Binghamton CS-550

University Spring 2020

Segmentation

Another memory management scheme
Modern Operating Systems, by Andrew Tanenbaumﬂ Chap. 3 1
Wikipedia Memory Segmentation
Wikipedia X86
Wikipedia Intel Memory Model

https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_Memory_Model

Binghamton CS-550

University Spring 2020

Compiler — Standard Address Space

Virtual Address Space

Call Stack |
Unused Memory

Memory Allocated B
for Parse Tree

Parse Tree T

Constant Table T

Memory Allocated i Source Text T
for Symbol Table Symbol Table 1

Compiler Code

Problem: No Room for
Symbol Table to grow!

Binghamton

CS-550

University

Spring 2020

Separate | and D Address Spaces

OxFFF... »

0x000... -

Single Address Space

Call Stack |

Data

Code

VS

Instruction Address Space

Data Address Space

Call Stack |

Unused

Unused

Code

Data

Binghamton CS-550

University Spring 2020

Segmentation: Unlimited Address Spaces

One process has multiple segments (address spaces)

OxFFF... -

Each segment grows and shrinks independently

Parse Tree T

Sym Table T Source Text 1 Call StackT

Code Const Table T

0x000... -
Segment 0 Segment 1 Segment 2 Segment 3 Segment 4 Segment5

Binghamton CS-550

University Spring 2020
Comparison of Paging and Segmentation

Does the programmer need to be aware of

this memory management technique? No Yes
How many address spaces? One Many
Can Total address space exceed the size of
. Yes Yes
physical memory?
Can procedures and data be distinguished Sort of Yes
and separately protected?
Can fluctuating table sizes be
: No Yes
accommodated easily?
[s sharing of procedures between users Nt iy Yes

facilitated?

Separate program and data and
to help with sharing and
protection

Large address spaces without

Why was this technique invented?) :
expensive physical memory

Binghamton

University

Pure Segmentation and Fragmentation

Need room
for segment 7

Real Mem

Seg 4 (7K)

Segment 1 was
Least recently used

l, 7>

Seg 3(8K)

Seg 4 (7K)

Checkerboarding

or external Fragmentation

4, 5>

(3K)

3, 6>

Seg 2 (5K)

Seg 3(8K)

Seg 5 (4K)

(3K)

Compaction

Seg 1 (8K)

Seg 2 (5K)

Seg 3(8K)

Seg 5 (4K)

(4K)

(10K)

(3%)

Seg 2 (5K)

Seg 6 (4K)

Seg 5 (4K)

Seg 0 (4K)

Seg 7 (5K)

(3K)

Seg 2 (5K)

Seg 6 (4K)

Seg 0 (4K)

Seg 7 (5K)

(3%)

Seg 0 (4K)

Seg 7 (5K)

Seg 2 (5K)

Seg 0 (4K)

Seg 7 (5K)

Seg 0 (4K)

CS-550
Spring 2020

Binghamton CS-550

University Spring 2020

MULTICS — Paged Segmentation

* Every process can have multiple segments (address spaces)
* Segment number is 18 bits = 256K segments
* Segment address is 16 bits = 64K words (words are 36 bits in Multics)

* Each segment has its own page table

Switching to a different segment
has a high context switch penalty,
even within the same process

Each segment can have a full 64K
address space

Binghamton CS-550

University Spring 2020

MULTICS Virtual Address

36 bit (4 Y2 byte) MULTICS word

36 | 35 | 34 |33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 10 | 9 8 7 () 5 4 3 2 1 0

Segment Number Segment Address

Offset in Page

Page Number

18 bits = 256K segments

6 bits = 64 pages / segment

10 bits = 1024 word page size

16 bits = 64K word segment size

Binghamton

University

CS-550
Spring 2020

Segment Descriptor Table Entry

36 | 35 | 34 | 33 | 32 | 31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9

Physical Memory Address of the Page Table Segment Length (in pages)

9 bits =0 - 511 pages

Page size:
0=1024 words
1=64 words

Physical addresses are 24 bits
but page tables are always on 64 byte
boundaries, so we can pad with 6 bits of zero Segment is paged:
At least one page of the
segment and the page table
are in real memory

Protection
bits

Binghamton CS-550

University Spring 2020

Segment Descriptor Table

* 256K Words long - one for each possible segment
* Each word is a Descriptor Table Entry

* Segment number is an index into this table
* Keptin it's own segment

* [f any part of a segment is in memory, then it's page table is in
memory
* Page table contains 64 words, and fits in a single 1024 word page

10

Binghamton CS-550

University Spring 2020

MULTICS MMU Processing

1. Use the segment number from the virtual address to find the
segment descriptor (may require paging in parts of the segment
descriptor table)

2. If the segment is not in memory, issue a segment fault
Check protection bits and issue a protection fault if needed

4. Read the page table for this segment using the page number
from the virtual address

5. Ifthe page is not in memory, issue a page fault

6. Add the offset to the physical memory start of page to get the
physical address

L

11

Binghamton CS-550

University Spring 2020

MULTICS MMU

Virtual Address

S‘egment Number Segment Address

Page Number Offset in Page

Segment Descriptor Table
Page Table

—~— L 14 bits

Physical Address
12

Binghamton CS-550

University Spring 2020

MULTICS File 1/0

* In MULTICS, every file was memory mapped

* "Open" returned the segment that contained the file
* Segments are 64K words = 256K+ bytes (288K w/ no parity)
* Bigger files needed "Multi-Segment” handling

* Very nice to get RAM memory speeds for file I/0!
* Easy to package data in a file with code that works on a segment

13

Binghamton CS-550

University Spring 2020
Pentium — Paged Segmentation

* Each process can have multiple segments

* Multiple segments map to one linear address space

Limit 3
Segment 3
| ___Base3d N
""" Limitz | Linear Bage
Segment 2 o Address Space Table \
————— i N Physical
______________________ N Memory
Limit 1
Segment 1
Base 1

—————————————————————— - 14

Binghamton CS-550

University Spring 2020

Pentium Paged Segmentation

* Segment index contained in the Segment Register
* Index into the Segment Descriptor Table

Segment Address

Segment Register
Pl olc|a]alole]lr]e]s]a]s]z]1]o

Segment Desgriptor Index Priv Segment Descriptor Table
Other Fields

Base Limit

32 Bit Linear Address

15

Binghamton CS-550

University Spring 2020

Segment Descriptor Table Entry Details

31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 | 21 | 20 |19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 [10 | 9 8 7 6 5 4 3 2 1 0

Base bits 24-31 G D 0] / Limit bits 16-19 P Prlv S Type Base bits 16-23 +4
se b1 L1m1t b1ts +0
[Granularity B1t
Segment in memory
System/Application]
16/32 bit segment 4 privilege Y / PP Segment Type
levels and protection

This is a Code Segment Descriptor Table Entry
Data Segment Descriptor Table Entries are slightly different.

16

Binghamton CS-550

University Spring 2020

Pentium Page Tables

32 Bit Linear Address

«~10- «~10- «12-
, Page Directory Page Number Page Offset
Page Directory Page Table Page Slot

T

e

n
1
O \

r
4

e

S

\)

> 17

