
Practical, transparent
operating system support for

superpages

Juan Navarro ● Sitaram Iyer
Peter Druschel ● Alan Cox

OSDI 2002

Rice University
https://dl.acm.org/citation.cfm?id=844138

https://dl.acm.org/citation.cfm?id=844138

2

Overview

◆Increasing cost in TLB miss overhead
▪ growing working sets
▪ TLB size does not grow at same pace

◆Processors now provide superpages
▪ one TLB entry can map a large region

◆OSs have been slow to harness them
▪ no transparent superpage support for apps

◆This talk: a practical and transparent solution to
support superpages

3

Translation look-aside buffer

◆TLB caches virtual-to-physical address
translations

◆TLB coverage
▪ amount of memory mapped by TLB
▪ amount of memory that can be accessed

without TLB misses

4

How to increase TLB coverage

◆Typical TLB coverage ≈ 1 MB

◆Use superpages!
▪ large and small pages
▪ Increase TLB coverage
▪ no increase in TLB size

5

 What are these superpages anyway?

◆Memory pages of larger sizes
▪ supported by most modern CPUs

◆Otherwise, same as normal pages
▪ power of 2 size
▪ use only one TLB entry
▪ contiguous
▪ aligned (physically and virtually)
▪ uniform protection attributes
▪ one reference bit, one dirty bit

6

A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual
address

TLB

physical
address

7

A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual
address

TLB

physical
address

Alpha:
8,64,512KB; 4MB

Itanium:
4,8,16,64,256KB;
1,4,16,64,256MB

II  
The superpage problem

9

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

◆How / when / what size to allocate?

10

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D

◆How / when / what size to allocate?

11

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

◆How / when / what size to allocate?

12

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages
▪ mark page table entry of each base page

◆When to promote?

13

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages
▪ mark page table entry of each base page

◆When to promote?

Wait for app to touch pages?
May lose opportunity to increase

TLB coverage.

14

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages
▪ mark page table entry of each base page

◆When to promote?

Create small superpage?
May incur overhead.

15

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages
▪ mark page table entry of each base page

◆When to promote?

Forcibly populate pages?
May incur I/O cost or increase

internal fragmentation.

16

Issue 3: demotion

◆when page attributes of base pages of a
superpage become non-uniform

◆during partial pageouts

Demotion: convert a superpage into
smaller pages

17

Issue 4: fragmentation
• Memory becomes externally fragmented due to

• use of multiple page sizes
• Scattered wired pages

• Wired pages = pages that can’t be paged out to swap device
• break contiguity of free base pages since they cannot be relocated.

• External fragmentation occurs at superpage sizes.
• No external fragmentation at base page granularity

• Contiguity of free pages is a contended resource
• Contiguous pages = pages that are next to each other
• Allocating a superpage requires that sufficient number of contiguous

base pages must be free.

• OS must
• use contiguity restoration techniques
• trade off impact of contiguity restoration against superpage benefits

18

Previous approaches
◆Reservations

▪ one superpage size only

◆Relocation
▪ move pages at promotion time
▪ must recover copying costs

◆Eager superpage creation (IRIX, HP-UX)
▪ size specified by user: non-transparent

◆Hardware support
▪ Contiguous virtual superpage mapped to discontiguous physical

base pages

◆Demotion issues not addressed
▪ large pages partially dirty/referenced

III 
Design

20

Key observation

Once an application touches the first page
of a memory object then it is likely that it will

quickly touch every page of that object

◆Example: array initialization
◆Opportunistic policies
▪ superpages as large and as soon as possible
▪ as long as no penalty if wrong decision

21

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved
frames

22

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved
frames

D

D

A

A

C

C

23

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved
frames

D

D

A

A

C

C

24

Allocation: reservation size

Opportunistic policy
◆Go for biggest size that is no larger than

the memory object (e.g., file)
◆If required size not available, try

preemption before resigning to a smaller
size
▪ preempted reservation had its chance

25

Allocation: managing reservations

largest unused (and aligned) chunk

best candidate for preemption at front:
◆reservation whose most recently populated

frame was populated the least recently

1

2

4

26

Incremental promotions

Promotion policy: opportunistic

2

4

4+2

8

27

Speculative demotions

◆One reference bit per superpage
▪ How do we detect portions of a superpage not referenced

anymore?

◆On memory pressure, demote superpages when
resetting ref bit

◆Re-promote (incrementally) as pages are referenced

◆Demote also when the page daemon selects a base
page as a victim page.

28

Demotions: dirty superpages

◆One dirty bit per superpage
▪ what’s dirty and what’s not?
▪ page out entire superpage

◆Demote on first write to clean superpage

write

◆Re-promote (incrementally) as other
pages are dirtied

29

Fragmentation control
• Low contiguity: modified page daemon for victim

selection
• restore contiguity

• move clean, inactive pages to the free list
• minimize impact

• prefer victim pages that contribute the most to
contiguity

• Cluster wired pages
• Assign a dedicated region of physical memory for

wired pages
• So that they break contiguity for superpage allocations

from rest of the memory.

IV 
Experimental  

evaluation

31

Experimental setup

• FreeBSD 4.3
• Alpha 21264, 500 MHz, 512 MB RAM
• 8 KB, 64 KB, 512 KB, 4 MB pages
• 128-entry DTLB, 128-entry ITLB
• Unmodified applications

32

Best-case benefits

• TLB miss reduction usually above 95%
• SPEC CPU2000 integer

• 11.2% improvement (0 to 38%)
• SPEC CPU2000 floating point

• 11.0% improvement (-1.5% to 83%)
• Other benchmarks

• FFT (2003 matrix): 55%
• 1000x1000 matrix transpose: 655%

• 30%+ in 8 out of 35 benchmarks

33

Why multiple superpage sizes

Improvements with only one superpage
size vs. all sizes

64KB 512KB 4MB All

FFT 1% 0% 55% 55%

galgel 28% 28% 1% 29%

mcf 24% 31% 22% 68%

34

Conclusions

• Superpages
• OS can provide transparent support for a

mix of superpages by applications.
• Contiguity restoration is necessary

• sustains benefits; low impact
• Multiple page sizes are important

• scales to very large superpages

35

More references:

• Multiple page sizes in different processors
• https://en.wikipedia.org/wiki/

Page_(computer_memory)#Multiple_page_sizes

• Linux Transparent Hugepages
• https://lwn.net/Articles/423584/

https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://lwn.net/Articles/423584/

