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Chap. 7

Chap. 1&6

https://epdf.pub/virtual-machines-versatile-platforms-for-systems-and-processes.html
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Virtualization
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One to Many Many to One
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Example: Disk Virtualization
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Real Disk

File 1 File 2

Virtual Disk 1 Virtual Disk 2

I/O Interface

Virtualization
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Virtual Machines

• Logical / Emulated representations of full computing environment
• CPU + Memory + I/O

• Implemented by adding virtualization layers of software

• Uses:
• Multiple OS's on one machine (including legacy OS's)

• Isolation (e.g. crash protection) & Enhanced security

• Live migration of servers

• Testing and Development

• On-the-fly optimization

• Platform Emulation including realization of ISA's not found in physical machines
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Interfaces: Instruction Set Architecture
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Software

Execution Hardware

Instruction Set 
Architecture

(ISA)
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Interfaces: Operating System
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User Software

Execution Hardware

User ISA

Operating System

System ISA

syscall
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Interfaces: Libraries
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User Software

Execution Hardware

Libraries

Operating System

Application Binary
Interface

(ABI)

Application Binary
Interface

(ABI)

Application 
Programming

Interface
(API)

Application 
Programming

Interface
(API)
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User Software

Virtualization Software / Runtime

Process VM
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Execution Hardware

Host Libraries

Host Operating System

Guest
process

• Virtualizes the ABI
• Performs binary 

translation
• Provides a virtual view 

TO a single process
• Terminates when guest 

process terminates

Guest Libraries
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User Software

Process VM: Multi-programming
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Execution Hardware

Libraries

Operating System

• Each Process operates on 
a virtual "runtime" 
provided by the 
Operating System
• virtual memory
• virtual cpu
• virtual file system

"VMM" (OS)
Virtual Memory/CPU Scheduling/VFS
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User Software

Process VM : Binary Optimizers
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Hardware

Operating System

Process

• Debug like VALGRIND, GDB
• Fast MALLOC/FREE
• …

Binary Optimizer
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User Software

Process VM: High Level Language
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Hardware

Operating System

Java Byte Code

• Virtual ISA 
• e.g. Java Byte Code
• For platform 

independence
• Platform Dependent VM 

executes virtual ISA
• e.g. Java JVM or .NET CLI

Java Virtual Machine
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User Software

VMM

Process VM: Emulators
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Execution Hardware

Host Operating System

Native
Apps

• Host & Guest ABI are
different – emulation
required

• Hosted VM + emulation
• E.g. Cygwin, Virtual PC 

(Windows on MAC)

Guest
Apps

https://www.cygwin.com/
https://en.wikipedia.org/wiki/Windows_Virtual_PC
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User Software

Process VM: Emulator w/ Guest OS
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Alpha(DEC) Hardware

Windows NT
(Compiled to Alpha ISA)

Windows
(X86) App

• Support an app ABI on 
hardware running a 
different target ABI

• Interpreter
• Fetch, decode, convert
• SLOW

• Dynamic Binary Translator
• Blocks of code 

translated
• Cached to exploit 

locality

Digital FX!32
Emulator
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User Software

Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM
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Execution Hardware

Guest Libraries

Guest Operating System

Guest
process

• Virtualizes the ISA
• Presents a Virtual View 

TO an entire system 
(including OS)

• Traps and emulates 
privileged instructions

• Lasts as long as physical 
host is alive
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Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM: Generic Hypervisor
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Execution Hardware

Guest OS 1

• Operating system for 
operating systems

• Virtual execution
environment for an 
entire OS and apps

• Controls access to
hardware/resources

• When guest OS executes 
a privileged instruction, 
Hypervisor intercepts 
the instruction, checks 
for correctness, and 
emulates the instruction

Guest OS 2 Guest OS 3

…
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Virtualization Software / Hypervisor /
Virtual Machine Monitor (VMM)

System VM: Traditional Hypervisor
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Execution Hardware

Guest OS 1

• executes natively on host 
ISA

• Directly controls 
hardware – provides all 
device drivers

• Emulates sensitive 
instructions executed by 
the Guest OS

• E.g. KVM, VMWare ESX
Server

Guest OS 2 Guest OS 3

…

https://www.linux-kvm.org/page/Main_Page
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/VMware_ESXi
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User Software

Hypervisor

System VM: Para-Virtualized VM
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Execution Hardware

Guest Libraries

Guest Operating System

• Modify guest OS for better performance
• Trap and emulate is expensive

• Virtual hardware is similar, but not
identical to real hardware

• Guest OS replaces some privileged 
instructions with "hypercalls" to the 
Hypervisor

• Less overhead = better performance
• Disadvantage: Needs modified guest OS
• Traditional hypervisors are often

partially para-virtualized (e.g. device
drivers para-virtual, CPU & Memory 
fully virtual)

• E.g. Xen

https://en.wikipedia.org/wiki/Xen
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User Software

VMM

VM Flavor B : Hosted VM
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Execution Hardware

Host Operating System

Native
Apps

• Host OS controls 
hardware

• Hypervisor runs partly in 
user space, partly in host 
kernel

• Relies on host OS to 
provide drivers

• E.g. VMware Desktop
Client

Guest
Apps

Guest Operating 
System

https://en.wikipedia.org/wiki/VMware_Horizon
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User Software

Optimizing VMM

System VM: Co-Designed VM
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Execution Hardware

Guest Libraries

Guest Operating System

• Hypervisor designed closely with (and 
possibly built into) hardware ISA

• Goal: Performance improvement of
existing ISA (or guest ISA) during 
runtime

• Hypervisor performs emulation from
Guest ISA to native ISA

• E.g. Transmeta Crusoe 
• Native ISA: VLIW; Guest ISA : x86
• Perform HW operations in VMM

• e.g. instruction re-ordering
• Goal: Power savings
• 700MHz Crusoe runs x86 @ 500MHz

• Cheaper and less power

https://en.wikipedia.org/wiki/Transmeta_Crusoe
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Virtual Machine Taxonomy

Process v. System Guest/Host Style Examples

Process VM
(ABI)

Same ABI
Multi-Programming UNIX

Binary Optimizers VALGRIND, Fast Malloc

Different ABI

High Level Language Java VM

Emulators Cygwin

Emulators w/ Guest OS DEC FX!32

System VM
(ISA)

Either
Same ISA or
Different ISA 

Traditional Hypervisors KVM, VMware ESX

Para-Virtualized Xen

Hosted VMware Desktop 

Different ISA Co-Designed Transmeta Crusoe

20
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Versatility
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Java App

JVM

VMWare

Code Morphing

Bytecode

Linux IA-32

Windows IA-32

Crusoe VLIW

Portability

Software v. Hardware

Hardware Optimization
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Virtualizing Individual Resources
in System VMs
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CPU Virtualization

• Each VM sees a set of "virtual CPUs"

• Hypervisors emulate guest OS privileged instructions
• Hardware traps the instruction to the hypervisor
• Hypervisor checks – should this instruction be emulated?

• If so, emulate.

• Modern ISAs provide special interfaces for Hypervisors to run VMs
• Hardware Assisted Virtualization
• Intel VTx interface
• AMD AMD-v interface

• Allow hypervisors to efficiently emulate guest OS privileged 
instructions
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https://en.wikipedia.org/wiki/X86_virtualization
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Execution of privileged Instruction
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Application

mprotect()

Guest OS

LPSW

Hypervisor
Dispatcher

x->hw
y->emul1
LPSW->emul2

…

emul2
Change mode to priv
Check priv level in VM
Emulate Instruction
Compute target
Change mode to user
return

trap
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Problem: Scheduling Time Slices

• ISA continues executing user's instructions

• CPU Scheduler needs to intervene

• OS schedules timer interrupt
• Interrupt handling routine swaps process out, and swaps new process in

• Hypervisor may be managing multiple Virtual OS's
• Needs to manage VIRTUAL timer interrupt

• Hypervisor needs to run VIRTUAL timer only when Guest OS is active.

• Hypervisor also needs its own timer interrupt to manage swapping 
guests

25
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Memory Virtualization for VMs

Traditional Virtual Memory VM Virtual Memory
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Virtual Address Space

Physical Address Space

Page Tables

Guest Virtual Address Space

Physical Address Space

Guest Page 
Tables

Guest "Real"/ Host Virtual Addr

Host Page 
Tables

Shadow Page 
Tables
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I/O Virtualization for VMs

• Hypervisor manages a virtual version of each physical device

• I/O activity directed at virtual device is converted to physical request

• Option 1: Device Emulation
• Trap/Emulate each Guest I/O instruction in hypervisor
• Slow and difficult to emulate the effect of combinations of I/O instructions

• Option 2: Para-Virtual devices (most common)
• Special device drivers inserted in guest OS to talk to Hypervisor

• Option 3: Direct Device Access (Fast but not scalable, gaining popularity)
• Allow VM to work on physical device
• Requires IOMMU and VT-d support from hardware
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I/O Memory Management Unit
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