
Binghamton

University

CS-550

Spring 2020

Virtual Memory
Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces

https://en.wikipedia.org/wiki/Page_(computer_memory)

https://en.wikipedia.org/wiki/Page_table

https://en.wikipedia.org/wiki/Virtual_memory

1

Chap 3

Chap 13-24

http://pages.cs.wisc.edu/~remzi/OSTEP
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Virtual_memory


Binghamton

University

CS-550

Spring 2020

Memory Management

• Ideally, programmers want memory that is:
• Large

• Fast

• Persistent (non-volatile)

2



Binghamton

University

CS-550

Spring 2020

Sp
ee

d

The Memory Hierarchy

C
o

st

C
ap

acity

1 nsec

2 nsec

10 nsec

10 msec

< 1 KB

1 MB

~4GB

~10TB



Binghamton

University

CS-550

Spring 2020

Basic Memory Management

• Assumption: Single user process must share memory with OS

4

User 
Program

0xFFFF…

0x00000000

Operating 
System in 

RAM

Operating 
System in

ROM

User
Program

User Program

Operating 
System in 

RAM

Device Drivers
in ROM



Binghamton

University

CS-550

Spring 2020

Mainframe Memory Mgmt: Overlays

5

User Storage

Operating 
System in 

RAM

func3

func2

func1

main

Overlay 1

func3

func2

Overlay 2

func5

func4



Binghamton

University

CS-550

Spring 2020

Mainframe Memory Mgmt: Overlays

6

User Storage

Operating 
System in 

RAM

func5

func4

func1

main

Overlay 1

func3

func2

Overlay 2

func5

func4



Binghamton

University

CS-550

Spring 2020

Fixed Partition Memory Management

• Assumes multiple CPUs working on a single memory

7

Partition 4
800K

Partition 3

700K

600K

500K

Partition 2

400K

300K

Partition 1
200K

OS
100K

0

P1P5

P2

P3P4P6

Multiple Input Queues (Supermarket Checkout)

Partition 4
800K

Partition 3

700K

600K

500K

Partition 2

400K

300K

Partition 1
200K

OS
100K

0

P1

P2

P3

P4

P5P6

Single Input Queue (Dept. Store Checkout)



Binghamton

University

CS-550

Spring 2020

Relocation

• How do we write programs that can get loaded in different 
partitions?
• load Rx,memory_address

• Solution: Relocation
• Program a relative address – from the beginning of the program

• Operating system must calculate the physical address
• Program loaded in Partition 2, so base is 200K

• load RX,+0x3A

• OS Calculates physical address 200K + 3A = 20003A

8

Programmer doesn't know
where the data will be stored!



Binghamton

University

CS-550

Spring 2020

Protecting Relocation

• When program running in partition 2 asks for memory, the OS 
should prevent getting values from partition 3

• Solution: OS keeps base and limit of the partition where program 
is loaded
• e.g. Partition 2 – base is 200K, limit is 400K

• If physical address is greater than limit, then raise an error (segmentation 
violation)

9



Binghamton

University

CS-550

Spring 2020

Variable Partition Size

• Make the partition just big enough to hold the process running in 
that partition

10

Free
Free

Free Free Free

C C C

B B B B

A A A Free

Free

D

OS OS OS OS OS

Time



Binghamton

University

CS-550

Spring 2020

Process A swapped in
(read from disk)

Process A swapped out
(saved on disk)

Time Sharing 

• Each process gets a 3 unit time slice

• Even with unlimited CPU, memory not big enough for all processes

11

Free
Free

Free Free Free
Free Free

C C C B B

A AB B B
Free

A A A

Free

D D D Free

OS OS OS OS OS OS OS

Time



Binghamton

University

CS-550

Spring 2020

Virtual Memory

• A 64 bit address can select any one of 264 bytes of memory

• Physical Memory is typically much less: 8G=233 bytes of memory

• In fact, a SINGLE PROCESS often does not fit in virtual memory

• Solution: Divide each process memory address space into "pages" 
of memory

• OS decides which pages stay in real memory, and which get saved 
on disk

• Each process gets the illusion that it has more memory than the 
physical RAM

12



Binghamton

University

CS-550

Spring 2020

Virtual Memory

Virtual View

Proc A Proc B Proc C

Page X Page X Page X

… …

Page 2 Page 2 Page 2

Page 1 Page 1 Page 1

Page 0 Page 0 Page 0

Physical View

RAM

Page 44

Page 10

Page 13

Page 45

Page 2

Page 7

13

Swap Space

Page 4 Page 13 Page 8 Page X

Page 21 Page 24 Page 42 Page 17

Page 14 Page 0 Page 17 Page 54

Page 89 Page 64 Page 0 Page 12

… … … ….

Swap 
In

Swap 
Out



Binghamton

University

CS-550

Spring 2020

Virtual Memory Shell Game

Memory
Management
Unit

Virtual
Address

Physical
Address

263 262 … 212 211 210 … 22 21 20

b63 b62 … b12 b11 b10 … b2 b1 b0

Page ID Page Offset

232 231 … 212 211 210 … 22 21 20

r32 r31 … r12 b11 b10 … b2 b1 b0

Real Page Slot Page Offset

Page Fault

Proc Page Slot

B 45 2

B 2 1

A 7 0

Slot RAM

5 Page 44

4 Page 10

3 Page 13

2 Page 45

1 Page 2

0 Page 7



Binghamton

University

CS-550

Spring 2020

Memory Management Unit (MMU)

• Hardware that translates Virtual Address to Physical Address

15

MicroProcessor

CPU

MMU

Memory (RAM) Disk Controller

Bus

CPU sends virtual 
address to MMU

MMU sends physical
address to Memory



Binghamton

University

CS-550

Spring 2020

Address / Address Space Size

Number of bits in address Address Space Size

0 20 = 1

1 21 = 2

2 22 = 4

10 210 = 1024 = 1K

12 212 = 4096 = 4K

16 216 = 65,536 = 64K

32 232 = 4,284,481,536 = 4G

64 264 = very big number = 16EB (Exbibytes)

16



Binghamton

University

CS-550

Spring 2020

Page Table

• An array that stores mapping from 
virtual page numbers to slots in
physical RAM

• The OS maintains:
• One page table per user process,

and

• Another page table for kernel 
memory

17

Address Page Tab

… -

48-52K -

44-48K -

40-44K 7

36-40K -

32-36K - RAM

28-32K - 28-32K

24-28K - 24-28K

20-24K 4 20-24K

16-20K - 16-20K

12-16K - 12-16K

8-12K 8 8-12K

4-8K - 4-8K

0-4K - 0-4K

Virtual Page

Page Frame



Binghamton

University

CS-550

Spring 2020

Virtual Memory Shell Game (32 bit addr)

Memory
Management
Unit

Virtual Address Physical Address

F F F F D 0 3 C

Page ID Offset

0 0 0 1 0 3 C

Page Slot Offset

Page Slot

0000 3 2

FFFF D 1

The address you 
THINK you are using

The address in 
hardware

Offset from 
start of page

Offset from 
start of page



Binghamton

University

CS-550

Spring 2020

Small Address Space MMU

19

16 bit Virtual Address

Page Offset

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

Page Table

Index Slot U

1 1 1 1 0 1 0 0

1 1 1 0 1 0 0 0

1 1 0 1 1 1 1 0

1 1 0 0 0 1 1 1

1 0 1 1 1 0 1 0

1 0 1 0 0 0 0 1

1 0 0 1 1 0 1 0

1 0 0 0 0 0 1 0

0 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0

0 1 0 1 0 0 0 0

0 1 0 0 1 0 1 0

0 0 1 1 1 1 1 0

0 0 1 0 1 1 0 1

0 0 0 1 0 0 1 0

0 0 0 0 1 0 1 0

15 bit Physical Address

Slot Offset

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

16 4K pages = 64K 8 4K pages = 32K RAM



Binghamton

University

CS-550

Spring 2020

Larger Address Space MMU

20

32 Bit Virtual Address

PT1 Index PT2 Index Offset

0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

Top Level 
Page Table

1023

…

4

3

2

1

0

PT2

1023

…

4

3

2

1

0

PT2

PT2

PT2

PT2

PT2

Physical Address

Slot Offset



Binghamton

University

CS-550

Spring 2020

Larger Address Space MMU

• Two level page tables

• Page tables are too big to fit in RAM inside the MMU
• Kept in main memory

• MMU finds Page Table 1 via Registers (CR2 in Intel)

21



Binghamton

University

CS-550

Spring 2020

Typical Page Table Entry (PTE)

CDF REF MOD PROT Used Slot

22

Caching disabled flag

Referenced Bit
Has this page been accessed

since the last time this bit was reset

Modified bit (Dirty bit)
Has this page been written to

Protection bits
RWX?

Present/Absent Flag
Is this page in real memory

Slot Number or Page Frame
Physical Page Number for

the virtual page represented by
this PTE



Binghamton

University

CS-550

Spring 2020

Translation Lookaside Buffers (TLBs)

• A TLB is a small cache that contains some Page Table Entries

• Used to speed up translation of virtual to physical addresses

• TLB is part of the MMU hardware (packaged on CPU chip)

• TLB is NOT a data or instruction cache

• On older x86 processors, TLB "flushed" every context switch
• No field in TLB to identify process
• Tagged TLB's contain process to reduce this overhead

23

Valid Virt.Page Mod Prot Page Frame

1 0x0C2 1 RW 0x1F

1 0x014 0 R X 0x26

1 0x0B4 1 RW 0x1D

1 0x0B3 1 RW 0x3E

1 0x013 0 R X 0x32

1 0x015 0 R X 0x2D



Binghamton

University

CS-550

Spring 2020

Cold Start Penalty

• Cost of repopulating TLB (and other caches) when context 
switches

• After a context switch, many (or all) TLB entries are invalidated
• Older TLB without process tags… entire TLB flushed

• New memory accesses by the new process probably cause a TLB
miss

• MMU must then lookup the page table in main memory to 
populate the missing TLB entry
• Takes much more time than a cache hit

24



Binghamton

University

CS-550

Spring 2020

Tagged TLB

• A "tag" in each TLB entry identifies the process/thread context to 
which the TLB belongs

• TLB entries for multiple processes/threads can be stored 
simultaneously in the TLB
• TLB lookup checks the tag as well as the virtual page number

• With tags, context switch no longer requires TLB flush
• Reduces cold start penalty

25



Binghamton

University

CS-550

Spring 2020

Memory Translation Architectures

Architected Page Tables

• Page table interface defined by 
ISA and understood by MMU

• E.g. x86 architecture

• TLB miss handled by MMU in 
hardware

• Page faults handled by OS in 
software

• ISA specifies page table format

Architected TLBs

• TLB interface defined by ISA 
and understood by MMU

• E.g. alpha architecture

• TLB miss handled by OS in 
software

• Page faults handled by OS in
software

• ISA does not specify page table 
format

26



Binghamton

University

CS-550

Spring 2020

Page Size impact on Page Tables

Small Page size

• Less internal fragmentation

• Page swap less expensive

• More pages
• bigger page table

• Smaller "TLB coverage"

Large Page Size

• More internal fragmentation

• Page swap more expensive

• Fewer Pages
• Smaller page table

• Larger "TLB Coverage"

27



Binghamton

University

CS-550

Spring 2020

TLB Coverage

• Maximum amount of memory 
mapped by the TLB
• Maximum amount of memory that can

be accessed without TLB misses

• TLB Coverage = N x P bytes
• N = Number of entries in the TLB
• P = Page size in bytes

• N is fixed by hardware constraints… 
to increase coverage, we must 
increase P

28

P Cov Comments

1 N Miss Miss Miss

4K Nx4K Pretty Low

264 Nx264 N address spaces 
with no misses! but 
impossible to swap!



Binghamton

University

CS-550

Spring 2020

Superpages

• Memory pages of larger sizes than the standard 4K pages
• supported by most modern CPUs

• Superpage size = 2? x base page size (usually 4K)

• Only one TLB entry per superpage
• Multiple (identical) page table-entries – one per base (4K) page

• Constraints:
• Contiguous physically and virtually
• Aligned physically and virtually
• Uniform protection attributes
• One reference bit, one dirty bit

29



Binghamton

University

CS-550

Spring 2020

Superpage TLB

30

Virtual Memory

TLB

base page entry (size=1)

superpage entry (size=4)

Real Memory

Virtual 
address

Physical
address



Binghamton

University

CS-550

Spring 2020

Ungraded Quiz

Consider a machine that has a 32 bit virtual address space and 8K 
page size

1. What is the total size (in bytes) of the virtual address space for
each process?

2. How many bits in the 32 bit address are needed to determine the 
page number of the addres?

3. How many bits in the 32 bit address represent the byte offset
into the page?

4. How many page table entries are present in the page table?

31



Binghamton

University

CS-550

Spring 2020

Quiz Answers

1. Total size of the address space = 232 

• 210 =1024, so 232 = 222 K or 212M or 22 G = 4G

2. How many bits for page numbers?
• Number of pages = 232 / 23 * 210 = 219, log2(219) = 19

3. How many bits for offsets?
• 32-19=13 or

• log2(8K)=log2(23*210)=13

4. How many page-table entries?
• Same as number of pages… 219

32


