
Binghamton

University

CS-550

Spring 2020

System Calls
Modern Operating Systems, by Andrew Tanenbaum

1

Chap 1.6.3,
10.3.2, 10.7.2

Binghamton

University

CS-550

Spring 2020

Interfaces: Operating System

2

User Software

Execution Hardware

User ISA

Operating System

System ISA

syscall

Binghamton

University

CS-550

Spring 2020

System Calls (Defined)

• User level code - limited privilege code in a user address space

• Kernel code – full privilege code in the kernel address space

• Question: How do we transfer control to execute kernel functions
on behalf of a user?
• Enable kernel mode code to run
• Enable kernel full privilege
• Enable kernel access to user address space as required
• Prevent user from accessing full privilege
• Return to user once kernel function is complete

3

Binghamton

University

CS-550

Spring 2020

System Calls

4

User Mode Process

Kernel – Supervisor Mode

Syscall Entry Syscall Return

Binghamton

University

CS-550

Spring 2020

System Call Table

• Pre-defined list of kernel functions available to the user
• Restrict user access to kernel functions to just this list!

• Each kernel function is numbered – index into the system call table

5

Index Function

0 read

1 write

2 open

… …

313 finit_module

Kernel

Binghamton

University

CS-550

Spring 2020

System Call Invocation

1. System call invoked via special SYSCALL instruction
• SYSENTER/int 0x80/lcall7/lcall27 etc.
• Syscall number and arguments pass via registers and optionally stack

2. CPU saves process execution state

3. CPU switches to higher privilege mode & jumps to kernel entry point

4. OS: invokes function at system_call_table[syscall_number]
• For performance, usually in the execution context of the calling process, but sometimes in a

separate context for better security

5. If syscall involves blocking, calling process may be blocked

6. When syscall is complete, the calling process is moved to ready state

7. Saved process state is restored

8. CPU switches back to user privilege using SYSEXIT/iret instructions

9. Process returns from system call and continues

6

E

n

t

r

y

R

e

t

u

r

n

Binghamton

University

CS-550

Spring 2020

System Library Wrappers

• OS Writers normally provide a library of system call wrappers
• e.g. libc, glibc, etc.

• Wrapper functions hides the low level details of:
• Preparing arguments

• Passing arguments to kernel

• Switching to supervisor mode

• Fetching and returning results to application

• Reduce OS dependency – increase portability

7

Binghamton

University

CS-550

Spring 2020

Implementing System Calls

8

Binghamton

University

CS-550

Spring 2020

Writing the System Call Handler

• Write the system call as a kernel function
• Be careful when reading/writing user space – use copy_to_user() or copy_from_user()

routines which check for you

• Use the "asmlinkage" macro to write code in C
• Example with integer return value and no arguments

asmlinkage int sys_foo(void) {
printk(KERN_ALERT "I am foo. UID is %d\n",current->uid);
return current->uid;

}
• Example with integer return value and one primitive argument

asmlinkage int sys_foo(int arg) {
printk(KERN_ALERT "This is foo. Argument is %d\n",arg);
return arg;

}

9

Binghamton

University

CS-550

Spring 2020

Example System Call Handler
asmlinkage long sys_close(unsigned int fd) {

struct file *filp;

struct files_struct * files = current->files;

struct fdtable *fdt;

spin_lock(&files->file_lock);

fdt = files_fdtable(files)

if (fd >=fdt->max_fds) goto out_unlock;

filp = fdt->fd[fd]

if (!filp) goto out_unlock;

…

out_unlock:

spin_unlock(&files->file_lock);

return –EBADF;

}

10

Verify argument
passed in from

user!

Return a negative
errno if there is a

problem

current is a pointer
to caller info

Binghamton

University

CS-550

Spring 2020

Example System Call Handler
asmlinkage ssize_t sys_read (unsigned int fd, char ___user *buf, size_t count) {

…

if (!access_ok(VERIFY_WRITE, buf, count)) return –EFAULT;

…

}

11

Verify argument
passed in from

user!
Return a negative
errno if there is a

problem

call-by-reference
argument

user-space pointer

Binghamton

University

CS-550

Spring 2020

Example System Call Handler
asmlinkage int sys_foo (void) {

static int count = 0;

printk(KERN_ALERT "Hello World! count=%d\n",count++);

return –EFAULT;

}

EXPORT_SYMBOL(sys_foo);

12

Don't forget to
export sys_foo!

What happens to
this return value?

Binghamton

University

CS-550

Spring 2020

Update Kernel's Syscall Table

• Create an entry in the kernel's system call table
• Kernel's system call table is built from syscall_64.tbl

• In the Linux source at arch/x86/entry/syscalls/syscall_64.tbl

• Each entry has 4 fields:
• Syscall number – pick one greater than the last one there

• application binary interface (abi) : "common"/"64", or "x32" (we will use "common")

• Name of the entry – e.g. foo

• function pointer of the module function that implements the system call – e.g. sys_foo

13

Binghamton

University

CS-550

Spring 2020

Example syscall_64.tbl
#

64-bit system call numbers and entry vectors

#

The format is:

<number> <abi> <name> <entry point>

#

The __x64_sys_*() stubs are created on-the-fly for sys_*() system calls

#

The abi is "common", "64" or "x32" for this file.

#

0 common read __x64_sys_read

1 common write __x64_sys_write

2 common open __x64_sys_open

3 common close __x64_sys_close

…

546 x32 preadv2 __x32_compat_sys_preadv64v2

547 x32 pwritev2 __x32_compat_sys_pwritev64v2

and our new entry…

548 common foo sys_foo

14

Binghamton

University

CS-550

Spring 2020

User invocation of syscall

• Use the syscall(…) library function (do a "man syscall" for details)

• For instance:

#define __NR_sys_foo 548

ret = syscall(__NR_sys_foo); // For no argument foo

or

ret = syscall(__NR_sys_foo,arg); // For one argument foo

See IBM Developer System Call Tutorial

15

https://developer.ibm.com/tutorials/l-system-calls/

Binghamton

University

CS-550

Spring 2020

Example User Program
#include <stdio.h>

#include <errno.h>

#include <unistd.h>

#include <linux/unistd.h>

#define __NR_sys_foo 548

int main(void) {

int ret;

while(1) {

ret = syscall(__NR_sys_foo);

printf("ret = %d errno = %d\n", ret, errno);

sleep(1);

}

return 0;

}

16

Define the syscall number
Standard syscalls are in linux/unistd.h

Making the system call

syscall sets errno!

