
Binghamton

University

CS-550

Spring 2020

Kernel Modules
Modern Operating Systems, by Andrew Tanenbaum

The Linux Kernel Module Programming Guide, by Salzman, Burian
and Pomerantz

1

Chap 10.5.5

Binghamton

University

CS-550

Spring 2020

OS Internals

• So far, we have USED the operating system
• We've studied about processes, IPC, Threads, Locks, Semaphores, etc.

• Now let's open up the patient

2

Binghamton

University

CS-550

Spring 2020

Kernel

• The kernel contains privileged code
• Code which is allowed to do things ordinary programs are not allowed to

do

• Kernel contains "trusted" software
• With great power comes responsibility

• We trust the kernel to be fair, honest, and discreet

• Problem: Kernel size
• We want the kernel to do more and more for us – more devices, etc.

• We don't want the kernel to take over the world!

3

Binghamton

University

CS-550

Spring 2020

Kernel Modules

• Divide the kernel up into "kernel proper" and kernel modules
• "kernel proper" is the base kernel

• Enable dynamic loading and unloading of kernel modules
• Load a module ONLY when it is needed

• Unload a module when you no longer need it

• Reduces kernel size, frees up memory and other resources

• Enables independent kernel development
• For instance, different modules for device drivers for different devices

4

Binghamton

University

CS-550

Spring 2020

Kernel Module Mechanics

5

Kernel

module

init_module()

module functions

cleanup_module()

kernel proper

register_capaibility()

capabilities

kernel functions

printk()
…

unregister_capaibility()

insmod

rmmod

Binghamton

University

CS-550

Spring 2020

Hello World Kernel Module

#include <linux/init.h>

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");

// called when module is installed

int __init init_module() {

printk(KERN_ALERT "mymodule: Hello World!\n");

return 0;

}

// called when module is removed

void __exit cleanup_module() {

printk(KERN_ALERT "mymodule: Goodbye, cruel world!!\n");

}

6

See kernel module examples

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/kernel_module/hellon.c

Binghamton

University

CS-550

Spring 2020

Compiling the Module

• Makefile
• obj-m := testmod.o

• module_objs := file1.o file2.o …. # For multiple files

• Compile:
• > make –C /lib.modules/($uname –r)/build M=`pwd` modules

• More information on kernel Makefiles
• https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

• https://www.kernel.org/doc/Documentation/kbuild/modules.txt

7

Path to kernel source build an external module make target

path where module Makefile resides

https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/modules.txt

Binghamton

University

CS-550

Spring 2020

Two-pass Makefile

ifeq ($(KERNELRELEASE),) # If KERNELRELEASE is not specified
This is the local (first part) of the make.
It has recipes for making and installing modules as well as cleaning up
by default, "modules" target is built
KERNELDIR ?= /lib/modules/$(shell uname –r)/build

modules:
$(MAKE) –C $(KERNELDIR) M=($PWD) modules

Invokes make in the kernel directory… this is a kernel make
Makefile in KERNELDIR invokes this Makefile, which uses the "else" clause

else
obj-m := hello.o # Make knows how to do the rest! (including KERNRELEASE)

endif

8

Binghamton

University

CS-550

Spring 2020

Compiled Kernel Modules

9

hello.c gcc hello.o Linker hello.ko

kernel objectkernel includes

Installable
Module

Binghamton

University

CS-550

Spring 2020

Kernel Module Utilities

> sudo insmod hello.ko # "Inserts" (dynamically loads) a module
• Calls sys_init_module()
• Calls vmalloc() to allocated kernel memory
• Copies module binary to memory
• Resolves kernel references (e.g. printk) via kernel symbol table
• Calls module's initialization function

> modprobe hello.ko # Same as insmod, but installs references too

>sudo rmmod hello # Removes a module
• Fails if module is still being used

>sudo lsmod # Tells what modules are current loaded
• Internally, reads /proc/modules

10

Binghamton

University

CS-550

Spring 2020

Linux Kernel Licensing

• Linux Kernel licensed with the GNU General Public License (GPL)
• See https://en.wikipedia.org/wiki/GNU_General_Public_License

• Allows users to modify software as they see fit

• Requires source code to be distributed with the binaries

• Question: Does a kernel module fall under the GPL license?
• Device drivers do not have to be licensed under GPL, but the mainstream

drivers are

• See https://lwn.net/Articles/154602/ for the difference between
EXPORT_SYMBOL and EXPORT_SYMBOL_GPL

11

https://en.wikipedia.org/wiki/GNU_General_Public_License
https://lwn.net/Articles/154602/

Binghamton

University

CS-550

Spring 2020

Module Coding Hints

• Modules can call other kernel functions
• such as printk, kmalloc, kfree, etc.
• But only those that are exported by the kernel using EXPORT(name)
• See /proc/kallsyms for a list of kernel symbols exported

• Kernel Code (including modules) CANNOT call user library functions
• Such as malloc, free, printf, etc.

• Kernel Code should not include standard header files
• Such as stdio.h, stdlib.h, etc.

• Segmentation fault in the kernel can crash the entire system!
• Often harmless in user space

• The version of the kernel is compiled into a module
• Need to recompile for each version of the kernel it can be linked to

12

Binghamton

University

CS-550

Spring 2020

Concurrency Issues

• Different processes can invoke your module concurrently
• Different parts of your module can be active at the same time

• Device interrupts can trigger Interrupt Service Routines (ISRs)
• ISR may access data that your module uses as well

• Kernel timers can execute concurrently with your module
• May access common data

• You may have a symmetric multi-processor (SMP) system
• Multiple processes may be executing your code simultaneously

• Module (and most kernel code) must be re-entrant
• Capable of multiple simultaneous executions

13

Binghamton

University

CS-550

Spring 2020

Error Handling

int __init my_init_function(void){

int err=register_A(ptr1,"skull");

if (err) goto fail_A;

err=register_B(ptr2,"skull");

if (err) goto fail_B;

err=register_C(ptr3,"skull");

if (err) goto fail_C;

return 0; // success

fail_C: unregister_B(ptr2,"skull");

fail_B: unregister_A(ptr1,"skull");

fail_A: return err; // propagate

error

}

void __exit my_cleanup_function(void) {

unregister_C(ptr3,"skull");

unregister_B(ptr2,"skull");

unregister_A(ptr1,"skull");

return;

}

14

register/unregister take a pointer and name

In case of failure, need to unregister every
successful registration

Binghamton

University

CS-550

Spring 2020

Parameter name

Module Parameters

• In hellon.c:
static char *whom = "world";
static int howmany = 1;
module_param(howmany, int, S_IRUGO);
MODULE_PARM_DESC(howmany,"Number of times to print msg");
module_param(whom, charp, S_IRUGO);

• Command Line> insmod hellon.ko howmany=10 whom=“Class”

• Description printed out with >modinfo hellon.ko

• See example: hellon.c

15

type

permissions

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/kernel_module/hellon.c

Binghamton

University

CS-550

Spring 2020

Character Devices in Linux
Implementing a device driver using kernel modules

16

Binghamton

University

CS-550

Spring 2020

Major Number

Devices

• All devices connected to your computer are registered with the kernel, and
can be seen by inspecting the virtual file system: /dev

• Each device is assigned a Major number and a Minor number

csvb@CS550-tbartens:~$ ls -l /dev/tty*

crw-rw-rw- 1 root tty 5, 0 Feb 17 13:25 /dev/tty

crw--w---- 1 root tty 4, 0 Feb 17 11:01 /dev/tty0

…

• Major number corresponds to device driver software
• see linux source Documentation: devices.txt

• Minor number controls variations in the hardware

17

Minor Number

'c' for character
'b' for block

Binghamton

University

CS-550

Spring 2020

Device Drivers

• Kernel software responsible for bridging between standard
operating system device mechanisms, and the actual hardware

• From an OS point of view, there are three kinds of device drivers:
• Character oriented drivers, such as keyboard and mouse

• Block oriented devices such as hard disks, CD drives

• Network (message oriented) devices such as network interface cards

• (Others, such as USB, SCSI, Firewall, I2O often variations on one of the
above)

18

Binghamton

University

CS-550

Spring 2020

Device Communication (w/ kernel)

• Character (char) devices
• Read/Write a single byte at a time

• Use a byte-stream abstraction

• Block devices
• Read/Write a fixed block size chunk of data

• Often use buffers to imitate character (byte-stream) abstraction

• Network devices
• Read/Write packets of varying size

• Size of packet included in the packet header

• Message abstraction

19

Binghamton

University

CS-550

Spring 2020

Character device drivers

• OS expects each character device driver to implement a set of pre-
defined functions (e.g. open, close, read, write, lseek, ioctl, …)
known as file operations

• In linux, there is a structure, struct file_operations, defined in "fs.h"
that consists of function pointers to each file operation

• When you register a character device driver, you must supply a
file_operations structure so the kernel knows what to call

20

Binghamton

University

CS-550

Spring 2020

"Miscellaneous" Devices

• Character devices used for simple device drivers

• Major number = 10

• Each device gets it's own minor number
• Requested at registration (mkmod) time

21

Binghamton

University

CS-550

Spring 2020

Implementing a misc. device driver

• Step 1: Declare a device struct

static struct miscdevice my_misc_device = {

.minor = MISC_DYNAMIC_MINOR,

.name = “my device",

.fops = &my_fops

};

22

Binghamton

University

CS-550

Spring 2020

Implementing a misc. device driver

• Step 2: Declare a file operations structure

static struct file_operations my_fops= {

.owner = THIS_MODULE,

.open = my_open,

.close = my_close,

…

.llseek = noop_llseek

};

• Uninitialized function pointers get a sensible default value

23

Binghamton

University

CS-550

Spring 2020

Implementing a misc. device driver

• Step 3: Register the device in module_init function

static int __init my_module_init(){
misc_register(&my_misc_device);

}

• Registration creates an entry in /dev for "mydevice"
• and connects file operations to my_fops

24

Binghamton

University

CS-550

Spring 2020

Implementing a misc. device driver

• Step 4: Implement the fops functions
static ssize_t my_read(struct file *file, char __user * out, size_t size, loff_t * off) {

….
sprintf(buf, “Hello World\n”);
copy_to_user(out, buf, strlen(buf)+1);
….

}

• Don't forget to:
• allocate memory for buf,
• check if "out" points to valid user memory using access_OK()
• check for errors after copy_to_user()

25

Binghamton

University

CS-550

Spring 2020

Implementing a misc. device driver

• Step 5: Don't forget to unregister the device when removing
module

static void __exit my_exit(void) {
misc_deregister(&my_misc_device);
...

}

26

Binghamton

University

CS-550

Spring 2020

After installing your device driver module

• User then opens the device:

fd = open("/dev/mydevice",O_RDWR);

• OS then invokes my_open(inode,file) which returns a file
descriptor

27

Binghamton

University

CS-550

Spring 2020

Moving data in and out of the Kernel

• Each process has it's own address space

• The kernel has a kernel address space
• All kernel modules and the base kernel reside in this address space

unsigned long copy_to_user(void __user *dst,const void *src,unsigned long n);

• Copies from kernel space to user space
• Checks target is writable by access_ok(dst,VERIFY_WRITE)

• If the result is true (non-zero), copy proceeds

• Returns number of bytes that could not be copied (success=0)

unsigned long copy_from_user(void *dst,const void __user *src,unsigned long n);

• Copies from user space to kernel space

28

Binghamton

University

CS-550

Spring 2020

Managing kernel heap space

• kmalloc() : allocates physically contiguous memory

void * kmalloc(size_t size,int flags);

• kzalloc() : allocates memory and sets it to zero

• vmalloc() : allocates virtually contiguous memory
• may not be physically contiguous

void * vmalloc(unsigned long size);

• kfree() : deallocation

29

