Binghamton CS-550

University Spring 2020

Semaphores and
Condition Variables

Modern Operating Systems, by Andrew Tanenbaum| Chap 2.3 &6 1
Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book) | Chap 30&31}



http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton CS-550

University Spring 2020

Semaphore

* A fundamental synchronization primitive used for:
* Locking critical regions
* Inter-process synchronization

* A special integer, "sem", on which only two operations can be
performed
* A"DOWN(sem)" operation
* An "UP(sem)" operation



Binghamton CS-550

University Spring 2020

The DOWN(sem) Operation

* If (sem>0)...

* Subtract 1 from sem
* Continue processing (this is a "successful”) down operation

* while (sem==0) ...
* Block the caller until sem>0 (someone else did an "UP(sem)")

* try DOWN(sem) again.. if successful, break
* Might fail because other processes might do a DOWN first



Binghamton CS-550

University Spring 2020

The UP(sem) Operation

* If (sem==0)
* add 1 to sem
» wake up all processes blocked on DOWN(sem)

» All woken up processes compete to perform DOWN(sem)
* Only one can succeed... the rest are blocked again

e else
e add 1 to sem



Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”

Down(sem)




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”

Down(sem)




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”

Down(sem)




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550
University Spring 2020

Semaphore Example — "Chair Is taken”




Binghamton CS-550

University Spring 2020

Semaphore Example — "Chair Is taken”

14



Binghamton CS-550

University

Mutex

Spring 2020

* A binary semaphore - Can have a value of 0 (blocking) or 1 (open)
* Used as a lock around critical sections

* To enter a critical section (lock a resource) use "Down(mutex)"”
* If mutex==1 (open), decrement mutex value to 0 and continue
* If mutex==0 (blocking) blocks until someone else does an "Up(mutex)"”

* To exit a critical section (unlock resource) use "Up(mutex)”

* Increment mutex value to 1
» Wake up all sleepers on Down(mutex) - one gets the lock, the others go
back to sleep

15



Binghamton CS-550

University Spring 2020

Mutex Example — "Chair Is taken”

16



Binghamton CS-550

University Spring 2020

Mutex Example — "Chair Is taken”

Down(mutex)

17



Binghamton CS-550

University Spring 2020

Mutex Example — "Chair Is taken”

Down(mutex)

18



Binghamton CS-550

University Spring 2020

Mutex Example — "Chair Is taken”

mutex=1

Down(mutex)

19




Binghamton CS-550

University Spring 2020

Mutex Example — "Chair Is taken”

20



Binghamton CS-550

University Spring 2020

Example: Producer/Consumer Problem

* Producers and Consumers runs concurrently
 Producers add items to a common buffer
* Consumers take items from a common buffer

Common Buffer

Available slots /

m—
Producer

Consumer

21



Binghamton CS-550

University

Producer/Consumer - Coordination

Spring 2020

* Consumers should sleep when buffer is empty
* Producers should sleep when buffer is full
* No two processes should work on the buffer at the same time

/ Consumer

_

22




Binghamton CS-550

University Spring 2020

Using Semaphores for Prod/Cons

#define N 100 // Number of slots in the common buffer

typedef int semaphore; // Semaphore 1is a special kind of 1int
semaphore mutex=1; // Control access to the common buffer
semaphore avail=N; // The number of available slots in buffer
semaphore used=0; // The number of used slots in buffer

Note: Two types of semaphores used here...
* A binary semaphore (mutex) to lock the buffer
* Regular semaphores to count avail and used slots

23



Binghamton CS-550

University Spring 2020

Example producer/consumer code

block when avail=0 block when used=0

voild producer(vo vold consumer (voig
int 1tem; 1nt 1tem;
while(TRUE) { while(TRUE) {
1tem=producCe_1tem(); down (&used);
down(&avail); down (&mutex) ;
down (&nmutex) : 1tem=remove_i1tem();
insert_item(item); up (&mutex) ;
up (&mutex) ; up(&avail);
up (&used) ; consume_1tem(item),
} Critical Section
} unblock consumers SHHCAISCCHon unblock producers

24



Binghamton CS-550

University Spring 2020

Semaphores — POSIX Iinterface

* sem_open() — Optionally creates and/or connects to a named semaphore
* sem_init() - Initializes an un-named semaphore in (shared) memory

* sem_wait() - blocks while semaphore is held by other processes, then
decrements (down)

* sem_trywait() - returns an error if semaphore is held by other processes
* sem_post() - Increments the count of the semaphore (up)

* sem_getvalue() - Returns the current value of the semaphore

* sem_close() - Ends the connection to a named semaphore

* sem_unlink() - Ends the connection to a named semaphore and removes it
when all connections are ended

* sem_destroy() — Cleans up an unnamed semaphore

25



Binghamton CS-550

University Spring 2020

Semaphores — System V (older) interface

* semget(key, nsems, semflg) - creation (sem value=0)

* semctl(semid,0,SETVAL,arg) - Initialization

* union semun arg; arg.val=1;
* Not atomic w/ creation

* semop(semid, &sops, nsops) - Incr/Decr/Test-and-Set
* struct sembuf sops;

* semctl(semid,0,IPC_RMID, 0) - Deletion

26



Binghamton CS-550

University Spring 2020

Monitors with Condition Variables

* Object oriented view of contention used for thread-safe objects
* Invented by Per Brinch Hansen and C.A.R. Hoare for Concurrent Pascal

* Monitor: A collection of critical section functions that operate on shared
resources

* One global lock for all procedures... only one procedure can be
executing at any given time

¢
 One or more "condition variables”, c a8

» wait(c) - Releases the global lock, and puts the calling function to sleep.
Does not return until it re-acquires the monitor lock

* signal(c) - Wakes all functions waiting on ¢, who then compete for the
monitor lock

27



Binghamton CS-550

University Spring 2020

Monitor Function State Graph

Executing

m

28



Binghamton

University

Example Monitor: Producer/Consumer

procedure producer;
begin
while true do
begin
item=produce_item;
PCmon.insert(item)
end
end;

procedure consumer;
begin
while true do
begin
item=Pcmon.remove;
consume_item(item)
end
end;

monitor Pcmon

.

condition full, empty;
integer count;

procedure insert(item: 1integer);
begin
if count = N then wait(full);
insert_item(item);
count:=count+l;
if count=1 then signal(empty)
end;

function remove: integer;
begin
if count=0 then wait(empty)
remove = remove_1item;
count := count - 1;
if count = N-1 then signal(full)
end;

count =: 0;

end monitor;

CS-550
Spring 2020

29



Binghamton CS-550

University Spring 2020

Atomic Locking — Test and Set Lock

* Hardware building block for locks
 TSL Instruction: TSL Register,lLock

* Lock - Address in memory with a value of 0 or 1
« Register - One of the CPU General Purpose Registers

* The TSL instruction does TWO operations atomically (as one)
1. Register := Lock; // Copy value of Lock to Register
2. Lock :=1; // Set the Lock value to 1

* Atomic: Entire instruction must complete without pre-emption

30



Binghamton

CS-550

University

Implementing Mutex using TSL

Set mutex to 1 (locked) if it wasn't already

mutex_lock:

TSL REG,MUTEX
CMP REG, #0

mutex_unlock:

MOVE MUTEX, #0

JZE ok ——————ee
CALL thread y1e1d

JMP mutex_lock

...and try again when scheduler runs you again

Spring 2020

In C Syntax:

void lock(boolean *mutex) {

}

void unlock(boolean

}

while(test_and_set(lock)==

mutex=0;

*mutex) {

true) {};

31



Binghamton CS-550

University Spring 2020

Compare and Set (CAS)

* Atomic Operation useful for "lock-free" synchronization

bool compare_and_set(target,old,new) {
1f (target!=old) return false; // somebody touched target
target=new; // Nobody touched target.. OK to update
return true;

Note: This is atomic!

Ref : https://en.wikipedia.org/wiki/Compare-and-swap

32


https://en.wikipedia.org/wiki/Compare-and-swap

Binghamton CS-550

University Spring 2020

Example CAS: race-free adder

int add(int *counter, int increment) {
int old; 1nt new;

do { Note: These do not need to be atomic!
old=*counter;

new=old+increment;
} while (compare_and_swap(counter,old,new)==false);
return new;

33



Binghamton CS-550

University Spring 2020

Compare and Swap Instruction

* Alternate x86 Instruction for locking

e Instruction Format: CMPXCHG NEWVAL, TARGET
* NEWVAL - Any CPU General Purpose Register
* TARGET - Memory location or Register
 EAX implicit operand - Contains the "compare to" (old) value of TARGET
* EAX result contains the actual old value of TARGET
 EFLAGS.ZF - indicates if exchange was successful

if (%EAX==TARGET) then { EFLAGS.ZF:=1; TARGET:=NEWVAL }
else { EFLAGS.ZF:=0; %EAX:=TARGET; }

34



