Binghamton CS-550

University Spring 2020

Kernel Modules

Modern Operating Systems, by Andrew Tanenbaum /|| Chap 10.5.5 1

The Linux Kernel Module Programming Guide, by Salzman, Burian
and Pomerantz

Binghamton CS-550

University Spring 2020

OS Internals

* So far, we have USED the operating system
 We've studied about processes, IPC, Threads, Locks, Semaphores, etc.

* Now let's open up the patient

Binghamton CS-550

University Spring 2020

Kernel

* The kernel contains privileged code
* Code which is allowed to do things ordinary programs are not allowed to
do
* Kernel contains "trusted" software
* With great power comes responsibility
 We trust the kernel to be fair, honest, and discreet

* Problem: Kernel size
« We want the kernel to do more and more for us - more devices, etc.
« We don't want the kernel to take over the world!

Binghamton CS-550

University Spring 2020

Kernel Modules

 Divide the kernel up into "kernel proper"” and kernel modules
* "kernel proper" is the base kernel

* Enable dynamic loading and unloading of kernel modules
* Load a module ONLY when it is needed
* Unload a module when you no longer need it

* Reduces kernel size, frees up memory and other resources

* Enables independent kernel development
* For instance, different modules for device drivers for different devices

Binghamton

University

CS-550
Spring 2020

Kernel Module Mechanics

Kernel

module

insmod init_module()
<
<
>
> :
y» module functions

rmmod cleanup_module()

kernel proper

register_capaibility()

EEEENENEEE

kernel functions

printk()

unregister_capaibility ()

Binghamton CS-550

University Spring 2020

Hello World Kernel Module

#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL™);

See kernel module examples

// called when module i1s installed

int __1nit init_module() {
printk (KERN_ALERT "mymodule: Hello World!\n");
return O;

}

// called when module i1s removed
void __exit cleanup_module() {

printk (KERN_ALERT "mymodule: Goodbye, cruel world!!\n");
}

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/kernel_module/hellon.c

Binghamton CS-550

University Spring 2020

Compiling the Module

 Maketfile

* 0bj-m := testmod.o
* module_objs :=filel.o fileZ.0 # For multiple files

_ Path to kernel source build an external module @ make target
* Compile:

« > make -C /lib.modules/($uname -r)/build M="pwd" modules

path where module Makefile resides

* More information on kernel Makefiles
* https://www.kernel.org/doc/Documentation/kbuild /makefiles.txt
* https://www.kernel.org/doc/Documentation/kbuild/modules.txt

https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/modules.txt

Binghamton CS-550

University Spring 2020

Two-pass Makefile

ifeq ($(KERNELRELEASE),) # If KERNELRELEASE is not specified
This is the local (first part) of the make.
It has recipes for making and installing modules as well as cleaning up

by default, "modules” target is built
KERNELDIR ?= /lib/modules/$(shell uname -r)/build

modules:
$(MAKE) -C $(KERNELDIR) M=($PWD) modules

Invokes make in the kernel directory... this is a kernel make
Makefile in KERNELDIR invokes this Makefile, which uses the "else" clause

else
obj-m := hello.o # Make knows how to do the rest! (including KERNRELEASE)

endif

Binghamton CS-550

University Spring 2020

Compiled Kernel Modules

Installable
Module

hello.c hello.o Linker hello.ko

kernel includes

kernel object

Binghamton CS-550

University Spring 2020

Kernel Module Utilities

> sudo insmod hello.ko # "Inserts” (dynamically loads) a module
* Calls sys_init_module()
* Calls vmalloc() to allocated kernel memory
* Copies module binary to memory
* Resolves kernel references (e.g. printk) via kernel symbol table
* Calls module's initialization function

> modprobe hello.ko # Same as insmod, but installs references too

>sudo rmmod hello # Removes a module
* Fails if module is still being used

>sudo Ismod # Tells what modules are current loaded
* Internally, reads /proc/modules

10

Binghamton CS-550

University Spring 2020

Linux Kernel Licensing

* Linux Kernel licensed with the GNU General Public License (GPL)
* See https://en.wikipedia.org/wiki/GNU General Public License
» Allows users to modify software as they see fit
* Requires source code to be distributed with the binaries

* Question: Does a kernel module fall under the GPL license?

e Device drivers do not have to be licensed under GPL, but the mainstream
drivers are

e See https://lwn.net/Articles/154602/ for the difference between
EXPORT_SYMBOL and EXPORT_SYMBOL_GPL

11

https://en.wikipedia.org/wiki/GNU_General_Public_License
https://lwn.net/Articles/154602/

Binghamton CS-550

University Spring 2020

Module Coding Hints

* Modules can call other kernel functions
 such as printk, kmalloc, kfree, etc.
* But only those that are exported by the kernel using EXPORT (name)
* See /proc/kallsyms for a list of kernel symbols exported

* Kernel Code (including modules) CANNOT call user library functions
* Such as mallog, free, printf, etc.

 Kernel Code should not include standard header files
e Such as stdio.h, stdlib.h, etc.

* Segmentation fault in the kernel can crash the entire system!
e Often harmless in user space

* The version of the kernel is compiled into a module
* Need to recompile for each version of the kernel it can be linked to

12

Binghamton CS-550

University Spring 2020

Concurrency Issues

* Different processes can invoke your module concurrently
* Different parts of your module can be active at the same time

* Device interrupts can trigger Interrupt Service Routines (ISRs)
* ISR may access data that your module uses as well

* Kernel timers can execute concurrently with your module
* May access common data

* You may have a symmetric multi-processor (SMP) system
* Multiple processes may be executing your code simultaneously

* Module (and most kernel code) must be re-entrant
e Capable of multiple simultaneous executions

13

Binghamton

University

CS-550
Spring 2020

Error Handling

int

_init my_init_function(void){
int err=register_A(ptrl, " "skull"™);
if (err) goto fail_A;
err=register_B(ptr2,"skull");

if (err) goto fail_B;
err=register_C(ptr3,"skull");

if (err) goto fail_C;

return 0; // success

fail_C: unregister_B(ptr2,"skull");
fail_B: unregister_A(ptrl,"skull1™); —

fail_A: return err; // propagate
error

register/unregister take a pointer and name

void __exit my_cleanup_function(void) {

unregister_C(ptr3,"skull");
unregister_B(ptr2,"skull");
unregister_A(ptrl,"skull™);
return;

In case of failure, need to unregister every

successfulregistration

14

Binghamton CS-550

University Spring 2020

Module Paramete

Parameter name

 In hellon.c:
static char *whom = "worlg
static int howmany = 1;
module_param(howmany, int, S_IRUGO);
MODULE_PARM_DESC(howmany,"Number of times to print msg");
module_param(whom, charp, S_IRUGO);

permissions

» Command Line> insmod hellon.ko howmany=10 whom="Class"

* Description printed out with >modinfo hellon.ko
* See example: hellon.c

15

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/kernel_module/hellon.c

Binghamton CS-550

University Spring 2020

Character Devices In LInux

Implementing a device driver using kernel modules

16

Binghamton CS-550

University Spring 2020

Devices

 All devices connected to your computer are registered with the kernel, and
can be seen by inspecting the virtual file system: /dev

Major Number

* Each device is assigned a Major number and a Mine

crw-rw-rw- 1 root tty 5, 0 Feb 17 13:25 /dev/tty
Crw——W==== O Feb 17 11:01 /dev/tty0

'c' for character

_ _ _ 'b’ for block
* Major number corresponds to device driver software

e see linux source Documentation: devices.txt

e Minor number controls variations in the hardware

17

Binghamton CS-550

University Spring 2020

Device Drivers

* Kernel software responsible for bridging between standard
operating system device mechanisms, and the actual hardware

* From an OS point of view, there are three kinds of device drivers:
* Character oriented drivers, such as keyboard and mouse
* Block oriented devices such as hard disks, CD drives
* Network (message oriented) devices such as network interface cards

* (Others, such as USB, SCSI, Firewall, 120 often variations on one of the
above)

18

Binghamton CS-550

University Spring 2020

Device Communication (w/ kernel)

* Character (char) devices
* Read/Write a single byte at a time
* Use a byte-stream abstraction

* Block devices
* Read/Write a fixed block size chunk of data
 Often use buffers to imitate character (byte-stream) abstraction

* Network devices

* Read/Write packets of varying size
 Size of packetincluded in the packet header

» Message abstraction

19

Binghamton CS-550

University Spring 2020

Character device drivers

* OS expects each character device driver to implement a set of pre-
defined functions (e.g. open, close, read, write, Iseek, ioctl, ...)
known as file operations

* In linux, there is a structure, struct file_operations, defined in "fs.h"
that consists of function pointers to each file operation

* When you register a character device driver, you must supply a
file_operations structure so the kernel knows what to call

20

Binghamton CS-550

University Spring 2020

"Miscellaneous" Devices

* Character devices used for simple device drivers
* Major number = 10

* Each device gets it's own minor number
* Requested at registration (mkmod) time

21

Binghamton CS-550

University Spring 2020

Implementing a misc. device driver

 Step 1: Declare a device struct

static struct miscdevice my_misc_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = “my device",
fops = &my_fops

};

22

Binghamton CS-550

University Spring 2020

Implementing a misc. device driver

 Step 2: Declare a file operations structure

static struct file_operations my_fops= {
.owner = THIS_MODULE,
.0pen = my_open,
.close = my_close,

Alseek = noop_llseek
5

 Uninitialized function pointers get a sensible default value

23

Binghamton CS-550

University Spring 2020

Implementing a misc. device driver

* Step 3: Register the device in module_init function

static int __init my_module_init(){
misc_register(&my_misc_device);

5

* Registration creates an entry in /dev for "mydevice”
* and connects file operations to my_fops

24

Binghamton CS-550

University Spring 2020

Implementing a misc. device driver

 Step 4: Implement the fops functions
static ssize_t my_read(struct file *file, char __user * out, size_t size, loff_t * off) {

.s.b.rintf(buf, “Hello World\n”);
copy_to_user(out, buf, strlen(buf)+1);

}

* Don't forget to:
e allocate memory for buf,
* check if "out"” points to valid user memory using access_OK()
* check for errors after copy_to_user()

25

Binghamton CS-550

University Spring 2020

Implementing a misc. device driver

 Step 5: Don't forget to unregister the device when removing
module

static void __exit my_exit(void) {
misc_deregister(&my_misc_device);

26

Binghamton CS-550

University Spring 2020

After installing your device driver module

* User then opens the device:
fd = open("/dev/mydevice",O0_RDWR);

* OS then invokes my_open(inode,file) which returns a file
descriptor

27

Binghamton CS-550

University Spring 2020

Moving data in and out of the Kernel

* Each process has it's own address space

* The kernel has a kernel address space
» All kernel modules and the base kernel reside in this address space
unsigned long copy_to_user(void __user *dst,const void *src,unsigned long n);

 Copies from kernel space to user space

* Checks target is writable by access_ok(dst VERIFY_WRITE)
* If the result is true (non-zero), copy proceeds

* Returns number of bytes that could not be copied (success=0)
unsigned long copy_from_user(void *dst,const void __user *src,unsigned long n);
 Copies from user space to kernel space

28

CS-550

Binghamton
Spring 2020

University

Managing kernel heap space

* kmalloc() : allocates physically contiguous memory
void * kmalloc(size_t size,int flags);
* kzalloc() : allocates memory and sets it to zero

* vmalloc() : allocates virtually contiguous memory

* may not be physically contiguous
void * vmalloc(unsigned long size);

* kfree() : deallocation

29

