
Operating Systems Sample Questions

Threads
1. What are threads? How do they differ from processes? How are they similar?

2. What state do threads share? What state is different?

3. Why does context-switching between threads incur less overhead than between processes?

4. Briefly explain
(a) User-level threads
(b) Kernel-level threads
(c) Local thread scheduling
(d) Global thread scheduling

5. Threads vs processes
A. When would you (as a programmer) prefer to use multiple threads instead of multiple

processes?
B. When would you prefer to use multiple processes instead of multiple threads (in one

process)?

6. What are the benefits and disadvantages of using user-level and kernel-level threads?

7. What combinations or user/kernel threads and global/local scheduling are feasible and why?

8. For what kind of applications would you prefer to use (i) user-level threads? (ii) kernel-level
threads?

9. Explain how a web server could use threads to improve concurrency when serving client
requests.

10. What happens if a thread in a multi-threaded process crashes? How can you improve the
robustness (fault-tolerance) of a multi-threaded application?

11. Event-driven programming
(a) What is the “event-driven” programming model?
(b) What does the structure of a typical event-driven program look like?
(c) When would you prefer an event-driven programming model over a thread-based

programming model?
(d) When would you prefer thread-based programming model over event-driven

programming model?

12. What is the problem with long-running event handlers? How do threads solve this problem?

13. What type of applications would be more suitable for thread-based programming compared
to event-driven programming?

14. What are callbacks and what problems can they cause when used with threads?

15. (a) How are threads better than processes?
(b) How are processes better than threads?

16. Assume a single-CPU system. You are given three multi-threaded processes P1, P2, and P3.
P1 does a lot of computation, but little I/O. P2 does lots of I/O but little computation. P3
does a equal mix of both computation and I/O. What type of threads (kernel-level, user-level,
or hybrid) would you prefer to use for each process? Explain why.

