Binghamton CS-550

University Spring 2020

Virtual Memory

Modern Operating Systems, by Andrew Tanenbaumﬂ Chap 3 \
Operating Systems: Three Easy Pieces D Chap 13-24
https://en.wikipedia.org/wiki/Page (computer memory)
https://en.wikipedia.org/wiki/Page table
https://en.wikipedia.org/wiki/Virtual memory

http://pages.cs.wisc.edu/~remzi/OSTEP
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Virtual_memory

Binghamton CS-550

University Spring 2020

Memory Management

* Ideally, programmers want memory that is:
* Large
* Fast
* Persistent (non-volatile)

Binghamton CS-550

University Spring 2020

The Memory Hierarchy

1 nsec

10 nsec

<1KB

1 MB

~4GB

~1OTN 10 msec

Aoeden

Binghamton CS-550

University Spring 2020

Basic Memory Management

* Assumption: Single user process must share memory with 0OS

OxFFFF... Operating Device Drivers
System in in ROM
ROM
User
Program
User Program
User
Program
Operating Operating
System in System in
0x00000000 RAM RAM

Binghamton CS-550

University Spring 2020

Mainframe Memory Mgmt: Overlays

User Storage

-

funcl

Overlay 1 Overlay 2

main

Operating
System in
RAM

Binghamton CS-550

University Spring 2020

Mainframe Memory Mgmt: Overlays

User Storage

.

func1l

Overlay 1 Overlay 2

main

Operating
System in
RAM

Binghamton CS-550

University Spring 2020

Fixed Partition Memory Management

* Assumes multiple CPUs working on a single memory

Multiple Input Queues (Supermarket Checkout) Single Input Queue (Dept. Store Checkout)
iy 800K
Partition4 | " Partition 4
700K 700K
s 600K
Partition3 | Partition 3
500K 500K
400K 400K

Partition 2 300K Partition 2 300K

. 200K .
m Partition 1 Partition 1

100K 100K

0S 0S
0 0

200K

Binghamton CS-550

University Spring 2020

Relocation

* How do we write programs that can get loaded in different
o
partltlons] Programmer doesn't know
* load Rx,;memory_address where the data will be stored!

* Solution: Relocation
* Program a relative address - from the beginning of the program

* Operating system must calculate the physical address
* Program loaded in Partition 2, so base is 200K
*]load RX,+0x3A
* OS Calculates physical address 200K + 3A = 20003A

Binghamton CS-550

University Spring 2020

Protecting Relocation

* When program running in partition 2 asks for memory, the OS
should prevent getting values from partition 3

* Solution: OS keeps base and limit of the partition where program
is loaded
* e.g. Partition 2 - base is 200K, limit is 400K

* If physical address is greater than limit, then raise an error (segmentation
violation)

Binghamton CS-550

University Spring 2020

Variable Partition Size

* Make the partition just big enough to hold the process running in
that partition

10

Binghamton CS-550

University Spring 2020

TI m e S h arl n g Process A swapped out

(saved on disk)

- Process A swapped in
slice (read from disk)

1ough for all processes

* Each process gets a 3 unit

* Even with unlimited CPU, ory not b

Time

- o B
B B
1

A A

: A : - - - -
0S 0S 0S 0S

0S 0S 0S

11

Binghamton CS-550

University Spring 2020

Virtual Memory

* A 64 bit address can select any one of 24 bytes of memory
 Physical Memory is typically much less: 8G=233 bytes of memory
* In fact, a SINGLE PROCESS often does not fit in virtual memory

* Solution: Divide each process memory address space into "pages”
of memory

* OS decides which pages stay in real memory, and which get saved
on disk

* Each process gets the 7//usion that it has more memory than the
physical RAM

12

Binghamton CS-550

University Spring 2020

Virtual Memory

Virtual View Physical View

Page X Page X -

L

= Swap Space

- -- Page8 PageX
Page 2 Page 2 - Page 21 Page 24 - Page 17
Page 1 Page 1 - Page 14 Page0 Page 17 -
Page 0 Page 0 - -- Page 0 Page 12

s -

e

e e ——

13

Binghamton CS-550

University Spring 2020

Virtual Memory Shell Game
B 45 2

B 2 1
A 7 0
' Physical
NI Memory Address
Management <
Unit
258 1292 |, |22 |21 |20 | |22 |2' |20 2% |23 |..|212 |21 |20 .. |22 (2! |20
bes be, .. by, [EEEEE SR R RS EOR R s, T3y .. Iy, [REEEE R R S ORI RO
Page ID Page Offset Real Page Slot Page Offset

Page Fault

Binghamton CS-550

University Spring 2020

Memory Management Unit (MMU)

* Hardware that translates Virtual Address to Physical Address

CPU sends virtual
address to MMU

MicroProcessor Memory (RAM) Disk Controller

MMU sends physical
address to Memory

Bus
15

Binghamton CS-550

University Spring 2020

Address / Address Space Size

Number of bits in address Address Space Size

0 20=1

1 21=2

2 22 =4

10 210 = 1024 = 1K

12 212 = 4096 = 4K

16 216 = 65,536 = 64K

32 232 = 4,284,481,536 = 4G

64 264 = very big number = 16EB (Exbibytes)

16

Binghamton CS-550

University Spring 2020

Page Table

* An array that stores mapping from

44-48K
Vlrtu_al page numbers to slots in 10-44K
thSlcal RAM 36-40K Page Frame
32-36K
* The OS maintains: 28-32K
 One page table per user process, 24-28K 24-28K
and 20-24K 20-24K
» Another page table for kernel 16-20K 16-20K
memory 12-16K 12-16K
8-12K 8-12K
4-8K 4-8K
0-4K

Address | #lEHEL Virtual Page
48-52K -

0-4K

17/

Binghamton CS-550

University Spring 2020

Virtual Memory Shell Game (32 bit addr)

0000 3
FFFF D 1

Virtual Address

Physical Address
Memory

Management
Unit

F F F F D 0 3 C
Page ID Offset

O 0 O 1 0 3 C
Page Slot Offset

The address you
THINK you are using

The address in
hardware

Binghamton CS-550

University Spring 2020

Small Address Space MMU

\

Index Slot U
16 bit Virtual Addre:i L 1 1 IR 15 bit @szcal Address
Page Offset 11101000 Slot Offset
0010000000000100 | 110000000000100
. 11 0 0/0 1 1 1
1 01 111 0 1 0 Z l
1 01 0/0 0 0 1
16 4K pages=64K 1 00 1.1.0 1 0 8 4K pages=32K RAM
1 0 0 0/0 0 1 O
01 1 1,0 1 0 1
01 1 01 0 0 0
01 0 1,0 0 0 O
01 0 0/1 0 1 O
0 01 1/1 1 1 0
>0 o 101101
0O 0 01/0 0 1 O
0O 0 00T 0 1 O

19

Binghamton CS-550

University Spring 2020

Physical Address

Larger Address Space MMU

32 Bit Virtual Address
PT1 Index PT2 Index

Top Level
Page Table

1023

>

© R, N W A

CS-550
Spring 2020

Binghamton

University

Larger Address Space MMU

* Two level page tables
* Page tables are too big to fit in RAM inside the MMU

* Kept in main memory

* MMU finds Page Table 1 via Registers (CR2 in Intel)

21

Binghamton CS-550

University Spring 2020

Typical Page Table Entry (PTE)

CDF | RFF | MOD | PROT Used | Slot

Caching disabled flag

Slot Number or Page Frame
Physical Page Number for

Referenced Bit the virtual page represented by
Has this page been accessed this PTE

since the last time this bit was reset

Modified bit (Dirty bit) Present/Absent Flag
Has this page been written to [s this page in real memory

Protection bits
RWX?

Binghamton CS-550

University Spring 2020

Translation Lookaside Buffers (TLBS)

A TLB is a small cache that contains some Page Table Entries
Used to speed up translation of virtual to physical addresses
TLB is part of the MMU hardware (packaged on CPU chip)
TLB is NOT a data or instruction cache

On older x86 processors, TLB "flushed" every context switch
* No field in TLB to identify process
» Tagged TLB's contain process to reduce this overhead

IMI

1 0x0C2 Ox1F
1 0x014 0 RX 0x26
1 0x0B4 1 RW 0x1D
1 0x0B3 1 RW O0x3E
1 0x013 0 RX 0x32
1 0x015 0 R X 0x2D 23

Binghamton CS-550

University Spring 2020

Cold Start Penalty

 Cost of repopulating TLB (and other caches) when context
switches

 After a context switch, many (or all) TLB entries are invalidated
* Older TLB without process tags... entire TLB flushed

* New memory accesses by the new process probably cause a TLB
miss

* MMU must then lookup the page table in main memory to
populate the missing TLB entry
e Takes much more time than a cache hit

24

Binghamton CS-550

University Spring 2020

Tagged TLB

* A "tag" in each TLB entry identifies the process/thread context to
which the TLB belongs

* TLB entries for multiple processes/threads can be stored
simultaneously in the TLB

* TLB lookup checks the tag as well as the virtual page number

* With tags, context switch no longer requires TLB flush
* Reduces cold start penalty

25

Binghamton CS-550

University Spring 2020

Memory Translation Architectures

Architected Page Tables Architected TLBs

* Page table interface defined by e« TLB interface defined by ISA
ISA and understood by MMU and understood by MMU

* E.g. x86 architecture * E.g. alpha architecture

* TLB miss handled by MMU in * TLB miss handled by OS in
hardware software

* Page faults handled by OS in * Page faults handled by OS in
software software

* [SA specifies page table format ¢ ISA does not specify page table
format

26

Binghamton CS-550

University Spring 2020

Page Size impact on Page Tables

Small Page size Large Page Size
* Less internal fragmentation * More internal fragmentation
* Page swap less expensive * Page swap more expensive
* More pages * Fewer Pages
* bigger page table * Smaller page table

* Smaller "TLB coverage"” * Larger "TLB Coverage"

27

Binghamton CS-550

University Spring 2020

TLB Coverage

+ Maximum amount of mermory P corJcommens

mapped by the TLB 1 N Miss Miss Miss
* Maximum amount of memory that can
be accessed without TLB misses 4K Nx4K Pretty Low

* TLB Coverage = N x P bytes
e N = Number of entries in the TLB

T 264 Nx264 N address spaces
* P = Page size in bytes

with no misses! but
impossible to swap!

* N is fixed by hardware constraints...
to increase coverage, we must
increase P

28

Binghamton CS-550

University Spring 2020

Superpages

 Memory pages of larger sizes than the standard 4K pages
e supported by most modern CPUs

 Superpage size = 27 x base page size (usually 4K)

* Only one TLB entry per superpage
» Multiple (identical) page table-entries - one per base (4K) page

* Constraints:
* Contiguous physically and virtually
 Aligned physically and virtually
* Uniform protection attributes
* One reference bit, one dirty bit

29

Binghamton CS-550

University Spring 2020

Superpage TLB

Virtual Memory

superpage entry (size=4)

Virtual

Physical
address

address

Real Memory

30

Binghamton CS-550

University Spring 2020

Ungraded Quiz

Consider a machine that has a 32 bit virtual address space and 8K
page size

1. What s the total size (in bytes) of the virtual address space for
each process?

2. How many bits in the 32 bit address are needed to determine the
page number of the addres?

3. How many bits in the 32 bit address represent the byte offset
into the page?

4. How many page table entries are present in the page table?

31

Binghamton CS-550

University Spring 2020

Quiz Answers

1. Total size of the address space = 232
e 210 =1024,s0 232 =22%2Kor 21?M or 22 G = 4G

2. How many bits for page numbers?
* Number of pages = 232 / 23 * 210 = 219]og,(21°) = 19

3. How many bits for offsets?
* 32-19=13 or
* log,(8K)=log,(23*210)=13

4. How many page-table entries?
« Same as number of pages... 21°

32

