
Binghamton

University

CS-550

Spring 2020

Segmentation
Another memory management scheme

Modern Operating Systems, by Andrew Tanenbaum

Wikipedia Memory Segmentation

Wikipedia X86

Wikipedia Intel Memory Model

1

Chap. 3

https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_Memory_Model

Binghamton

University

CS-550

Spring 2020

Compiler – Standard Address Space

2

Virtual Address Space

Call Stack ↓

Parse Tree ↑

Constant Table ↑

Source Text ↑

Symbol Table ↑

Compiler Code

Memory Allocated
for Parse Tree

Memory Allocated
for Symbol Table

Unused Memory

Problem: No Room for
Symbol Table to grow!

Binghamton

University

CS-550

Spring 2020

Separate I and D Address Spaces

3

Single Address Space

Call Stack ↓

Data

Code

Instruction Address Space

Call Stack ↓

Unused

Code

Data Address Space

Unused

Data

0x000… →

0xFFF… →

VS

Binghamton

University

CS-550

Spring 2020

Segmentation: Unlimited Address Spaces

4

Code

Segment 0

0x000… →

0xFFF… →

Sym Table ↑

Segment 1

Source Text ↑

Segment 2

Const Table ↑

Segment 3

Parse Tree ↑

Segment 4

Call Stack↑

Segment5

One process has multiple segments (address spaces)

Each segment grows and shrinks independently

Binghamton

University

CS-550

Spring 2020

Comparison of Paging and Segmentation

5

Consideration Paging Segmentation

Does the programmer need to be aware of
this memory management technique?

No Yes

How many address spaces? One Many

Can Total address space exceed the size of
physical memory?

Yes Yes

Can procedures and data be distinguished
and separately protected?

Sort of Yes

Can fluctuating table sizes be
accommodated easily?

No Yes

Is sharing of procedures between users
facilitated?

Not really Yes

Why was this technique invented?
Large address spaces without
expensive physical memory

Separate program and data and
to help with sharing and

protection

Binghamton

University

CS-550

Spring 2020

Pure Segmentation and Fragmentation

6

Real Mem

Seg 4 (7K)

Seg 3(8K)

Seg 2 (5K)

Seg 1 (8K)

Seg 0 (4K)

1←, 7→

Seg 4 (7K)

Seg 3(8K)

Seg 2 (5K)

(3K)

Seg 7 (5K)

Seg 0 (4K)

4←, 5→

(3K)

Seg 5 (4K)

Seg 3(8K)

Seg 2 (5K)

(3K)

Seg 7 (5K)

Seg 0 (4K)

3←, 6→

(3K)

Seg 5 (4K)

(4K)

Seg 6 (4K)

Seg 2 (5K)

(3K)

Seg 7 (5K)

Seg 0 (4K)

Compaction

(10K)

Seg 5 (4K)

Seg 6 (4K)

Seg 2 (5K)

Seg 7 (5K)

Seg 0 (4K)

Checkerboarding
or external Fragmentation

Need room
for segment 7

Segment 1 was
Least recently used

Binghamton

University

CS-550

Spring 2020

MULTICS – Paged Segmentation

• Every process can have multiple segments (address spaces)
• Segment number is 18 bits = 256K segments

• Segment address is 16 bits = 64K words (words are 36 bits in Multics)

• Each segment has its own page table

7

Advantage Disadvantage

Each segment can have a full 64K
address space

Switching to a different segment
has a high context switch penalty,

even within the same process

Binghamton

University

CS-550

Spring 2020

MULTICS Virtual Address

8

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Number Segment Address

Page Number Offset in Page

36 bit (4 ½ byte) MULTICS word

18 bits = 256K segments

16 bits = 64K word segment size 10 bits = 1024 word page size

6 bits = 64 pages / segment

Binghamton

University

CS-550

Spring 2020

Segment Descriptor Table Entry

9

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Memory Address of the Page Table Segment Length (in pages) Misc

Page size:
0=1024 words

1=64 words

Segment is paged:
At least one page of the

segment and the page table
are in real memory

Protection
bits

9 bits =0 - 511 pages

Physical addresses are 24 bits
but page tables are always on 64 byte

boundaries, so we can pad with 6 bits of zero

Binghamton

University

CS-550

Spring 2020

Segment Descriptor Table

• 256K Words long – one for each possible segment
• Each word is a Descriptor Table Entry

• Segment number is an index into this table

• Kept in it's own segment

• If any part of a segment is in memory, then it's page table is in
memory
• Page table contains 64 words, and fits in a single 1024 word page

10

Binghamton

University

CS-550

Spring 2020

MULTICS MMU Processing

1. Use the segment number from the virtual address to find the
segment descriptor (may require paging in parts of the segment
descriptor table)

2. If the segment is not in memory, issue a segment fault

3. Check protection bits and issue a protection fault if needed

4. Read the page table for this segment using the page number
from the virtual address

5. If the page is not in memory, issue a page fault

6. Add the offset to the physical memory start of page to get the
physical address

11

Binghamton

University

CS-550

Spring 2020

MULTICS MMU

12

Virtual Address

Segment Number Segment Address

Page Number Offset in Page

Segment Descriptor Table

Page Table

14 bits

Physical Address

Binghamton

University

CS-550

Spring 2020

MULTICS File I/O

• In MULTICS, every file was memory mapped

• "Open" returned the segment that contained the file
• Segments are 64K words = 256K+ bytes (288K w/ no parity)

• Bigger files needed "Multi-Segment" handling

• Very nice to get RAM memory speeds for file I/O!

• Easy to package data in a file with code that works on a segment

13

Binghamton

University

CS-550

Spring 2020

Pentium – Paged Segmentation
• Each process can have multiple segments

• Multiple segments map to one linear address space

• Linear address space has "one" page table (two stage)

14

Segment 3

Limit 3

Linear
Address Space

Base 3

Physical
Memory

Segment 2
Limit 2 Page

TableBase 2

Segment 1

Limit 1

Base 1

Binghamton

University

CS-550

Spring 2020

Pentium Paged Segmentation

• Segment index contained in the Segment Register

• Index into the Segment Descriptor Table

15

Segment Descriptor Table

Base Limit Other Fields

…

1

0

Segment Address

32 Bit Linear Address

Segment Register
F E D C B A 9 8 7 6 5 4 3 2 1 0

Segment Descriptor Index Priv

0=Local Descriptor Table
1=Global Descriptor Table

Binghamton

University

CS-550

Spring 2020

Segment Descriptor Table Entry Details

16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base bits 24-31 G D O Limit bits 16-19 P Priv S Type Base bits 16-23 +4

Base bits 0-15 Limit bits 0-15 +0

Granularity Bit

16/32 bit segment

Segment in memory

4 privilege
levels

System/Application
Segment Type
and protection

This is a Code Segment Descriptor Table Entry
Data Segment Descriptor Table Entries are slightly different.

Binghamton

University

CS-550

Spring 2020

Pentium Page Tables

17

32 Bit Linear Address

← 10 → ← 10 → ← 12 →

Page Directory Page Number Page Offset

Page Directory Page Table Page Slot

1

0

2

4

←

e

n

t

r

i

e

s→

