Binghamton CS-550

University Spring 2020

Race Conditions and
Deadlocks

Modern Operating Systems, by Andrew Tanenbaum| Chap 2.3 &6 1
Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book) [Chap 26 & 28}

http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton CS-550

University Spring 2020

Parallelism Continuum

< L —

Sequential Concurrent Parallel

* Interleaved e Simultaneous
resource usage resource usage

* Many things one
after another

Task 1 Task 1 Task 1 Task 2
Task 1 Task 2 Task1 Task?2
Task 2 Task 1
Task 2 Task 2

Parallel is a subset of Concurrent

Binghamton CS-550

University Spring 2020

Concurrency and Synchronization

* Independent tasks can execute independently

* Many tasks have dependencies
» Task 1 : Select all CS-550 students from enrollment database
e Task 2 : Sort CS-550 students by last name

* Concurrent tasks may need to synchronize (communicate)
* Not always, but probably more than once

* Synchronization requires access to shared resources
* Shared memory (buffers), Pipes, Signals, etc.

Binghamton CS-550

University Spring 2020

Critical Section

e A section of code that modifies or accesses a resource thatis
shared with another task

 Also called "critical region”

* Examples:
* A piece of code that reads from or writes to shared memory
* Code that modifies or traverses a shared linked list

Binghamton CS-550

University Spring 2020

Race Conditions

* Cases where errors can be introduced because two programs
execute critical sections concurrently

* Example: Task 1 writes CS-550 student name to shared memory
while Task 2 is reading old CS-550 student name

* Prevent races by locking resources to a specific task

Binghamton

CS-550

University

Mutual Exclusion

Don't allow two or more processes to execute critical section (on
same resource) concurrently

Process A

Process B

@ A releases

Request

S o

B Releases

Steps
1. Acquire lock

2. Critical Section
3. Release lock

Spring 2020

Binghamton

CS-550

University

Deadlock

Spring 2020

* Two or more processes cannot make progress indefinitely because
they are waiting for each other to do something

Task 1

while (new student) {
wait for name lock
lock name
update name
wait for count lock
lock count
update count
release count lock
release name lock

Task 2

while (1) {

wait for count lock
lock count
if (count>used) {
wait for name lock
lock name
use name
release name lock

}

release count lock

Binghamton CS-550

University Spring 2020

Correct Mutual Exclusion

1. No two processes are simultaneously in their critical sections
2. No assumptions made about speed or numbers of CPUs

3. No process waits forever to enter its critical section (No
deadlocks)

4. No process running outside its critical region may block another
process running in its critical section

* 1. and 2. enforced by the operating system lock implementation
* 3. and 4. must be enforced by the programmer using locks!

Binghamton

CS-550
University Spring 2020

Mutual Exclusion for Readers and Writers

* General rule: If a thread is writing to a shared resource, other
threads should not read from or write to the same resource

Thread1 | Thread 2

Read Read Allowed
Read Write Disallowed
Write Read Disallowed
Write Write Disallowed

* Exceptions may be allowed for special lockless data structures

Binghamton CS-550

University Spring 2020

Types of Locks

* Blocking Locks
* No progress until lock is available
* OS may swap out process/task until lock is available

* Non-Blocking Locks
* Allows status query
* Program decided how to proceed

 Spin lock
* A non-blocking lock of the form: while(lockAvailable()==False) {}

10

Binghamton CS-550

University Spring 2020

Blocking Locks

* Usage:
lock(resource); // Block until resource is available, then lock it

critical_section(resource); // access or modify shared resource
unlock(resource); // Allow others to use the resource

* Advantage: Simple to use, assumes locking ultimately succeeds

* Disadvantages:
* Unpredictable blocking duration

* Overhead to swap out and swap in if lock becomes available soon after
blocking

11

Binghamton CS-550

University Spring 2020

Non-Blocking locks

* Usage:
1T (trylock(resource)==available) {
critical_section(resource);
unlock(resource) ;

} else {
plan_b(Q);

}

* Advantage: No unpredictable wait time
* Disadvantage: Need a "Plan B" to handle locking failure

12

Binghamton CS-550

University Spring 2020

Spin Locks

* Usage:
spin_lock(resource);
critical_section(resource);
unlock(resource);

» Advantage: Very efficient if lock released quickly
* Implies short critical sections so that locks are released quickly

* Disadvantage: Wastes CPU cycles
* If critical sections are long, wastes lots of CPU cycles
* Counter productive on uniprocessor machines

13

Binghamton CS-550

University Spring 2020

Locking Recommendations

1. Associate locks with shared resource, NOT code
* e.g. lock protects a linked list, not insert() and remove() functions

2. Guard each shared resource with a separate lock
* Improves concurrency

» Allows critical section code to be used on multiple resources
» e.g. listl is guarded by lock1, list2 is guarded by lock2, shared insert() and remove()

e Be careful about deadlock!

* OS cannot enforce these recommendations
* OS doesn't understand the application-level semantics

14

Binghamton CS-550

University Spring 2020

Deadlock on Multiple Resources

Two processes, P, and P,, both need two resources controlled by

locks L, and L,

P P,
lock(L)
P, P, Solution: Lock Ordering lock(L,)
lock(Ly) Define order (L, L,, ...) lock(L,) _
lock(L,) Acquire locks in order critSect _
lock(L,) Release locks in reverse unlock(L,)

.

B ockc) unlock(L,) [

— ock()
critSect
unlock(L,)

unlock(L,) =

Binghamton CS-550

University Spring 2020

Generalizing Lock Ordering

* Given nlocks, L, L,, ..., L, and kprocesses, P,, P,, ..., P,
All processes must acquire any subset of locks in sorted order

(A process doesn't need to acquire ALL locks, but whatever locks it
does acquire must be acquired in sort order)

* Example, n=10
* Allowed: P;acquires L,, then L, then L,,
* Allowed: P;acquires L, then L, then L,
* Not Allowed: P, acquires L, then L, then L,

16

Binghamton CS-550

University Spring 2020

Priority Inversion

Three processes using priority based scheduling: P,, P_, P,

Solution: Priority Inheritance

Priority Inversion Priority Inheritence
P, P_ P, Temporarily increase priority of P, M) P P,
lock(L) idle idle E{)tt‘;i}l‘;fgci”"“ty so P can lock(L)

lock(L)

— |
- critSect

lock(L)

[[wnlock()
L

17

Binghamton CS-550

University Spring 2020

Spinlocks on Multi-CPU

Single CPU Multi-CPU
Slowlock Deadlock No Deadlock
P,/CPU, P,/CPU, P,/CPU, P,/CPU, P,/CPU, P,/CPU,
lock(L,) lock(L,) lock(L,)

T e

unlock(L,)

Threads must use interrupt
CPU Intensive disabling version of spinlock
High Priority (spinlock_irgsave)... Why?

18

Binghamton CS-550

Spring 2020

University

Problem: Interrupts and Deadlocks

* Interrupts invoke Interrupt Service Routines (ISR) in the kernel
* ISR must process interrupt quickly and return
* ISR must never block or spin on a lock

 What if ISR needs a lock to process the interrupt?

Interrupt Deadlock
P ISR
lock(L)

critSect

lock(L)

19

Binghamton CS-550

University Spring 2020

Interrupt Deadlock Solutions

1. Don'tlock in ISR! - defer locking work to thread context
* See "softirgs" in Linux
2. If you must lock, use non-blocking lock

if (tryLock(L)==available) { lock(L); do work }
else { handle unavailable lock (e.g. write message }

3. Disable interrupts before locking in process
* No deadlock because ISR can't run when process locks resource
e When ISR runs, it assumes resource is unlocked
* Disabling interrupts for extended periods is not a good idea

20

