Binghamton CS-550

University Spring 2020

Introduction to
Virtual Machines

Modern Operating Systems, by Andrew Tanenbaum | Chap.7 W
Virtual Machines, by Smith and Nair [Chap. 1&6 W

https://epdf.pub/virtual-machines-versatile-platforms-for-systems-and-processes.html

Binghamton CS-550

University Spring 2020

Virtualization

One to Many Many to One

g B
p m!@@m

Binghamton CS-550

University Spring 2020

Example: Disk Virtualization

@al D@ Virtual Disk 2

Virtualization

N [/0 Interface /

Real Disk

Binghamton CS-550

University Spring 2020

Virtual Machines

* Logical / Emulated representations of full computing environment
 CPU + Memory + 1/0
* Implemented by adding virtualization layers of software

* Uses:

Multiple OS's on one machine (including legacy OS's)

[solation (e.g. crash protection) & Enhanced security

Live migration of servers

Testing and Development

On-the-fly optimization

Platform Emulation including realization of ISA’'s not found in physical machines

Binghamton CS-550

University Spring 2020

Interfaces: Instruction Set Architecture

Software

Instruction Set
Architecture

N

Execution Hardware

Binghamton CS-550

University Spring 2020
Interfaces: Operating System

syscall

User Software

Operating System

— I

Execution Hardware System ISA

Binghamton CS-550

University Spring 2020

Interfaces: Libraries

User Software

Operating System .

Execution Ha ware

Interface
(API)

Application Binary
Interface

(ABI)

Binghamton CS-550

University Spring 2020

Process VM

User Software

Virtualizes the ABI

* Performs binary
translation

* Provides a virtual view
TO a single process

* Terminates when guest

process terminates

Guest Libraries

Host Libraries

Host Operating System

Execution Hardware

Binghamton CS-550

University Spring 2020
Process VM: Multi-programming
User S()ftware Each Process operates on
a virtual "runtime”
provided by the
Operating System

e virtual memory
 virtual cpu
Operating System virtual file system

Execution Hardware

Binghamton CS-550
University Spring 2020

Process VM : Binary Optimizers

User Software

* Debug like VALGRIND, GDB
* Fast MALLOC/FREE

Operating System

Hardware

Binghamton CS-550
University Spring 2020

Process VM: High Level Language

User Software + Virtual ISA
e e.g.Java Byte Code

* For platform
independence
* Platform Dependent VM
executes virtual ISA
* e.g.Java JVM or .NET CLI

Operating System

Hardware

Binghamton CS-550
University Spring 2020

Process VM: Emulators

USGI‘ SOftware Host & Guest ABI are

different - emulation
required
 Hosted VM + emulation
* E.g. Cygwin, Virtual PC
(Windows on MAC)

Host Operating System

Execution Hardware

https://www.cygwin.com/
https://en.wikipedia.org/wiki/Windows_Virtual_PC

Binghamton CS-550
University Spring 2020

Process VM: Emulator w/ Guest OS

* Support an app ABI on
User Software hardware running a
different target ABI
* Interpreter
* Fetch, decode, convert
« SLOW
* Dynamic Binary Translator
* Blocks of code
translated

Windows NT * Cached to exploit
(Compiled to Alpha ISA) locality

Alpha(DEC) Hardware

Binghamton CS-550

University Spring 2020

System VM

User Software

Virtualizes the ISA

* Presents a Virtual View
TO an entire system
(including 0S)

Guest Operating System * Traps and emulates
privileged instructions

* Lasts as long as physical

host is alive

Guest Libraries

Execution Hardware

14

Binghamton CS-550

University Spring 2020
System VM: Generic Hypervisor

* Operating system for
operating systems

 Virtual execution
environment for an
entire OS and apps

* Controls access to

Guest 0S 1 Guest OS 2 Guest OS 3 hardware/resources

* When guest OS executes
a privileged instruction,
Hypervisor intercepts
the instruction, checks
for correctness, and

emulates the instruction
15

Execution Hardware

Binghamton CS-550

University Spring 2020
System VM: Traditional Hypervisor

* executes natively on host
ISA

 Directly controls
hardware - provides all
device drivers

* Emulates sensitive

Guest 0S 1 Guest OS 2 Guest OS 3 instructions executed by
the Guest OS

* E.g. KVM, VMWare ESX
Server

Execution Hardware

16

https://www.linux-kvm.org/page/Main_Page
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/VMware_ESXi

Binghamton CS-550

University Spring 2020
System VM: Para-Virtualized VM

* Modify guest OS for better performance
* Trap and emulate is expensive

 Virtual hardware is similar, but not
identical to real hardware

* Guest OS replaces some privileged
instructions with "hypercalls” to the

Guest Operating System Hypervisor

* Less overhead = better performance

* Disadvantage: Needs modified guest OS

* Traditional hypervisors are often
partially para-virtualized (e.g. device
drivers para-virtual, CPU & Memory
fully virtual)

* E.g. Xen Y

User Software

Guest Libraries

Execution Hardware

https://en.wikipedia.org/wiki/Xen

Binghamton
University

VM Flavor B : Hosted VM

User Software

Guest
Apps

Guest Operating
System

Host Operating System

Execution Hardware

CS-550
Spring 2020

Host OS controls
hardware

Hypervisor runs partly in
user space, partly in host
kernel

Relies on host OS to
provide drivers

E.g. VMware Desktop
Client

https://en.wikipedia.org/wiki/VMware_Horizon

Binghamton CS-550

University Spring 2020

System VM: Co-Designed VM

* Hypervisor designed closely with (and

User SOftware possibly built into) hardwai,e [SA (

* Goal: Performance improvement of
existing ISA (or guest ISA) during
runtime

* Hypervisor performs emulation from
Guest ISA to native ISA

* E.g. Transmeta Crusoe

 Native ISA: VLIW; Guest ISA : x86
* Perform HW operations in VMM
* e.g.instruction re-ordering
: * Goal: Power savings
Execution Hardware + 700MHz Crusoe runs x86 @ 500MHz

e Cheaper and less power 19

Guest Libraries

Guest Operating System

https://en.wikipedia.org/wiki/Transmeta_Crusoe

Binghamton CS-550

University Spring 2020

Virtual Machine Taxonomy

Processv.System | Guest/Host | Style _____[Examples

Multi-Programming UNIX
Same ABI
Binary Optimizers VALGRIND, Fast Malloc

Pro(c:;:;,)VM High Level Language Java VM

Different ABI Emulators Cygwin

Emulators w/ Guest OS DEC FX!32
Either Traditional Hypervisors KVM, VMware ESX
System VM Same ISA or Para-Virtualized Xen
(ISA) Different ISA Hosted VMware Desktop

Different ISA Co-Designed Transmeta Crusoe

20

Binghamton CS-550

University Spring 2020

Versatility

Bytecode

Portability
Linux [A-32
VMWare Software v. Hardware
Windows [A-32
Code Morphing Hardware Optimization

Crusoe VLIW
21

CS-550

Spring 2020

Virtualizing Individual Resources
In System VMs

Binghamton CS-550

University Spring 2020

CPU Virtualization

e Each VM sees a set of "virtual CPUs"

* Hypervisors emulate guest OS privileged instructions
* Hardware traps the instruction to the hypervisor

* Hypervisor checks - should this instruction be emulated?
* If so, emulate.

* Modern ISAs provide special interfaces for Hypervisors to run VMs

 Hardware Assisted Virtualization

* Intel VTx interface
e AMD AMD-v interface

» Allow hypervisors to efficiently emulate guest OS privileged
instructions

23

https://en.wikipedia.org/wiki/X86_virtualization

Binghamton CS-550

University Spring 2020

Execution of privileged Instruction

Application Hypervisor
Dispatcher
x->hw emul2

mprotect() y->emull Change mode to priv
LPSW->emul2 Check priv level in VM

Emulate Instruction
Compute target
Change mode to user
return

24

Binghamton CS-550

University Spring 2020

Problem: Scheduling Time Slices

* ISA continues executing user's instructions
* CPU Scheduler needs to intervene

* OS schedules timer interrupt
* Interrupt handling routine swaps process out, and swaps new process in

* Hypervisor may be managing multiple Virtual OS's
* Needs to manage VIRTUAL timer interrupt

* Hypervisor needs to run VIRTUAL timer only when Guest OS is active.

* Hypervisor also needs its own timer interrupt to manage swapping
guests

25

Binghamton CS-550

University Spring 2020

Memory Virtualization for VMs

Traditional Virtual Memory VM Virtual Memory
Virtual Address Space Guest Virtual Address Space
-------- NN

Guest Page
Tables

Page Tables

Guest "Real"/ hos{t Virtual Addr

Shadow Page
Physical Mdf/ess Space ------- Tables
RN

Tables

Physical ess Space

Binghamton CS-550

University Spring 2020

/O Virtualization for VMs

* Hypervisor manages a virtual version of each physical device
* [/0 activity directed at virtual device is converted to physical request

* Option 1: Device Emulation
* Trap/Emulate each Guest I/0 instruction in hypervisor
 Slow and difficult to emulate the effect of combinations of I/O instructions

* Option 2: Para-Virtual devices (most common)
* Special device drivers inserted in guest OS to talk to Hypervisor

* Option 3: Direct Device Access (Fast but not scalable, gaining popularity)
« Allow VM to work on physical device
* Requires IOMMU and VT-d support from hardware

27

Binghamton CS-550

University Spring 2020

/O Memory Management Unit

Main Memory

Physical addresses

Device Taddressesé Virtual Taddressesé

Device E CPU

28

