. In: OOPSLA
’07. (2007) 211-228

[23] Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-
grained task, data, and pipeline parallelism in stream pro-
grams. In: ASPLOS’06. (2006)

[24] Furr, M., An, J.h.D., Foster, J.S.: Profile-guided static typing
for dynamic scripting languages. In: OOPSLA ’09. (2009)
283-300

[25] Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry,
R.R., Bradshaw, R., Weizenbaum, N.: FlumelJava: easy, ef-
ficient data-parallel pipelines. In: PLDI "10. (2010) 363-375

[26] Morton, K., Balazinska, M., Grossman, D.: ParaTimer: a
progress indicator for MapReduce DAGs. In: SIGMOD ’10.
(2010) 507-518

[27] Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A.,
Schmitt, A.: Boomerang: resourceful lenses for string data.
In: POPL °08. (2008) 407-419

[28] Bartenstein, T., Liu, Y.D.: Rate Types for Stream Programs
- Technical Report. https://www.cs.binghamton.
edu/~tbartenl/RateTypesForStreamPrograms
TechReport .pdf, (2014)

[29] Gordon, M.1.: Compiler Techniques for Scalable Performance
of Stream Programs on Multicore Architectures. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA (May
2010)

[30] Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cher-
niack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A.,
Ryvkina, E., et al.: The design of the borealis stream process-
ing engine. In: CIDR. Volume 5. (2005) 277-289

[31] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,
Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.:
Query processing, resource management, and approximation
in a data stream management system, CIDR (2003)

[32] Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Green-
berg, M., Bromfield, A., Krishnamurthi, S.: Flapjax: a pro-
gramming language for Ajax applications. In: OOPSLA *09.
(2009) 1-20

[33] Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.:
Pig latin: A not-so-foreign language for data processing. In:
Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’08, New York,
NY, USA, ACM (2008) 1099-1110

[34] Zhou, J., Demsky, B.: Bamboo: a data-centric, object-oriented
approach to many-core software. In: PLDI’10, ACM (2010)
388-399

[35] Ashcroft, E.A., Wadge, W.W.: Lucid, a nonprocedural lan-
guage with iteration. Commun. ACM 20(7) (July 1977)

[36] Caspi, P, Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE:
a declarative language for real-time programming. In: POPL
’87. (1987) 178-188

[37] Kahn, G.: The semantics of a simple language for parallel
programming. In Rosenfeld, J.L., ed.: Information processing,
Stockholm, Sweden, North Holland, Amsterdam (Aug 1974)
471-475

[38] Thiele, L., Stoimenov, N.: Modular Performance Analysis of
Cyclic Dataflow Graphs. In: Proceedings of the Seventh ACM
International Conference on Embedded Software. EMSOFT
’09, New York, NY, USA, ACM (2009) 127-136

[39] Sculthorpe, N., Nilsson, H.: Safe functional reactive program-
ming through dependent types. In: ICFP *09. (2009) 23-34

[40] Krishnaswami, N.R., Benton, N., Hoffmann, J.: Higher-order
functional reactive programming in bounded space. In: POPL
’12.(2012) 45-58

[41] Cohen, M., Zhu, H.S., Emgin, S.E., Liu, Y.D.: Energy types.
In: OOPSLA ’12. (October 2012)

[42] Bartenstein, T., Liu, Y.D.: Green streams for data-intensive
software. In: ICSE’13. (May 2013)

Appendix

A. Encoding

First, a k-way fork-join of programs P, ..., P, with dis-
tribution factor 6 = (ni;...;n) and aggregation factor
a = (nf;...;n}) can be encoded as:

P1<>51,041 (P2<>52,062(' .- (Pk*1<>5n71,0¢n71Pk)))

where 6; = (ng;ni1+...+ng) and a; = (njsnj +...+
nj) fori=1.n—1.

Round-robin is not the only way the input stream of a
split-join can be divided. Another useful pattern is to du-
plicate every input stream element, and feed each dupli-
cate to the input stream of the two sub-programs (say P;
and P») participating the split-join. This can be encoded as
FE[1,2]> (P1< (1,1y,0 P2) where F is function that takes [z]
and returns [z,] with TI(L) = 0.

Similarly, the output stream of a split-join does not need
to be aggregated through round-robin either. A useful pat-
tern is to aggregate the two output streams of the two sub-
programs (say P; and P») participating the split-join through
some binary operators. For example, one may wish to only
put the greater value of each pair of output elements of P;
and P to the output stream of the split-join. This can be en-
coded as (P15 1.1y P2) > FL[2,1] where F represents the
binary operator. For the example above, F' is the function
that takes [z, y] and returns [max(z, y)] where max () is the
standard maximum operator.

In a streaming database query language, a database table
Jjoin operation typically consists of a cross-product of a finite
window over two input streams. Such a cross product can be
modeled with a round-robin join, followed by a filter which
pops a full window’s worth of input data, and then pushes
the cross-product of that window.

Last, our formal system idealizes the data transfer across
buffers. Consider the chain composition P; > P for instance.

A real-world implementation would place a buffer between
the output stream of P; and the input stream of P». Such
buffer read/write may take time. The time of buffer read-
/write can accounted for by encoding P, > FL[1,1] > Py
where F is the identity function, and IT(L) is the time needed
for buffer access.

