
Binghamton

University

CS-550

Spring 2020

Semaphores and
Condition Variables
Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

1

Chap 2.3 & 6

Chap 30&31

http://pages.cs.wisc.edu/~remzi/OSTEP


Binghamton

University

CS-550

Spring 2020

Semaphore

• A fundamental synchronization primitive used for:
• Locking critical regions

• Inter-process synchronization

• A special integer, "sem", on which only two operations can be 
performed
• A "DOWN(sem)" operation

• An "UP(sem)" operation

2



Binghamton

University

CS-550

Spring 2020

The DOWN(sem) Operation

• If (sem>0)…
• Subtract 1 from sem

• Continue processing (this is a "successful") down operation

• while (sem==0) …
• Block the caller until sem>0 (someone else did an "UP(sem)")

• try DOWN(sem) again.. if successful, break 
• Might fail because other processes might do a DOWN first

3



Binghamton

University

CS-550

Spring 2020

The UP(sem) Operation

• If (sem==0) 
• add 1 to sem

• wake up all processes blocked on DOWN(sem)

• All woken up processes compete to perform DOWN(sem)
• Only one can succeed… the rest are blocked again

• else
• add 1 to sem

4



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

5

sem=3



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

6

sem=2

Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

7

sem=1

Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

8

sem=0

Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

9

sem=0

Down(sem)

B

l

o

c

k

e

d



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

10

sem=0

B

l

o

c

k

e

d

Down(sem)
Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

11

sem=1

Up(sem)

B

l

o

c

k

e

d

Down(sem)
Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

12

sem=0

B

l

o

c

k

e

d

Down(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

13

sem=2

B

l

o

c

k

e

d

Down(sem)

Up(sem)
Up(sem)



Binghamton

University

CS-550

Spring 2020

Semaphore Example – "Chair is taken"

14

sem=1



Binghamton

University

CS-550

Spring 2020

Mutex

• A binary semaphore – Can have a value of 0 (blocking) or 1 (open)

• Used as a lock around critical sections

• To enter a critical section (lock a resource) use "Down(mutex)"
• If mutex==1 (open), decrement mutex value to 0 and continue

• If mutex==0 (blocking) blocks until someone else does an "Up(mutex)"

• To exit a critical section (unlock resource) use "Up(mutex)"
• Increment mutex value to 1

• Wake up all sleepers on Down(mutex) – one gets the lock, the others go 
back to sleep

15



Binghamton

University

CS-550

Spring 2020

Mutex Example – "Chair is taken"

16

mutex=1



Binghamton

University

CS-550

Spring 2020

Mutex Example – "Chair is taken"

17

mutex=0

Down(mutex)



Binghamton

University

CS-550

Spring 2020

Mutex Example – "Chair is taken"

18

mutex=0

Down(mutex)

B

l

o

c

k

e

d



Binghamton

University

CS-550

Spring 2020

Mutex Example – "Chair is taken"

19

mutex=1

Down(mutex)

B

l

o

c

k

e

d

Up(mutex)



Binghamton

University

CS-550

Spring 2020

Mutex Example – "Chair is taken"

20

mutex=0



Binghamton

University

CS-550

Spring 2020

Example: Producer/Consumer Problem

• Producers and Consumers runs concurrently
• Producers add items to a common buffer

• Consumers take items from a common buffer

21

Common Buffer

Used slots

Available slots

Producer

Producer

Consumer

Consumer

Consumer



Binghamton

University

CS-550

Spring 2020

Producer/Consumer - Coordination

• Consumers should sleep when buffer is empty

• Producers should sleep when buffer is full

• No two processes should work on the buffer at the same time

22

Producer

Producer

Consumer

Consumer

Consumer



Binghamton

University

CS-550

Spring 2020

Using Semaphores for Prod/Cons

#define N 100 // Number of slots in the common buffer

typedef int semaphore; // Semaphore is a special kind of int

semaphore mutex=1; // Control access to the common buffer

semaphore avail=N; // The number of available slots in buffer

semaphore used=0; // The number of used slots in buffer

23

Note: Two types of semaphores used here…
• A binary semaphore (mutex) to lock the buffer
• Regular semaphores to count avail and used slots



Binghamton

University

CS-550

Spring 2020

unblock producers

Critical Section

block when used=0block when avail=0

Example producer/consumer code

void producer(void) {

int item;

while(TRUE) {

item=produce_item();

down(&avail);

down(&mutex);

insert_item(item);

up(&mutex);

up(&used);

}

}

void consumer(void) {

int item;

while(TRUE) {

down(&used);

down(&mutex);

item=remove_item();

up(&mutex);

up(&avail);

consume_item(item);

}

}

24

Critical Section
unblock consumers



Binghamton

University

CS-550

Spring 2020

Semaphores – POSIX interface

• sem_open() – Optionally creates and/or connects to a named semaphore

• sem_init() – Initializes an un-named semaphore in (shared) memory

• sem_wait() – blocks while semaphore is held by other processes, then 
decrements (down)

• sem_trywait() – returns an error if semaphore is held by other processes

• sem_post() – Increments the count of the semaphore (up)

• sem_getvalue() – Returns the current value of the semaphore

• sem_close() – Ends the connection to a named semaphore

• sem_unlink() – Ends the connection to a named semaphore and removes it 
when all connections are ended

• sem_destroy() – Cleans up an unnamed semaphore

25



Binghamton

University

CS-550

Spring 2020

Semaphores – System V (older) interface

• semget(key, nsems, semflg) – creation (sem value=0)

• semctl(semid,0,SETVAL,arg) – Initialization
• union semun arg; arg.val=1;

• Not atomic w/ creation

• semop(semid, &sops, nsops) - Incr/Decr/Test-and-Set
• struct sembuf sops;

• semctl(semid,0,IPC_RMID, 0) - Deletion

26



Binghamton

University

CS-550

Spring 2020

Monitors with Condition Variables

• Object oriented view of contention used for thread-safe objects

• Invented by Per Brinch Hansen and C.A.R. Hoare for Concurrent Pascal

• Monitor: A collection of critical section functions that operate on shared 
resources

• One global lock for all procedures… only one procedure can be 
executing at any given time

• One or more "condition variables", c

• wait(c) – Releases the global lock, and puts the calling function to sleep. 
Does not return until it re-acquires the monitor lock

• signal(c) – Wakes all functions waiting on c, who then compete for the 
monitor lock

27



Binghamton

University

CS-550

Spring 2020

Monitor Function State Graph

28

Executing

AsleepCompeting signal(c)

signal(c)

invoked

finished



Binghamton

University

CS-550

Spring 2020

Example Monitor: Producer/Consumer

procedure producer; 

begin

while true do

begin

item=produce_item;

PCmon.insert(item)

end

end;

procedure consumer;

begin

while true do

begin

item=Pcmon.remove;

consume_item(item)

end

end;

monitor Pcmon

condition full, empty;

integer count;

procedure insert(item: integer);

begin

if count = N then wait(full);

insert_item(item);

count:=count+1;

if count=1 then signal(empty)

end;

function remove: integer;

begin

if count=0 then wait(empty)

remove = remove_item;

count := count – 1;

if count = N-1 then signal(full)

end;

count =: 0;

end monitor;

29



Binghamton

University

CS-550

Spring 2020

Atomic Locking – Test and Set Lock

• Hardware building block for locks

• TSL Instruction: TSL Register,Lock
• Lock – Address in memory with a value of 0 or 1
• Register – One of the CPU General Purpose Registers

• The TSL instruction does TWO operations atomically (as one)
1. Register := Lock; // Copy value of Lock to Register

2. Lock := 1; // Set the Lock value to 1

• Atomic: Entire instruction must complete without pre-emption

30



Binghamton

University

CS-550

Spring 2020

Implementing Mutex using TSL

mutex_lock:

TSL REG,MUTEX

CMP REG,#0

JZE ok

CALL thread_yield

JMP mutex_lock

ok: RET

mutex_unlock:

MOVE MUTEX,#0

RET

31

Set mutex to 1 (locked) if it wasn't already

If it wasn't locked, good to go

If it was locked, let another thread work

…and try again when scheduler runs you again

In C Syntax:
void lock(boolean *mutex) {

while(test_and_set(lock)==true) {};

}

void unlock(boolean *mutex) {

mutex=0;

}



Binghamton

University

CS-550

Spring 2020

Compare and Set (CAS)

• Atomic Operation useful for "lock-free" synchronization

bool compare_and_set(target,old,new) {

if (target!=old) return false; // somebody touched target

target=new; // Nobody touched target… OK to update

return true;

}

32

Note: This is atomic!
Ref : https://en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap


Binghamton

University

CS-550

Spring 2020

Example CAS: race-free adder

int add(int *counter, int increment) {

int old; int new;

do {

old=*counter; 

new=old+increment;

} while (compare_and_swap(counter,old,new)==false);

return new;

}

33

Note: These do not need to be atomic!



Binghamton

University

CS-550

Spring 2020

Compare and Swap Instruction

• Alternate x86 Instruction for locking

• Instruction Format: CMPXCHG NEWVAL,TARGET
• NEWVAL – Any CPU General Purpose Register
• TARGET – Memory location or Register
• EAX implicit operand – Contains the "compare to" (old) value of TARGET
• EAX result contains the actual old value of TARGET
• EFLAGS.ZF – indicates if exchange was successful

if (%EAX==TARGET) then { EFLAGS.ZF:=1; TARGET:=NEWVAL }

else { EFLAGS.ZF:=0; %EAX:=TARGET; }

34


