Binghamton CS-550

University Spring 2020

Live Migration |
Of L_]

CEFEER §

Virtual Machines

Live Migration of Virtual Machines, Christopher Clarke, Keir Fraser,
et. al. NSDI 2005

Post-copy live migration of virtual machines, Hines, Deshpande,
Gopalan, VEE 2009

https://www.usenix.org/legacy/event/nsdi05/tech/full_papers/clark/clark.pdf
https://dl.acm.org/doi/10.1145/1618525.1618528

Binghamton CS-550

University Spring 2020

What is live VM migration?

Virtual Machine

Virtual machine applications continue to run!

Migration Mgr Migration Mgr

at Source at Dest.

Migrate virtual machine's memory state
Source Host Migrate virtual machine's CPU state Dest. Host
Optionally, migrate virtual disk state

Binghamton CS-550

University Spring 2020

What is live VM migration?

* Maps the guest VM's memory and execution state
Virtual Machine! ® Transfers VM's pages over TCP

/
[* restores the guest VM's memory and execution state

* resumes execution

Migration Mgr
at Source

Migration Mgr
at Dest.

Examples
xend for Xen
QEMU for KVM

Source Host Dest. Host

Binghamton CS-550

University Spring 2020

Why Live VM Migration?

* Why Migrate?
* Load balancing - move VMs from highly loaded to lightly loaded severs
* Server Maintenance - When servers need to be upgraded
* Energy Savings — Move load off to shut down server and save energy

* Why Live? To avoid disruption of VM users
* To save investment in long running jobs
* To keep network connections alive

 Why VM? (Why not migrate processes?)

* Process migration leaves residual dependencies at source host
» system call redirection, shared memory, open files, IPC, etc.

Binghamton CS-550

University Spring 2020

Performance Goals in Live Migration

* Minimize downtime
* Time from VM stop to VM restart

* Reduce total migration time
* Time from migration start to migration stop

* Avoid interference with normal system activity
* E.g. network bandwidth

* Minimize network activity

* Maximize Reliability
* [f migration fails, can the VM continue at source or target?

Binghamton CS-550
University Spring 2020

Stop-and-Copy Migration

Time

live @ source live @ target

Copy VM's "Real” Memory & CPU state to target

Restart VM @ target

* Looong downtime!

Relative short migration time = downtime

* Manage TCP bandwidth to trade network impact vs. downtime
 If migration fails, source is still correct, VM can continue

Binghamton CS-550

University Spring 2020

Pure Demand Paging Migration

Time

live @ source
M1n CPU tate | On Demand Paging
No more unmigrated pages

Copy Minimum CPU state Start VM @ target

PC, Registers, non-pageable memory B w.empty "real” memory f Transfer (pull) page when page fault occurs

* Very short "downtime"

* Slooow warm-up - page faults over network!

* Target migration manager must track pages -
Unused vs. used@source vs. used@target

* Very long, unpredictable migration time

 If migration fails both source and target are incorrect

Binghamton CS-550

University Spring 2020

Pre-copy Migration

Short stop-and-copy to copy
pages dirtied in round n

Copy all pages to target

Stop when #dirty pages is "small”
Copy pages that were dirtied in round 1 or after a fixed number of iterations

Copy pages that were dirtied in round 2

* Very short downtime (close to pure demand paging)

* No slooow warm-up

* Requires extra network resources (Round 2-n are re-copying pages!)
* Long migration time - predictable?

* If migration fails, source is up to date, VM can be recovered

Binghamton CS-550

University Spring 2020

How do we track dirtied pages?

* Mark all VM's memory pages as Read Only after each iteration

* Trap write operations via hypervisor
* Hypervisor dispatches writes to source migration manager

* Source migration manager updates its "dirty" bits for pages, enables RW
on the page, and re-dispatches the write

* At the end of an iteration, migration manager creates new "dirty"
bits for the next iteration, and uses old "dirty" bits for copies

* Overhead: Trap each write instruction during migration

* Works well as long as writes are infrequent

Binghamton CS-550

University Spring 2020

Optimizations

* Problem: Heavy TCP usage during migration impacts running services

* Solution: Limit bandwidth used by migration (makes each iteration longer,
therefore bigger)

* Problem: Page dirtied after iteration ends, but before page transferred
 Solution: If the page is dirty in the NEXT round, don't transfer it THIS round

* Problem: Rogue processes don't stop dirtying memory
 Solution: Identify and "stun" these rogue processes

* Problem: Unused pages in VM's real memory copied to target
* Solution: Only transfer pages marked as "used” in the VM's page tables
* If page gets re-used, page fault penalty at target

10

Binghamton CS-550
University Spring 2020

live @ source resume @ target

CPU State Demand Paging

Push VM's "real” memory pages to target

All pages transferred
Start VM @ target

w. empty "real” memory

transfer pages before

Copy min state

page fault Pull page if page fault occurs

* Very short "downtime" (close to pure demand paging)

* Avoid most slooow warm-up - most pages pushed BEFORE they are demand paged
 Still pay cold start penalty at target

* Predictable (short) migration time

* No extra transmission required - each page transferred only once

« If migration fails, both source and target are in incorrect state

11

Binghamton CS-550

University Spring 2020
Hybrid Pre/Post-copy Migration
Time
===z=======z=zz=zs=z=====s=s=s=z=sz=sz=sz=ss=s=s=szszszszss=ss=ss=sszszszszszss=ss=ss=zszszszszszss=sszszszzzzzzzzzz=zzzz:zP
Preparation (live @ source) - resume @ target
Round 1 Round 2 Min CPU Demand Paging (pull)

Post-Copy (pus

One or more rounds Copy min state transfer remaining dirty pages

Combines both benefits and drawbacks of both pre and post migration
* Some extra page copying, but not as much

* Some cold start penalty, but not as much

* Some page faulting over network, but not much

* Improved reliability, but no post freeze recovery

12

Binghamton CS-550

University Spring 2020

Migrating Network Connections

Within a LAN Across a WAN

* The migrated VM carries its IP * Source and tangt subnets may
addressi MAC a_ddlre(sis, and all have different [P addresses
protocol state, including open . _
sockets g o Corecong down and re

» Switches need to re-learn the y : .
ngx(/iv location of the VM's MAC) r%reg%ré%ieérlrllsmg VPN or a similar
address

e Send an unsolicited Address
Resolution Protocol (ARP? reply
from target... switches will
relearn

13

Binghamton CS-550

University Spring 2020

Migrating Disk Data

Many gigabytes of local disk image possible!

Within a LAN Across a WAN
* Assume the disks are available ¢ Disk image may need to be
on the network, and accessible transferred
from the target * Can be pre-copy or post-copy
* NFS (Network File System), * May need bandwidth saving
AFS (Andrew File SYSteH_l)» optimization, such as
NBD (Nework Block Device), compression and/or de-

[5CSI duplication

14

Binghamton CS-550

University Spring 2020

S Ca_tte r/G a_t h e r M I g ratl O n carries control, faulted pages,

some pushed pages

Migration Mgr Migration Mgr
at Source

Gather Dest. Host

Bypass bottleneck
slow TCP connection

Intermediate Nodes

15

Binghamton CS-550

University Spring 2020

Multi-VM (Gang) Migration

Ident1ca1 Page Single Copy

388 — 888

Source Machlne

Target Machine

De-Duplicate pages to reduce network traffic
* Most commonly shared memory pages (libraries)
* Identify multiple pages across VMs
* byte-wise comparison expensive
* checksum is cheaper
* Send single copy over network

* Re-distribute at target i

