
Binghamton

University

CS-550

Spring 2020

Threads
Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

"Advanced Programming in Unix Environment" by Richard Stevens
http://www.kohala.com/start/apue.html

1

Chap 2

Chap 26 & 27

Chap 11

http://pages.cs.wisc.edu/~remzi/OSTEP
http://www.kohala.com/start/apue.html

Binghamton

University

CS-550

Spring 2020

No Concurrency

• If you want to do 1 task, start one process

2

P1

Binghamton

University

CS-550

Spring 2020

Concurrency : Option 1- 2 Processes

• If you want to do 2 tasks, start
two processes
• Problem: fork(…) is expensive

• Problem: "cold start" penalty

• Problem: If the tasks interact
(e.g. synchronization, data
passing, etc.) Need IPC
• IPC is difficult and expensive

• IPC requires OS resources (kernel
system calls), which are expensive

• Shared memory difficult to set up

3

P1

P2

IPC

Binghamton

University

CS-550

Spring 2020

"Concurrency" : Option 2- Event Driven

• Make one process do
everything

• Busy loop polls for events and
performs tasks

• Length of event loop
determines response latency

• Long task dominates resources

• Stateful event processing
complicates code
• What if i'th occurrence of task n

affects the j'th occurrence?

4

P1

while(1) {
if (event1) do task1;
if (event2) do task2;
…
if (eventn) do taskn;

}

Binghamton

University

CS-550

Spring 2020

P1

Shared Address Space

Concurrency : Option 3 - Threads

• Single process

• Single address space
• code, heap, static data

• Multiple "threads" of execution

• Each thread has it's own:
• Instruction Pointer

• Stack / Stack pointer

• Registers

5

T1 T2 T3

Binghamton

University

CS-550

Spring 2020

More on Thread Uniqueness

Threads Share

• File description table
• Open descriptors – files, devices,

etc.

• Signals and Signal Handlers

Threads have their own

• Thread ID

• errno

• Priority

6

Binghamton

University

CS-550

Spring 2020

Address space layout

7

System Reserved Data

User Stack

User Heap (malloc)

Program Data

Program Instructions

System Reserved Low Memory

stack
pointer

Instruction
pointer

System Reserved Data

User Stack1

User Stack 2

User Heap (malloc)

Program Data

Program Instructions

System Reserved Low Memory

stack pointer
t1

Instruction
pointer t1

Instruction
pointer t2

stack pointer
t2

0xFFFF …FFFF
0xFFFF …FFFF

0x0000…0000 0x0000…0000

Single Threaded
Two Threaded

Binghamton

University

CS-550

Spring 2020

Threaded Process Example

8

Word Processor

T1
KBD

T3
DSK

T2
MON

Binghamton

University

CS-550

Spring 2020

Threaded Process Example

• CTL Thread manages
connections
• Accepts new connections

• Starts a thread for each
connection

• Cx threads manage a single
connection

9

Web Server

T1
CTL

T3
C2

T2
C1

Binghamton

University

CS-550

Spring 2020

Advantages of Threads

• Low cost context switching between threads
• No memory swapping

• No inter-process communication required
• No data transfer required between threads

• But inter-thread coordination still required!

• Threads are easy to pre-empt
• Compare to event driven programming with long running task

• Long running threads are not a problem

• Threads might exploit parallelism (More later)

10

Binghamton

University

CS-550

Spring 2020

Disadvantages of Threads

• Shared State
• Global variables are shared between threads

• Accidental changes can cause errors

• Threads don't mix with signals
• Common signal handler for all threads in a process

• Which thread to signal? Everybody!

• Very difficult to program correctly!

• Lack Robustness – Crash in one thread brings all threads down

• Thread Safety in user code and in libraries

11

Binghamton

University

CS-550

Spring 2020

Thread Safety

• Guarantee that multiple copies of code can run concurrently
without error

• Requires variables to be local to an invocation of the code

• Requires that the state of returned values must be immutable

• If shared state is required
• Access to that memory must be controlled

• One thread cannot start working on that object until the other is finished

• Certain operations must be atomic
• No other thread can access the state until the operation is fished

• e.g. "Test and Set"

12

Binghamton

University

CS-550

Spring 2020

Kernel vs. User level threads

User Level Threads

• Threads managed by system
libraries

• OS kernel does not recognize
threads

• Threads execute when process
is scheduled

Kernel Level Threads

• OS kernel provides multiple
threads per process

• Each thread is scheduled
independently by the kernel's
CPU scheduler

13

Binghamton

University

CS-550

Spring 2020

Kernel vs. User Level Threads

14

P1

T1 T3T2

Kernel

User Lib

P2

T1 T3T2

User Lib

Process
Table

Thread
Table

P1

T1 T3T2

Kernel

P2

T1 T3T2

Process
Table

Thread
Table

Binghamton

University

CS-550

Spring 2020

Kernel and User Hybrid

15

P1

T1 T3T2

Kernel

User Lib

P2

T1 T3T2

User Lib
Process

Table

User
Thread
Table

Kernel
Thread
Table

Multiple User Level Threads
on each Kernel Level Thread

Binghamton

University

CS-550

Spring 2020

P2

Local Thread Scheduling

• Process gets a time slice
• Threads in that process get a

portion of that timeslice

• May be used by either
• User level threads OR
• Kernel level threads

• Scheduling requires only local
knowledge of threads within a
single process

• Can have: T1, T2, T3, T1, …

• Cannot have: T1, T4, T2, T5, …

P1

16

T1 T3T2

Kernel

T4 T6T5

Binghamton

University

CS-550

Spring 2020

P2

Global Thread Scheduling

• Thread gets a time slice
• Thread may be chosen from any

process

• No notion of process time slice

• Only Kernel Threads
• Requires knowledge of threads

in other processes

• Can have: T1, T2, T3, T1, …

• Can have: T1, T4, T2, T5, …

P1

17

T1 T3T2

Kernel

T4 T6T5

Binghamton

University

CS-550

Spring 2020

Thread creation and Termination

Start thread with:
int pthread_create(

pthread_t * thread,

pthread_attr_t * attr,

void * (*start_routine)(void *),

void * arg

);

End Thread with:

• return from start_routine

Or
void pthread_exit(void * status)

18

Wait for thread termination:

int pthread_join(pthread_t thread, void **retval);

• Similar to waitpid

Binghamton

University

CS-550

Spring 2020

Example pthread program

// shared counter to be incremented by each thread

int counter = 0;

int main() {

pthread_t tid[N];

for (int i=0;i<N;i++) {

pthread_create(&tid[i], NULL, thread_func, NULL);

}

for(int i=0;i<N;i++) /* wait for child thread */

pthread_join(tid[i], NULL);

printf(

"After %d threads incremented counter, value is %d\n",

N,counter);

return 0;

}

void *thread_func(void *arg) {

/* unprotected code – race condition*/

if (counter<10) {

printf(

"Thread: incrementing counter = %d\n",

counter);

counter = counter + 1;

}

return NULL; // thread dies upon return

}

19

Binghamton

University

CS-550

Spring 2020

Example pthread output (N=25)

./pthread_race

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 0

Thread: incrementing counter = 1

Thread: incrementing counter = 2

Thread: incrementing counter = 5

Thread: incrementing counter = 5

Thread: incrementing counter = 7

Thread: incrementing counter = 8

Thread: incrementing counter = 9

Thread: incrementing counter = 9

After 25 threads…, value is 13

20

Binghamton

University

CS-550

Spring 2020

pthread synchronization utilities

Mutexes

pthread_mutex_init(…)

pthread_mutex_lock(…)

pthread_mutex_unlock (…)

pthread_mutex_trylock (…)

Condition Variables

pthread_cond_wait (…)

pthread_cond_signal (…)

pthread_cond_broadcast (…)

pthread_cond_timedwait (…)

21

Binghamton

University

CS-550

Spring 2020

Example protected pthread program

int counter = 0;

pthread_mutex_t counter_mutex;

int main() {

pthread_t tid[N];

pthread_mutex_init(&counter_mutex, NULL);

for (int i=0;i<N;i++) {

pthread_create(&tid[i], NULL, thread_func, NULL);

}

for(int i=0;i<N;i++) /* wait for child thread */

pthread_join(tid[i], NULL);

pthread_mutex_destroy(&counter_mutex);

printf(

"After %d threads incremented counter, value is %d\n",

N,counter);

return 0;

}

void *thread_func(void *arg) {

pthread_mutex_lock(&counter_mutex);

if (counter<10) {

printf("Thread: incrementing counter = %d\n",

counter);

counter = counter + 1;

}

pthread_mutex_unlock(&counter_mutex);

return NULL; // thread dies upon return

}

22

Binghamton

University

CS-550

Spring 2020

Example protected pthread output (N=25)

./pthread_race_protected

Thread: incrementing counter = 0

Thread: incrementing counter = 1

Thread: incrementing counter = 2

Thread: incrementing counter = 3

Thread: incrementing counter = 4

Thread: incrementing counter = 5

Thread: incrementing counter = 6

Thread: incrementing counter = 7

Thread: incrementing counter = 8

Thread: incrementing counter = 9

After 25 threads incremented counter, value is 10

23

