
Binghamton

University

CS-550

Spring 2020

Race Conditions and
Deadlocks

Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

1

Chap 2.3 & 6

Chap 26 & 28

http://pages.cs.wisc.edu/~remzi/OSTEP


Binghamton

University

CS-550

Spring 2020

Parallelism Continuum

Sequential

• Interleaved 
resource usage

2

Concurrent

• Many things one 
after another

Parallel

• Simultaneous 
resource usage

CPU 1

Task 1

Task 1

Task 2

Task 2

CPU 1

Task 1

Task 2

Task 1

Task 2

CPU 1 CPU 2

Task 1 Task 2

Task 1 Task 2

Parallel is a subset of Concurrent



Binghamton

University

CS-550

Spring 2020

Concurrency and Synchronization

• Independent tasks can execute independently

• Many tasks have dependencies
• Task 1 : Select all CS-550 students from enrollment database

• Task 2 : Sort CS-550 students by last name

• Concurrent tasks may need to synchronize (communicate)
• Not always, but probably more than once

• Synchronization requires access to shared resources
• Shared memory (buffers), Pipes, Signals, etc.

3



Binghamton

University

CS-550

Spring 2020

Critical Section

• A section of code that modifies or accesses a resource that is 
shared with another task
• Also called "critical region"

• Examples:
• A piece of code that reads from or writes to shared memory

• Code that modifies or traverses a shared linked list

4



Binghamton

University

CS-550

Spring 2020

Race Conditions

• Cases where errors can be introduced because two programs 
execute critical sections concurrently

• Example: Task 1 writes CS-550 student name to shared memory 
while Task 2 is reading old CS-550 student name

• Prevent races by locking resources to a specific task

5



Binghamton

University

CS-550

Spring 2020

Mutual Exclusion

Don't allow two or more processes to execute critical section (on 
same resource) concurrently

6

Steps
1. Acquire lock
2. Critical Section
3. Release lock

Process A Critical

Process B Request Critical

A locks A releases

B Requests B Locks B Releases



Binghamton

University

CS-550

Spring 2020

Deadlock

• Two or more processes cannot make progress indefinitely because 
they are waiting for each other to do something

7

Task 1
while (new student) {

wait for name lock
lock name
update name
wait for count lock
lock count
update count
release count lock
release name lock

}

Task 2
while (1) {

wait for count lock
lock count
if (count>used) {

wait for name lock
lock name
use name
release name lock

}
release count lock

}



Binghamton

University

CS-550

Spring 2020

Correct Mutual Exclusion

1. No two processes are simultaneously in their critical sections

2. No assumptions made about speed or numbers of CPUs

3. No process waits forever to enter its critical section (No 
deadlocks)

4. No process running outside its critical region may block another 
process running in its critical section

• 1. and 2. enforced by the operating system lock implementation

• 3. and 4. must be enforced by the programmer using locks!

8



Binghamton

University

CS-550

Spring 2020

Mutual Exclusion for Readers and Writers

• General rule: If a thread is writing to a shared resource, other 
threads should not read from or write to the same resource

• Exceptions may be allowed for special lockless data structures

9

Thread 1 Thread 2 Allowed

Read Read Allowed

Read Write Disallowed

Write Read Disallowed

Write Write Disallowed



Binghamton

University

CS-550

Spring 2020

Types of Locks

• Blocking Locks
• No progress until lock is available

• OS may swap out process/task until lock is available

• Non-Blocking Locks
• Allows status query

• Program decided how to proceed

• Spin lock
• A non-blocking lock of the form: while(lockAvailable()==False) {}

10



Binghamton

University

CS-550

Spring 2020

Blocking Locks

• Usage:
lock(resource); // Block until resource is available, then lock it

critical_section(resource); // access or modify shared resource

unlock(resource); // Allow others to use the resource

• Advantage: Simple to use, assumes locking ultimately succeeds

• Disadvantages: 
• Unpredictable blocking duration

• Overhead to swap out and swap in if lock becomes available soon after 
blocking

11



Binghamton

University

CS-550

Spring 2020

Non-Blocking locks

• Usage:
if (trylock(resource)==available) {

critical_section(resource);

unlock(resource);

} else {

plan_b();

}

• Advantage: No unpredictable wait time

• Disadvantage: Need a "Plan B" to handle locking failure

12



Binghamton

University

CS-550

Spring 2020

Spin Locks

• Usage:
spin_lock(resource);

critical_section(resource);

unlock(resource);

• Advantage: Very efficient if lock released quickly
• Implies short critical sections so that locks are released quickly

• Disadvantage: Wastes CPU cycles
• If critical sections are long, wastes lots of CPU cycles

• Counter productive on uniprocessor machines 

13



Binghamton

University

CS-550

Spring 2020

Locking Recommendations

1. Associate locks with shared resource, NOT code
• e.g. lock protects a linked list, not insert() and remove() functions

2. Guard each shared resource with a separate lock
• Improves concurrency
• Allows critical section code to be used on multiple resources

• e.g. list1 is guarded by lock1, list2 is guarded by lock2, shared insert() and remove()

• Be careful about deadlock!

• OS cannot enforce these recommendations
• OS doesn't understand the application-level semantics

14



Binghamton

University

CS-550

Spring 2020

Deadlock on Multiple Resources

Two processes, P1 and P2, both need two resources controlled by 
locks L1 and L2

15

Deadlock

P1 P2

lock(L1)

lock(L2)

lock(L2)

lock(L1)

No Deadlock

P1 P2

lock(L1)

lock(L1)

lock(L2)

critSect

unlock(L2)

unlock(L1)

lock(L2)

critSect

unlock(L2)

unlock(L1)

Solution: Lock Ordering

Define order (L1, L2, …)
Acquire locks in order
Release locks in reverse



Binghamton

University

CS-550

Spring 2020

Generalizing Lock Ordering

• Given n locks, L1, L2, …, Ln and k processes, P1, P2, … , Pk

All processes must acquire any subset of locks in sorted order

(A process doesn't need to acquire ALL locks, but whatever locks it 
does acquire must be acquired in sort order)

• Example, n=10
• Allowed: Pi acquires L1, then L5, then L10

• Allowed: Pj acquires L1, then L3, then L10

• Not Allowed: Pk acquires L5, then L1, then L2

16



Binghamton

University

CS-550

Spring 2020

Priority Inversion

Three processes using priority based scheduling: Ph, Pm, Pl

17

Priority Inversion

Pl Pm Ph

lock(L) idle idle

critSect ready ready

lock(L)

Solution: Priority Inheritance

Temporarily increase priority of 
Pl to high priority so Ph can 
obtain lock

Priority Inheritence

Pl(h) Pm Ph

lock(L)

critSect

lock(L)

critSect

unlock(L)

critSect

unlock(L)



Binghamton

University

CS-550

Spring 2020

Spinlocks on Multi-CPU

Single CPU Multi-CPU

18

Deadlock

P1/CPU1 P2/CPU1

lock(L1)

spinlock(L1)

No Deadlock

P1/CPU1 P2/CPU2

lock(L1)

spinlock(L1)

unlock(L1)

Slowlock

P1/CPU1 P2/CPU1

lock(L1)

spinlock(L1)

unlock(L1)

CPU Intensive
High Priority

Threads must use interrupt 
disabling version of spinlock 
(spinlock_irqsave)… Why?



Binghamton

University

CS-550

Spring 2020

Problem: Interrupts and Deadlocks

• Interrupts invoke Interrupt Service Routines (ISR) in the kernel
• ISR must process interrupt quickly and return

• ISR must never block or spin on a lock

• What if ISR needs a lock to process the interrupt?

19

Interrupt Deadlock

P ISR

lock(L)

critSect interrupt

lock(L)



Binghamton

University

CS-550

Spring 2020

Interrupt Deadlock Solutions

1. Don't lock in ISR! – defer locking work to thread context
• See "softirqs" in Linux

2. If you must lock, use non-blocking lock
if (tryLock(L)==available) { lock(L); do work }

else { handle unavailable lock (e.g. write message }

3. Disable interrupts before locking in process
• No deadlock because ISR can't run when process locks resource

• When ISR runs, it assumes resource is unlocked

• Disabling interrupts for extended periods is not a good idea

20


