
Binghamton

University

CS-550

Spring 2020

Introduction to 
Virtual Machines

Modern Operating Systems, by Andrew Tanenbaum

Virtual Machines, by Smith and Nair

1

Chap. 7

Chap. 1&6

https://epdf.pub/virtual-machines-versatile-platforms-for-systems-and-processes.html


Binghamton

University

CS-550

Spring 2020

Virtualization

2

One to Many Many to One



Binghamton

University

CS-550

Spring 2020

Example: Disk Virtualization

3

Real Disk

File 1 File 2

Virtual Disk 1 Virtual Disk 2

I/O Interface

Virtualization



Binghamton

University

CS-550

Spring 2020

Virtual Machines

• Logical / Emulated representations of full computing environment
• CPU + Memory + I/O

• Implemented by adding virtualization layers of software

• Uses:
• Multiple OS's on one machine (including legacy OS's)

• Isolation (e.g. crash protection) & Enhanced security

• Live migration of servers

• Testing and Development

• On-the-fly optimization

• Platform Emulation including realization of ISA's not found in physical machines

4



Binghamton

University

CS-550

Spring 2020

Interfaces: Instruction Set Architecture

5

Software

Execution Hardware

Instruction Set 
Architecture

(ISA)



Binghamton

University

CS-550

Spring 2020

Interfaces: Operating System

6

User Software

Execution Hardware

User ISA

Operating System

System ISA

syscall



Binghamton

University

CS-550

Spring 2020

Interfaces: Libraries

7

User Software

Execution Hardware

Libraries

Operating System

Application Binary
Interface

(ABI)

Application Binary
Interface

(ABI)

Application 
Programming

Interface
(API)

Application 
Programming

Interface
(API)



Binghamton

University

CS-550

Spring 2020

User Software

Virtualization Software / Runtime

Process VM

8

Execution Hardware

Host Libraries

Host Operating System

Guest
process

• Virtualizes the ABI
• Performs binary 

translation
• Provides a virtual view 

TO a single process
• Terminates when guest 

process terminates

Guest Libraries



Binghamton

University

CS-550

Spring 2020

User Software

Process VM: Multi-programming

9

Execution Hardware

Libraries

Operating System

• Each Process operates on 
a virtual "runtime" 
provided by the 
Operating System
• virtual memory
• virtual cpu
• virtual file system

"VMM" (OS)
Virtual Memory/CPU Scheduling/VFS



Binghamton

University

CS-550

Spring 2020

User Software

Process VM : Binary Optimizers

10

Hardware

Operating System

Process

• Debug like VALGRIND, GDB
• Fast MALLOC/FREE
• …

Binary Optimizer



Binghamton

University

CS-550

Spring 2020

User Software

Process VM: High Level Language

11

Hardware

Operating System

Java Byte Code

• Virtual ISA 
• e.g. Java Byte Code
• For platform 

independence
• Platform Dependent VM 

executes virtual ISA
• e.g. Java JVM or .NET CLI

Java Virtual Machine



Binghamton

University

CS-550

Spring 2020

User Software

VMM

Process VM: Emulators

12

Execution Hardware

Host Operating System

Native
Apps

• Host & Guest ABI are
different – emulation
required

• Hosted VM + emulation
• E.g. Cygwin, Virtual PC 

(Windows on MAC)

Guest
Apps

https://www.cygwin.com/
https://en.wikipedia.org/wiki/Windows_Virtual_PC


Binghamton

University

CS-550

Spring 2020

User Software

Process VM: Emulator w/ Guest OS

13

Alpha(DEC) Hardware

Windows NT
(Compiled to Alpha ISA)

Windows
(X86) App

• Support an app ABI on 
hardware running a 
different target ABI

• Interpreter
• Fetch, decode, convert
• SLOW

• Dynamic Binary Translator
• Blocks of code 

translated
• Cached to exploit 

locality

Digital FX!32
Emulator



Binghamton

University

CS-550

Spring 2020

User Software

Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM

14

Execution Hardware

Guest Libraries

Guest Operating System

Guest
process

• Virtualizes the ISA
• Presents a Virtual View 

TO an entire system 
(including OS)

• Traps and emulates 
privileged instructions

• Lasts as long as physical 
host is alive



Binghamton

University

CS-550

Spring 2020

Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM: Generic Hypervisor

15

Execution Hardware

Guest OS 1

• Operating system for 
operating systems

• Virtual execution
environment for an 
entire OS and apps

• Controls access to
hardware/resources

• When guest OS executes 
a privileged instruction, 
Hypervisor intercepts 
the instruction, checks 
for correctness, and 
emulates the instruction

Guest OS 2 Guest OS 3

…



Binghamton

University

CS-550

Spring 2020

Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM: Traditional Hypervisor

16

Execution Hardware

Guest OS 1

• executes natively on host 
ISA

• Directly controls 
hardware – provides all 
device drivers

• Emulates sensitive 
instructions executed by 
the Guest OS

• E.g. KVM, VMWare ESX
Server

Guest OS 2 Guest OS 3

…

https://www.linux-kvm.org/page/Main_Page
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/VMware_ESXi


Binghamton

University

CS-550

Spring 2020

User Software

Hypervisor

System VM: Para-Virtualized VM

17

Execution Hardware

Guest Libraries

Guest Operating System

• Modify guest OS for better performance
• Trap and emulate is expensive

• Virtual hardware is similar, but not
identical to real hardware

• Guest OS replaces some privileged 
instructions with "hypercalls" to the 
Hypervisor

• Less overhead = better performance
• Disadvantage: Needs modified guest OS
• Traditional hypervisors are often

partially para-virtualized (e.g. device
drivers para-virtual, CPU & Memory 
fully virtual)

• E.g. Xen

https://en.wikipedia.org/wiki/Xen


Binghamton

University

CS-550

Spring 2020

User Software

VMM

VM Flavor B : Hosted VM

18

Execution Hardware

Host Operating System

Native
Apps

• Host OS controls 
hardware

• Hypervisor runs partly in 
user space, partly in host 
kernel

• Relies on host OS to 
provide drivers

• E.g. VMware Desktop
Client

Guest
Apps

Guest Operating 
System

https://en.wikipedia.org/wiki/VMware_Horizon


Binghamton

University

CS-550

Spring 2020

User Software

Optimizing VMM

System VM: Co-Designed VM

19

Execution Hardware

Guest Libraries

Guest Operating System

• Hypervisor designed closely with (and 
possibly built into) hardware ISA

• Goal: Performance improvement of
existing ISA (or guest ISA) during 
runtime

• Hypervisor performs emulation from
Guest ISA to native ISA

• E.g. Transmeta Crusoe 
• Native ISA: VLIW; Guest ISA : x86
• Perform HW operations in VMM

• e.g. instruction re-ordering
• Goal: Power savings
• 700MHz Crusoe runs x86 @ 500MHz

• Cheaper and less power

https://en.wikipedia.org/wiki/Transmeta_Crusoe


Binghamton

University

CS-550

Spring 2020

Virtual Machine Taxonomy

Process v. System Guest/Host Style Examples

Process VM
(ABI)

Same ABI
Multi-Programming UNIX

Binary Optimizers VALGRIND, Fast Malloc

Different ABI

High Level Language Java VM

Emulators Cygwin

Emulators w/ Guest OS DEC FX!32

System VM
(ISA)

Either
Same ISA or
Different ISA 

Traditional Hypervisors KVM, VMware ESX

Para-Virtualized Xen

Hosted VMware Desktop 

Different ISA Co-Designed Transmeta Crusoe

20



Binghamton

University

CS-550

Spring 2020

Versatility

21

Java App

JVM

VMWare

Code Morphing

Bytecode

Linux IA-32

Windows IA-32

Crusoe VLIW

Portability

Software v. Hardware

Hardware Optimization



Binghamton

University

CS-550

Spring 2020

Virtualizing Individual Resources
in System VMs

22



Binghamton

University

CS-550

Spring 2020

CPU Virtualization

• Each VM sees a set of "virtual CPUs"

• Hypervisors emulate guest OS privileged instructions
• Hardware traps the instruction to the hypervisor
• Hypervisor checks – should this instruction be emulated?

• If so, emulate.

• Modern ISAs provide special interfaces for Hypervisors to run VMs
• Hardware Assisted Virtualization
• Intel VTx interface
• AMD AMD-v interface

• Allow hypervisors to efficiently emulate guest OS privileged 
instructions

23

https://en.wikipedia.org/wiki/X86_virtualization


Binghamton

University

CS-550

Spring 2020

Execution of privileged Instruction

24

Application

mprotect()

Guest OS

LPSW

Hypervisor
Dispatcher

x->hw
y->emul1
LPSW->emul2

…

emul2
Change mode to priv
Check priv level in VM
Emulate Instruction
Compute target
Change mode to user
return

trap



Binghamton

University

CS-550

Spring 2020

Problem: Scheduling Time Slices

• ISA continues executing user's instructions

• CPU Scheduler needs to intervene

• OS schedules timer interrupt
• Interrupt handling routine swaps process out, and swaps new process in

• Hypervisor may be managing multiple Virtual OS's
• Needs to manage VIRTUAL timer interrupt

• Hypervisor needs to run VIRTUAL timer only when Guest OS is active.

• Hypervisor also needs its own timer interrupt to manage swapping 
guests

25



Binghamton

University

CS-550

Spring 2020

Memory Virtualization for VMs

Traditional Virtual Memory VM Virtual Memory

26

Virtual Address Space

Physical Address Space

Page Tables

Guest Virtual Address Space

Physical Address Space

Guest Page 
Tables

Guest "Real"/ Host Virtual Addr

Host Page 
Tables

Shadow Page 
Tables



Binghamton

University

CS-550

Spring 2020

I/O Virtualization for VMs

• Hypervisor manages a virtual version of each physical device

• I/O activity directed at virtual device is converted to physical request

• Option 1: Device Emulation
• Trap/Emulate each Guest I/O instruction in hypervisor
• Slow and difficult to emulate the effect of combinations of I/O instructions

• Option 2: Para-Virtual devices (most common)
• Special device drivers inserted in guest OS to talk to Hypervisor

• Option 3: Direct Device Access (Fast but not scalable, gaining popularity)
• Allow VM to work on physical device
• Requires IOMMU and VT-d support from hardware

27



Binghamton

University

CS-550

Spring 2020

I/O Memory Management Unit

28


