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Threads
Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

"Advanced Programming in Unix Environment" by Richard Stevens
http://www.kohala.com/start/apue.html
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No Concurrency

• If you want to do 1 task, start one process
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Concurrency : Option 1- 2 Processes

• If you want to do 2 tasks, start 
two processes
• Problem: fork(…) is expensive

• Problem: "cold start" penalty

• Problem: If the tasks interact 
(e.g. synchronization, data 
passing, etc.) Need IPC
• IPC is difficult and expensive

• IPC requires OS resources (kernel 
system calls), which are expensive

• Shared memory difficult to set up
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"Concurrency" : Option 2- Event Driven

• Make one process do 
everything

• Busy loop polls  for events and 
performs tasks

• Length of event loop 
determines response latency

• Long task dominates resources

• Stateful event processing 
complicates code
• What if i'th occurrence of task n

affects the j'th occurrence?
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while(1) {
if (event1) do task1;
if (event2) do task2;
…
if (eventn) do taskn;

}
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Shared Address Space

Concurrency : Option 3 - Threads

• Single process 

• Single address space
• code, heap, static data

• Multiple "threads" of execution

• Each thread has it's own:
• Instruction Pointer

• Stack / Stack pointer

• Registers
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More on Thread Uniqueness

Threads Share

• File description table
• Open descriptors – files, devices, 

etc.

• Signals and Signal Handlers

Threads have their own

• Thread  ID

• errno

• Priority
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Address space layout
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Threaded Process Example
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Word Processor

T1
KBD

T3
DSK

T2
MON
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Threaded Process Example

• CTL Thread manages 
connections
• Accepts new connections

• Starts a thread for each 
connection

• Cx threads manage a single 
connection

9

Web Server

T1
CTL

T3
C2

T2
C1



Binghamton

University

CS-550

Spring 2020

Advantages of Threads

• Low cost context switching between threads
• No memory swapping

• No inter-process communication required
• No data transfer required between threads

• But inter-thread coordination still required!

• Threads are easy to pre-empt
• Compare to event driven programming with long running task

• Long running threads are not a problem

• Threads might exploit parallelism (More later)
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Disadvantages of Threads

• Shared State
• Global variables are shared between threads

• Accidental changes can cause errors

• Threads don't mix with signals
• Common signal handler for all threads in a process

• Which thread to signal? Everybody!

• Very difficult to program correctly!

• Lack Robustness – Crash in one thread brings all threads down

• Thread Safety in user code and in libraries
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Thread Safety

• Guarantee that multiple copies of code can run concurrently 
without error

• Requires variables to be local to an invocation of the code

• Requires  that the state of returned values must be immutable

• If shared state is required
• Access to that memory must be controlled

• One thread cannot start working on that object until the other is finished

• Certain operations must be atomic
• No other thread can access the state until the operation is fished

• e.g. "Test and Set"
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Kernel vs. User level threads

User Level Threads

• Threads managed by system 
libraries

• OS kernel does not recognize 
threads

• Threads execute when process 
is scheduled

Kernel Level Threads

• OS  kernel provides multiple 
threads per process

• Each thread is scheduled 
independently by the kernel's 
CPU scheduler
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Kernel vs. User Level Threads
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Kernel and User Hybrid
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Local Thread Scheduling

• Process gets a time slice
• Threads in that process get a 

portion of that timeslice

• May be used by either 
• User level threads OR
• Kernel level threads

• Scheduling requires only local 
knowledge of threads within a 
single process

• Can have: T1, T2, T3, T1, …

• Cannot have: T1, T4, T2, T5, …

P1
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Global Thread Scheduling

• Thread gets a time slice
• Thread may be chosen from any 

process

• No notion of process time slice

• Only Kernel Threads
• Requires knowledge of threads 

in other processes

• Can have: T1, T2, T3, T1, …

• Can have: T1, T4, T2, T5, …

P1
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Thread creation and Termination

Start thread with:
int pthread_create( 

pthread_t * thread, 

pthread_attr_t * attr, 

void * (*start_routine)(void *), 

void * arg

); 

End Thread with:

• return from start_routine

Or
void pthread_exit(void * status)
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Wait for thread termination:

int pthread_join(pthread_t thread, void **retval);

• Similar to waitpid
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Example pthread program

// shared counter to be incremented by each thread

int counter = 0;

int  main() {

pthread_t tid[N];

for (int i=0;i<N;i++) {

pthread_create(&tid[i], NULL, thread_func, NULL);

}

for(int i=0;i<N;i++)  /* wait for child thread */

pthread_join(tid[i], NULL);

printf(

"After %d threads incremented counter, value is %d\n",

N,counter);

return 0;

}

void *thread_func(void *arg) {

/* unprotected code – race condition*/

if (counter<10) {

printf(

"Thread: incrementing counter = %d\n",

counter);

counter = counter + 1;

}

return NULL; // thread dies upon return

}
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Example pthread output (N=25)

./pthread_race

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 1

Thread: incrementing counter = 2

Thread: incrementing counter = 5

Thread: incrementing counter = 5

Thread: incrementing counter = 7

Thread: incrementing counter = 8

Thread: incrementing counter = 9

Thread: incrementing counter = 9

After 25 threads…, value is 13
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pthread synchronization utilities

Mutexes

pthread_mutex_init(…) 

pthread_mutex_lock(…) 

pthread_mutex_unlock (…)  

pthread_mutex_trylock (…)

Condition Variables

pthread_cond_wait (…) 

pthread_cond_signal (…) 

pthread_cond_broadcast (…) 

pthread_cond_timedwait (…)
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Example protected pthread program

int counter = 0;

pthread_mutex_t counter_mutex;

int  main() {

pthread_t tid[N];

pthread_mutex_init(&counter_mutex, NULL);

for (int i=0;i<N;i++) {

pthread_create(&tid[i], NULL, thread_func, NULL);

}

for(int i=0;i<N;i++)  /* wait for child thread */

pthread_join(tid[i], NULL);

pthread_mutex_destroy(&counter_mutex);

printf(

"After %d threads incremented counter, value is %d\n",

N,counter);

return 0;

}

void *thread_func(void *arg) {

pthread_mutex_lock(&counter_mutex);

if (counter<10) {

printf("Thread: incrementing counter = %d\n",

counter);

counter = counter + 1;

}

pthread_mutex_unlock(&counter_mutex);

return NULL; // thread dies upon return

}
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Example protected pthread output (N=25)

./pthread_race_protected

Thread: incrementing counter = 0

Thread: incrementing counter = 1

Thread: incrementing counter = 2

Thread: incrementing counter = 3

Thread: incrementing counter = 4

Thread: incrementing counter = 5

Thread: incrementing counter = 6

Thread: incrementing counter = 7

Thread: incrementing counter = 8

Thread: incrementing counter = 9

After 25 threads incremented counter, value is 10
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