Practical, transparent
operating system support for
superpages

Juan Navarro e Sitaram lyer
Peter Druschel e Alan Cox

Rice University

OSDI 2002

https://dl.acm.org/citation.cfm?id=844138

Overview

Increasing cost in TLB miss overhead
= growing working sets
= TLB size does not grow at same pace

Processors now provide superpages
= one TLB entry can map a large region

OSs have been slow to harness them
= no transparent superpage support for apps

This talk: a practical and transparent solution to
support superpages

Translation look-aside bufter

TLB caches virtual-to-physical address
translations

LB coverage
= amount of memory mapped by TLB

= amount of memory that can be accessed
without TLB misses

¢ Typical TLB coverage =1 MB

¢ Use superpages!
= large and small pages
= Increase TLB coverage
= No increase in TLB size

What are these superpages anyway?

Memory pages of larger sizes
= supported by most modern CPUs

Otherwise, same as normal pages
= power of 2 size

= use only one TLB entry

= contiguous

= aligned (physically and virtually)

= uniform protection attributes

= one reference bit, one dirty bit

A superpage TLB

. virtual memory

base page entry (size=1)

virtual superpage entry (size=4) physical
address address

TLB

physical memory .

A superpage TLB

virtual memor

virtual
address

Alpha:
8,04,512KB; 4MB

ltanium:
4.8,16,64,256KB:
1,4.16,64,256MB

physical

physical memory

1
The superpage problem

Issue 1: superpage allocation

__
=

superpage boundaries

How / when / what size to allocate?

Issue 1: superpage allocation

Al B D _ virtual memory
_
—

superpage boundaries

B0 B | = |[@ esialmen

How / when / what size to allocate?

10

Issue 1: superpage allocation

A7B D _ virtual memory
_
—

superpage boundaries

_ u E E physical memory

How / when / what size to allocate?

11

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

12

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Wait for app to touch pages?
May lose opportunity to increase
TLB coverage.

13

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Create small superpage?
May incur overhead.

14

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Forcibly populate pages?
May incur I/O cost or increase
internal fragmentation.

15

Issue 3: demotion

Demotion: convert a superpage into
smaller pages

when page attributes of base pages of a
superpage become non-uniform

during partial pageouts

16

Issue 4: fragmentation

Memory becomes externally fragmented due to
 use of multiple page sizes
» Scattered wired pages
» Wired pages = pages that can’t be paged out to swap device

 break contiguity of free base pages since they cannot be relocated.

External fragmentation occurs at superpage sizes.
* No external fragmentation at base page granularity

» Contiguity of free pages is a contended resource
» Contiguous pages = pages that are next to each other

» Allocating a superpage requires that sufficient number of contiguous
base pages must be free.

* OS must
« use contiguity restoration techniques
« trade off impact of contiguity restoration against superpage benefits

17

Previous approaches

Reservations
= 0One superpage size only

Relocation
= move pages at promotion time
= must recover copying costs

Eager superpage creation (IRIX, HP-UX)

= Size specified by user: non-transparent

Hardware support

= Contiguous virtual superpage mapped to discontiguous physical
base pages

Demotion issues not addressed
= large pages partially dirty/referenced

18

1l
Design

Key observation

Once an application touches the first page

of a memory object then it is likely that it will
quickly touch every page of that object

Example: array initialization

Opportunistic policies

= superpages as large and as soon as possible
= as long as no penalty if wrong decision

20

Superpage allocation

Preemptible reservations

__
=

superpage boundaries

_ D E D D physical memory
L_LL/ reserved

frames

21

Superpage allocation

Preemptible reservations

AfeTclo]l
__
N

superpage boundaries

B - =1 co

virtual memory

physical memory

22

Superpage allocation

Preemptible reservations

Afefco
__
[

superpage boundaries

 /vBEn

virtual memory

physical memory

23

Allocation: reservation size

Opportunistic policy
Go for biggest size that is no larger than
the memory object (e.qg., file)

If required size not available, try
preemption before resigning to a smaller
size

= preempted reservation had its chance

24

Allocation: managing reservations

— largest unused (and aligned) chunk

O=mERm 7 7 7

o= [HREEEE R 1=

best candidate for preemption at front:

reservation whose most recently populated
frame was populated the least recently

25

Incremental promotions

Promotion policy: opportunistic

26

Speculative demotions

One reference bit per superpage

= How do we detect portions of a superpage not referenced
anymore?

On memory pressure, demote superpages when
resetting ref bit

Re-promote (incrementally) as pages are referenced

Demote also when the page daemon selects a base
page as a victim page.

27

Demotions: dirty superpages

One dirty bit per superpage

= what's dirty and what’s not?

= page out entire superpage

Demote on first write to clean superpage

write
I

IV VN TNV IRl YNNI 7

Re-promote (incrementally) as other
pages are dirtied

28

Fragmentation control

« Low contiguity: modified page daemon for victim
selection

* restore contiguity
* move clean, inactive pages to the free list
* minimize impact
* prefer victim pages that contribute the most to
contiguity

 Cluster wired pages

« Assign a dedicated region of physical memory for
wired pages

« So that they break contiguity for superpage allocations
from rest of the memory.

29

1V
Experimental
evaluation

Experimental setup

* FreeBSD 4.3

* Alpha 21264, 500 MHz, 512 MB RAM
8 KB, 64 KB, 512 KB, 4 MB pages

« 128-entry DTLB, 128-entry ITLB

« Unmodified applications

3

Best-case benefits

* TLB miss reduction usually above 95%

« SPEC CPU2000 integer

* 11.2% improvement (0 to 38%)
« SPEC CPU2000 floating point

* 11.0% improvement (-1.5% to 83%)
* Other benchmarks

 FFT (2003 matrix): 55%

* 1000x1000 matrix transpose: 655%
* 30%+ in 8 out of 35 benchmarks

32

Why multiple superpage sizes

64KB 512KB 4MB All

FFT 1% 0% 55% 55%
galgel 28% 28% 1% 29%

mcf 24% 31% 22% 68%

Improvements with only one superpage
size vs. all sizes

33

Conclusions

* Superpages
* OS can provide transparent support for a
mix of superpages by applications.

» Contiguity restoration is necessary
 sustains benefits; low impact

* Multiple page sizes are important
 scales to very large superpages

34

« Multiple page sizes in different processors
» https://en.wikipedia.org/wiki/

Page_ (computer _memory)#Multiple page_sizes

« Linux Transparent Hugepages
o https://lwn.net/Articles/423584/

35

https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://lwn.net/Articles/423584/

