Binghamton CS-550

University Spring 2020

System Calls

Chap 1.6.3,
Modern Operating Systems, by Andrew Tanenbaum [ 10.3.2,10.7.2 ]




Binghamton CS-550

University Spring 2020
Interfaces: Operating System

syscall

User Software

Operating System

— I

Execution Hardware System ISA




Binghamton CS-550

University Spring 2020

System Calls (Defined)

* User level code - limited privilege code in a user address space
* Kernel code - full privilege code in the kernel address space

* Question: How do we transfer control to execute kernel functions
on behalf of a user?
* Enable kernel mode code to run
Enable kernel full privilege
Enable kernel access to user address space as required
Prevent user from accessing full privilege
Return to user once kernel function is complete



Binghamton CS-550

University Spring 2020

System Calls

User Mode Process

Syscall Entry Syscall Return

Kernel - Supervisor Mode



Binghamton CS-550

University Spring 2020

System Call Table

* Pre-defined list of kernel functions available to the user
* Restrict user access to kernel functions to just this list!

* Each kernel function is numbered - index into the system call table

Index | Function
0 read

write

2 open

313 finit module




Binghamton CS-550

University Spring 2020

System Call Invocation

1. System call invoked via special SYSCALL instruction
 SYSENTER/int 0x80/Icall7 /Icall27 etc.
e Syscall number and arguments pass via registers and optionally stack

2. CPU saves process execution state
3. CPU switches to higher privilege mode & jumps to kernel entry point

4. 0S: invokes function at system_call_table[syscall_number]

* For performance, usually in the execution context of the calling process, but sometimes in a
separate context for better security

[f syscall involves blocking, calling process may be blocked

When syscall is complete, the calling process is moved to ready state
Saved process state is restored

CPU switches back to user privilege using SYSEXIT /iret instructions
Process returns from system call and continues

< = < 5 [

o 0N oMo

5 = S + o X




Binghamton CS-550

University Spring 2020

System Library Wrappers

* OS Writers normally provide a library of system call wrappers
* e.g. libg, glibc, etc.

* Wrapper functions hides the low level details of:
* Preparing arguments
* Passing arguments to kernel
» Switching to supervisor mode
* Fetching and returning results to application

* Reduce OS dependency - increase portability



CS-550

Spring 2020

Implementing System Calls



Binghamton CS-550

University Spring 2020

Writing the System Call Handler

* Write the system call as a kernel function

* Be careful when reading/writing user space - use copy_to_user() or copy_from_user()
routines which check for you

* Use the "asmlinkage"” macro to write code in C
* Example with integer return value and no arguments
asmlinkage int sys_foo(void) {

printk( KERN_ALERT "I am foo. UID is %d\n",current->uid);
return current->uid;

* Example with integer return value and one primitive argument

asmlinkage int sys_foo(int arg) {
printk( KERN_ALERT "This is foo. Argument is %d\n",arg);
return arg;



Binghamton CS-550

University Spring 2020

Example System Call Handler

asmlinkage long sys_close(unsigned int fd) {

struct file "‘filp; currentis a pomter

to caller info

struct files_struct * files = current->files;
struct fdtable *fdt;
spin_lock(&files->file_lock);

fdt = files_fdtable(files)

if (fd >=fdt->max_fds) goto out_unlock;
filp = fdt->fd[fd]

if ('filp) goto out_unlock;

Verify argument
passed in from
user!

out_unlock:

spin_unlock(&files->file_lock);
return -EBADF,

Return a negative
errno if there is a
} problem

10



Binghamton CS-550

University Spring 2020
Example System Call Handler

asmlinkage ssize_t sys_read (unsigned int fd, char

user *buf, size_t count) {

if (laccess_ok( VERIFY_WRITE, buf, count)) return -EFAULT;

call-by-reference
argument
user-space pointer

Verify argument
passed in from

user! :
Return a negative

errno if there is a
problem

11



Binghamton CS-550

University Spring 2020
Example System Call Handler

asmlinkage int sys_foo (void) {

static int count = O;
printk( KERN_ALERT "Hello World! count=%d\n",count++);
return -EFAULT;

}
EXPORT_SYMBOL(sys_foo);

What happens to
this return value?

Don't forget to
export sys_foo!

12



Binghamton CS-550

University Spring 2020

Update Kernel's Syscall Table

* Create an entry in the kernel's system call table
* Kernel's system call table is built from syscall_64.tbl
* In the Linux source at arch/x86 /entry/syscalls/syscall_64.tbl
* Each entry has 4 fields:

 Syscall number - pick one greater than the last one there

* application binary interface (abi) : "common"/"64", or "x32" (we will use "common")
* Name of the entry - e.g. foo

 function pointer of the module function that implements the system call - e.g. sys_foo

13



Binghamton CS-550

University Spring 2020
Example syscall 64.tbl
z 64-bit system call numbers and entry vectors
#

# The format 1is:
# <number> <abi> <name> <entry point>

#

# The __x64_sys_*() stubs are created on-the-fly for sys_*() system calls
#

# The abi is "common", "64" or '"x32" for this file.

#

0 common read __X64_sys_read

1 common write __X64_sys_write

2 common open __Xb4_sys_open

3 common close __X64_sys_close

546 x32 preadv?2 __Xx32_compat_sys_preadv64v2
547 x32 pwritev?2 __X32_compat_sys_pwritev64v2

# and our new entry..
548 common foo sys_foo

14



Binghamton CS-550

University Spring 2020

User invocation of syscall

* Use the syscall(...) library function (do a "man syscall” for details)
* For instance:

#define __ NR_sys_foo 548

ret = syscall(_NR_sys_foo); // For no argument foo

or

ret = syscall(_NR_sys_foo,arg); // For one argument foo

See IBM Developer System Call Tutorial

15


https://developer.ibm.com/tutorials/l-system-calls/

Binghamton CS-550

University Spring 2020

Example User Program

#include <stdio.h>
Define the syscall number

#include <errno.h> Standard syscalls are in linux/unistd.h

#include <unistd.h>
#include <linux/unistd.h>
#define __NR_sys_foo 548

int main(void) { Making the system call
int ret;
while(1) {
ret = syscall(__NR_sys_foo);
printf("ret = %d errno = %d\n", ret, errno

sleep(1);
}

return O;

16



