
Binghamton

University

CS-550

Spring 2020

I/O Models
Modern Operating Systems, by Andrew Tanenbaum

Unix Network Programming, 3rd Edition, by Richard Stevens

1

Chap. 5.2

Chap. 6

http://lwn.net/Kernel/LDD3/


Binghamton

University

CS-550

Spring 2020

Example: UNIX Virtual File System (VFS)

• Standard set of operations
• open, read, write, seek, fctl, close

• Blocking read/write
• Invoke read() system library function / system call and wait for it to finish
• When control returns, you can assume the read is complete

• Note: Buffered I/O writes are a case where the abstract model is 
"leaky"
• When control returns, you assume the write is complete
• But in reality, your write is in a buffer… not completely on file yet

2



Binghamton

University

CS-550

Spring 2020

Types of Concurrency

• True Concurrency (e.g. processor)
• Multi-processor machines – multiple threads executing simultaneously

• Uni-processor machines with kernel threads
• Even though multiple threads execute simultaneously, programmer has no control 

over context switching, so must ASSUME threads execute simultaneously

• Apparent Concurrency
• Single process multiplexes among multiple clients

• User level threads

• Programmer has control over when context switches occur

3



Binghamton

University

CS-550

Spring 2020

Example of "True Concurrency"

• Web server - "Listening" daemon for new requests from clients

• When a request is received, Listening daemon forks a child server
• Child server satisfies new client request(s) and exits when done

4

Listening Sever

Child Server 1 Client 1

Child Server 2 Client 2



Binghamton

University

CS-550

Spring 2020

Example of "Apparent Concurrency"

• Concurrent Server Daemon creates client request queue

• Satisfies each client request in the queue sequentially

5

Concurrent Server

Client 1 Client 2 Client 3



Binghamton

University

CS-550

Spring 2020

I/O Models

• Blocking I/O

• Non-Blocking I/O

• Signal Driven I/O

• Asynchronous I/O

• I/O Multiplexing – select()

6



Binghamton

University

CS-550

Spring 2020

Steps in Data Reception

User Level

System Call Interface

Kernel Level

7

User Buffer

Kernel Buffer

1. Data Arrival from network

2. copy_to_user()
Data Arrival from kernel

Overheads: Context Switching, Data Copying



Binghamton

University

CS-550

Spring 2020

Blocking I/O Model

8

read() / recv()
No Data Ready

Block Application
Wait for Data

System Call

T
I

M
E Data Ready

copy_to_user()

Copy Complete

Return OK
Use Data

process blocked
network retrieval

Interrupt – data received

process blocked

user blocked



Binghamton

University

CS-550

Spring 2020

Non-Blocking I/O Model (polling)

9

read() / recv() No Data Ready

System Call

T
I

M
E

copy_to_user()

Copy Complete

EWOULDBLOCK

Use Data

network retrieval

Interrupt data received

user blocked

read() / recv()

EWOULDBLOCK

read() / recv()

Return OK

can do other work

can do other work



Binghamton

University

CS-550

Spring 2020

Signal Driven I/O Model

10

Install SIGIO handler
request data

No Data Ready
Wait for Data

System Call

T
I

M
E

Data Ready
Deliver SIGIO

Copy Complete

Return OK

Use Data

network retrieval

Interrupt data received

user blocked

can do other work

SIGIO
SIGIO handler

read()/recv() copy_to_user()

Return OK



Binghamton

University

CS-550

Spring 2020

Asynchronous I/O Model

11

Install signal handler
aio_read()

No Data Ready
Wait for Data

System Call

T
I

M
E

Copy Complete
deliver signal

Return OK

Use Data

network retrieval

Interrupt data received

can do other work

signal handler

copy_to_user()

Signal



Binghamton

University

CS-550

Spring 2020

I/O Multiplexing

12

select(multiple fds) No Data Ready
Wait for ALL data

System Call

T
I

M
E

Data Ready

Copy CompleteUse Data

network retrieval

Interrupt data received
(first fd)

user blocked

user blocked

Return readable
process return

read(fd)/recv(fd) copy_to_user()

Return OK



Binghamton

University

CS-550

Spring 2020

I/O Multiplexing (with wait time)

13

select(fds,time) No Data Ready
Wait for ALL data

System Call

T
I

M
E

Data Ready

Copy CompleteUse Data

network retrieval

Interrupt data received
(first fd)

user blocked

user blocked

Return readable or time
process return

read(fd)/recv(fd)
or poll

copy_to_user()

Return OK



Binghamton

University

CS-550

Spring 2020

I/O Multiplexing Example

• Concurrent Server Daemon creates client request queue

• Satisfies each client request as soon as data is available

14

Concurrent Server
select(fd1,fd2,…,fd6)

fd1

listen socket
descriptor

fd2

client 1 socket
descriptor

fd3

client 2 socket
descriptor

fd4

File 1

fd5

File 2

fd6

Pipe


