
Binghamton

University

CS-550

Spring 2020

OS-Level Virtualization

Containers
1



Binghamton

University

CS-550

Spring 2020

Isolation

• Limiting what and who a process or application can see

• Limiting who can see a process or application

2

Isolation Continuum

Least Isolated Most Isolated

Traditional Process System Virtual Machines



Binghamton

University

CS-550

Spring 2020

Traditional processes

• Each process gets its own
• virtual memory

• One or more virtual CPUs (threads)

• Access to OS services w/ system 
calls

• Processes see/share a lot (in an 
OS-controlled manner)
• File system, storage, network, I/O

• Other processes (with IPC)

3

HOST OS

Process Process Process Process



Binghamton

University

CS-550

Spring 2020

System Virtual Machines

• Co-related processes grouped into VM's

• Each VM has its own:
• Guest OS
• Guest Physical Memory
• One or more virtual CPUs
• Virtual I/O devices (disk, network, etc.)

• Ideally, co-located VM's don't see or 
share ANYTHING!

4

Hypervisor

VM

Guest OS

Process

VM

Guest OS

Process

VM

Guest OS

Process Process



Binghamton

University

CS-550

Spring 2020

What level to Isolate?

5

Isolation Continuum

Least Isolated Most Isolated

Traditional Process System Virtual Machines

•Great performance
•Share too much

•Great isolation
•Too much overhead
•Guest OS per VM

Operating-System level Virtualization

•Multiple isolated user-spaces
•Share one kernel
•Native performance



Binghamton

University

CS-550

Spring 2020

Operating System Level Virtualization

• Containers – a new Virtual level provided by OS
• Isolate a container from other containers

• Group traditional processes together and restrict resources they can see

• In Linux: Namespaces and Control Groups

6

Host OS

Container

Process

Container

Process Process

Container

Process



Binghamton

University

CS-550

Spring 2020

Chroot

• Early (1979) precursor to modern namespaces

• Change root directory for the calling process and it's children

• >chroot NEWROOT or >chroot path

• Per man chroot – "This call changes an ingredient in the pathname
resolution process and does nothing else."

• Intention: Prevent programs from accessing files outside the
NEWROOT directory tree (chroot jail)

• Not secure (Lots of ways to escape chroot jail)

7

http://man7.org/linux/man-pages/man2/chroot.2.html


Binghamton

University

CS-550

Spring 2020

FreeBSD Jails (1999)

• Extends chroot to compartmentalize files and other resources

• Jails protect the rest of the system from the jailed process
• Does not protect the process from the rest of the system!

• Virtualized resources:
• File system

• Set of users (included a jail root account)

• Networking subsystem

• Again, jail escapes were possible

8



Binghamton

University

CS-550

Spring 2020

Linux Namespace

• man namespaces – "A namespace wraps a global system resource 
in an abstraction that makes it appear to the processes within the 
namespace that they have their own isolated instance of the global 
resource."

9

Namespace Limitations

PID limits the set of processes which can see each other

IPC limits the set of processes which are allowed to communicate with each other

Filesystem limits which part of the file system is seen by a process group (mount)

Network unique IP address, host name, domain name, etc. for a process group

User limits the user and group ID's allowed

…

http://man7.org/linux/man-pages/man7/namespaces.7.html


Binghamton

University

CS-550

Spring 2020

Linux Control Groups (Cgroups)

• Performs resource accounting for groups of processes

• Allows administrator to set soft/hard limits on usage of memory,
network bandwidth, CPU, etc.

• Typically used with namespaces to control resources for a 
namespace (see man cgroup_namespaces)

10

http://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html


Binghamton

University

CS-550

Spring 2020

Single System Image

• Extend the notion of namespaces to multiple physical machines

• Multiple machines map to one or more namespaces
• PID, IPC, and/or Filesystem namespaces

• Process migration – move process from one machine to another without changing 
it's namespace

• Examples: MOSIX, OpenSSI, Kerrighed

11

Phys.
Machine

Namespace

Process

Namespace

Process Process

Namespace

Process

Phys.
Machine

Phys.
Machine

Phys.
Machine

https://en.wikipedia.org/wiki/MOSIX
https://en.wikipedia.org/wiki/OpenSSI
https://en.wikipedia.org/wiki/Kerrighed

