Binghamton CS-550

University Spring 2020

Threads

Modern Operating Systems, by Andrew Tanenbaum|| Chap 2 1

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book) [ Chap 26 & 27}

"Advanced Programming in Unix Environment" by Richard Steven
http://www.kohala.com/start/apue.html Chap 111



http://pages.cs.wisc.edu/~remzi/OSTEP
http://www.kohala.com/start/apue.html

Binghamton CS-550

University Spring 2020

No Concurrency

* [f you want to do 1 task, start one process




Binghamton CS-550

University Spring 2020

Concurrency : Option 1- 2 Processes

* If you want to do 2 tasks, start
two processes
* Problem: fork(...) is expensive
* Problem: "cold start” penalty

* Problem: If the tasks interact
(e.g. synchronization, data
passing, etc.) Need IPC

« IPCis difficult and expensive

* IPC requires OS resources (kernel
system calls), which are expensive

e Shared memory difficult to set up




Binghamton CS-550

University Spring 2020

"Concurrency" . Option 2- Event Driven

* Make one process do

everything
* Busy loop polls for events and

performs tasks while(1) {
* Length of event loop if (eventl) do task1;

determines response latency if (event2) do task2;
* Long task dominates resources -

_ if (eventn) do taskun;

* Stateful event processing )

complicates code

 What if i'th occurrence of task n
affects the j'th occurrence?




Binghamton CS-550

University Spring 2020

Concurrency : Option 3 - Threads

* Single process

* Single address space

_ Shared Address Space
* code, heap, static data

e Multiple "threads” of execution

* Each thread has it's own:
* Instruction Pointer
 Stack / Stack pointer
* Registers




Binghamton CS-550

University Spring 2020

More on Thread Uniqueness

Threads Share Threads have their own
* File description table * Thread ID
* Open descriptors - files, devices, o ayrrno
etc.

* Signals and Signal Handlers * Priority



Binghamton CS-550

Spring 2020

University

Address space layout

Single Threaded

OxFFFF ...FFFF

stack
pointer

Instruction
pointer

0x0000...0000

System Reserved Data

User Stack

!
|

User Heap (malloc)

Program Data

Program Instructions

System Reserved Low Memory

OxFFFF ...FFFF

stack pointer
t1

stack pointer
t2

Instruction
pointer t2

Instruction

pointer t1
0x0000...0000

Two Threaded

System Reserved Data

User Stack1l
4

User Stack 2
$

1

User Heap (malloc)

Program Data

Program Instructions

System Reserved Low Memory



Binghamton CS-550

University Spring 2020

Threaded Process Example

¢ AbiWord Portable Sample Document.abw - AbiWord - o X
File Edit View Inset Format Tools Table Collaborate Documents Help

DEE @8 9 ¢ | XBl yrew
= ffmestewronn 2 <]| [A] BEEEE Eo ]

Word Processor

AbiWord Portable

word processing made portble

AbiWord Portable is the lightweight AbiWord word processor packaged as a
portable app, so you can edit your documents on the £0. You can place it in your
cloud folder or on your USB flash drive and use it on any computer, without
leaving any personal information behind. You can use it on your lacal PC, too.

Features

AbiWord Portable is a free word processing program similar to
= Microsoft Word. Itis suitable fora variety of word i
activities and supports 2 number of document typesincluding
Microsoft Word, Word Perfect, Open Document (OpenOffice.org).
Office Open XML (MS Word 2007), RTF, HTML, Palm and more. It
includes both gram mar and spelling checkers as well as an amray of

other hand mail merge ities. Italso has a
plugin system allowing you to add features with available add-on
nlngins

en-U /)

Page: 1/1 [




Binghamton CS-550

University Spring 2020

Threaded Process Example

Web Server * CTL Thread manages
connections
* Accepts new connections

e Starts a thread for each
connection

* Cx threads manage a single
connection

T1 T2
CTL C1




Binghamton CS-550

University Spring 2020

Advantages of Threads

* Low cost context switching between threads
* No memory swapping

* No inter-process communication required
* No data transfer required between threads
* But inter-thread coordination still required!

* Threads are easy to pre-empt
* Compare to event driven programming with long running task
* Long running threads are not a problem

* Threads might exploit parallelism (More later)

10



Binghamton CS-550

University Spring 2020

Disadvantages of Threads

e Shared State

* Global variables are shared between threads
» Accidental changes can cause errors

* Threads don't mix with signals

 Common signal handler for all threads in a process
* Which thread to signal? Everybody!
* Very difficult to program correctly!

* Lack Robustness - Crash in one thread brings all threads down
* Thread Safety in user code and in libraries

11



Binghamton CS-550

University Spring 2020

Thread Safety

* Guarantee that multiple copies of code can run concurrently
without error

* Requires variables to be local to an invocation of the code

* Requires that the state of returned values must be immutable

e If shared state is required
* Access to that memory must be controlled
* One thread cannot start working on that object until the other is finished

 Certain operations must be atomic
* No other thread can access the state until the operation is fished
* e.g. "Test and Set"

12



Binghamton CS-550

University Spring 2020

Kernel vs. User level threads

User Level Threads Kernel Level Threads

* Threads managed by system * OS kernel provides multiple
libraries threads per process

* OS kernel does not recognize * Each thread is scheduled
threads independently by the kernel's

« Threads execute when process ~ CPU scheduler

is scheduled

13



Binghamton
University

Kernel vs. User Level Threads

Thread

T1 T2 T3 1. T2 T3 Table

User Lib User Lib

Process
Table

CS-550
Spring 2020




Binghamton CS-550

University Spring 2020

Kernel and User Hybrid

Multiple User Level Threads
on each Kernel Level Thread

User
Thread

o o o Table

User Lib User Lib
Process

Table

Kernel

15



Binghamton CS-550

University Spring 2020

Local Thread Scheduling

* Process gets a time slice

* Threads in that process get a
portion of that timeslice

* May be used by either
e User level threads OR
 Kernel level threads

* Scheduling requires only local
knowledge of threads within a
single process

e Can have: T1, T2, T3, T1, ...
e Cannot have: T1, T4, T2, T5, ...




Binghamton CS-550

University Spring 2020

Global Thread Scheduling

* Thread gets a time slice

* Thread may be chosen from any
process

* No notion of process time slice

* Only Kernel Threads

* Requires knowledge of threads
in other processes

e Can have: T1, T2, T3, T1, ...
e Can have: T1, T4, T2, T5, ...




Binghamton CS-550

University

Thread creation and Termination

Spring 2020

Start thread with: End Thread with:

int pthread_create(  return from start_routine
pthread_t * thread,
pthread_attr_t * attr, Or

void * (*start_routine) (void *),

void * arg void pthread_exit(void * status)

Wait for thread termination:

int pthread_join(pthread_t thread, void **retval);
e Similar to waitpid

18



Binghamton CS-550
Spring 2020

University

Example pthread program

// shared counter to be incremented by each thread

int counter = 0;

int main(Q) {
pthread_t tid[N];
for (int i=0;i<N;i++) {
pthread_create(&tid[i], NULL, thread_func, NULL);
}
for(int i=0;i<N;i++) /* wait for child thread */
pthread_join(tid[i], NULL);

printf(
"After %d threads incremented counter, value is %d\n",
N, counter);

return O;

void *thread_func(void *arg) {
/* unprotected code - race condition¥*/
if (counter<10) {
printf(
"Thread: incrementing counter = %d\n",
counter);
counter = counter + 1;

ks
return NULL; // thread dies upon return

19



Binghamton

University

Example pthread output (N=25)

./pthread_race

Thread:
Thread:
Thread:
Thread:
Thread:
Thread:
Thread:
Thread:
Thread:

incrementing
incrementing
incrementing
incrementing
incrementing
incrementing
incrementing
incrementing
incrementing

counter

counter =
counter =
counter =

counter
counter

counter =
counter =

counter

vl U1 DR O O O O O

Thread:
Thread:
Thread:
Thread:
After 25 threads..,

incrementing
incrementing
incrementing
incrementing

counter
counter
counter
counter

CS-550
Spring 2020

value 1s 13

20



Binghamton CS-550

University Spring 2020

pthread synchronization utilities

Mutexes Condition Variables
pthread_mutex_init(..) pthread_cond_wait (..)
pthread_mutex_lock(..) pthread_cond_signal (..)
pthread_mutex_unlock C(..) pthread_cond_broadcast (..)
pthread_mutex_trylock C(..) pthread_cond_timedwait (..)

21



Binghamton CS-550

University Spring 2020

Example protected pthread program

int counter = 0; void *thread_func(void *arg) {
pthread_mutex_t counter_mutex; pthread_mutex_lock(&counter_mutex) ;
int mainO { if (c?unte:<10) { . . )
pthread_t tid[N]; printf("Thread: incrementing counter = %d\n",
pthread_mutex_init(&counter_mutex, NULL); counter);
for (int i=0;i<N;i++) { counter = counter + 1;
pthread_create(&tid[i], NULL, thread_func, NULL); }
} .
for(int i=0;i<N;i++) /* wait for child thread */ pthread_mutex_unlock (&counter_mutex) ;
pthread_join(tid[1], NULL); return NULL; // thread dies upon return
pthread_mutex_destroy(&counter_mutex); ks
printf(
"After %d threads incremented counter, value is %d\n",
N, counter);
return 0;

22



Binghamton CS-550

University Spring 2020

Example protected pthread output (N=25)

./pthread_race_protected

Thread: incrementing counter = 0
Thread: incrementing counter =1
Thread: incrementing counter = 2
Thread: incrementing counter = 3
Thread: incrementing counter = 4
Thread: incrementing counter = 5
Thread: incrementing counter = 6
Thread: incrementing counter = 7
Thread: incrementing counter = 8
Thread: incrementing counter =9
After 25 threads incremented counter, value is 10

23



