
Binghamton

University

CS-550

Spring 2020

Inter-Processes
Communication (IPC)

Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

1

Chap 2

Chap 4&5

http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton

University

CS-550

Spring 2020

Primary IPC styles

• Pipes
• Uni-directional passing of data (if used cleanly)

• e.g. ls –l | more

• Signals
• Event notification from one process to another

• Shared Memory
• More than one process can read and write to the same memory

• Requires synchronization between the sharing processes!

2

Binghamton

University

CS-550

Spring 2020

Other forms of IPC

• Parent/Child IPC
• Command line arguments
• Process return codes wait(…), waitpid(…) and exit(…)

• Reading/Writing common files
• Servers use "/run/xyz.pid" file to determine other active servers

• Semaphores
• Locking and event signaling mechanisms between processes

• Sockets
• Bi-directional
• Not just across the network, but also between processes

3

Binghamton

University

CS-550

Spring 2020

Pipes

4

Binghamton

University

CS-550

Spring 2020

Pipe Abstraction

• Write to one end, read from another

pipe(fd[2])

5

Pipefd[1] fd[0]

write()

read()

Binghamton

University

CS-550

Spring 2020

UNIX : Files vs. Streams

• The original C standard library supports "Files Descriptors"
• A file-descriptor is an integer index into a "File Descriptor table"

• Functions like open, close, read, write, pipe use file-descriptor indexes

• Streams are a more sophisticated I/O model built on top of file
descriptors
• A stream is (usually) a pointer to a FILE structure

• The FILE structure contains a file-descriptor index, plus more

• Functions like fopen, fclose, fread, fwrite, popen, and pclose use steams

• Both File Descriptors and Steams can be "attached" to hard disk
files, devices (such as keyboards and monitors), network, etc.

6

Binghamton

University

CS-550

Spring 2020

File-Descriptor Table

• Each process has a file-descriptor table
• One entry for each open file descriptor

7

Index File Descriptor

0 stdin

1 stdout

2 stderr

? fd[0]

?+1 fd[1]

Binghamton

University

CS-550

Spring 2020

File Descriptors and Fork

• When a fork occurs, the entire address space, including the file
descriptor table, is cloned!

8

Index File Descriptor

0 stdin

1 stdout

2 stderr

? fd[0]

?+1 fd[1]

Index File Descriptor

0 stdin

1 stdout

2 stderr

? fd[0]

?+1 fd[1]

Binghamton

University

CS-550

Spring 2020

Duplicating file descriptors

• int dup(oldfd)
• duplicates file descriptor with index x, returns the index of the duplicate
• Makes an exact copy of the file descriptor, including position in the "file"

• Well something of a cross between copy and reference

• int dup2(oldfd,newfd)
• if (newfd==oldfd) returns newfd
• if newfd is open, closes newfd
• duplicates oldfd to newfd
• dup2(fds[0], STDIN_FILENO); /* make stdin same as fds[0] */
• dup2(fds[1], STDOUT_FILENO); /* make stdout same as fds[1] */

9

Binghamton

University

CS-550

Spring 2020

Parent/Child Process Pipes

10

Parent

pipe()
fork()

close(fd[1])
read(fd[0])

Child

close(fd[0])
write(fd[1])

Pipefd[1] fd[0]

See: Examples/ipc/pipe1.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

Shell Pipes

11

Shell: ps –elf | less
pipe()
fork()
fork()
wait()

ps –elf
dup2(fd[1],1)
execlp(ps –elf)

Pipefd[1] fd[0]
less

dup2(fd[0],0)
execlp(less)

stdout stdin

fork fork

Binghamton

University

CS-550

Spring 2020

Chains of Filters – Recursive approach

• Split chain into head "|" tail

• Create a pipe

• Fork a child

• Redirect stdout/stdin using dup2 in parent and child

• exec head in child

• if tail is not empty, parent invokes function recursively on tail

• if tail is empty, parent waits on all children

12

Binghamton

University

CS-550

Spring 2020

Pipes : byte-stream abstraction

• You can read from or write to a pipe at arbitrary byte boundaries
• E.g. write 10 bytes, 10 bytes, 10 bytes

• read 5 bytes 15 bytes 15 bytes 5 bytes

• Message abstraction imposes message boundaries
• E.g. network packets

13

Binghamton

University

CS-550

Spring 2020

Reading/Writing with pipes

• read(fds[0],buf,6);
• May not read 6 bytes!

• Why?

• Some reasons:
• read() could reach end of input stream (EOF)

• Other side of pipe may abruptly close the connection (broken pipe)

• read() could return on a signal

• You MUST use error handling with any system call (including I/O)

14

Binghamton

University

CS-550

Spring 2020

Example of Error Handling

You must

• Check the return from every
system call

• Then either handle errors
OR

• continue processing

• Convenient to write wrapper
functions

/* Write "n" bytes to a descriptor. */

ssize_t writen(int fd, const void *vptr, size_t n) {

size_t nleft; size_t nwritten; const char *ptr;

ptr = vptr;

nleft = n;

while (nleft > 0) {

if ((nwritten = write(fd, ptr, nleft))<=0){

if (errno == EINTR) nwritten = 0; /* call write() again*/

else return(-1); /* error */

}

nleft -= nwritten;

ptr += nwritten;

}

return(n);

}

15

Binghamton

University

CS-550

Spring 2020

Signals

16

Binghamton

University

CS-550

Spring 2020

What is a signal?

• A notification to a process that an (asynchronous) event has
occurred
• May originate in this process, another process, or from the OS who

manages external devices

• There is no data associated with a signal
• A signal either occurs or does not occur

• There is a pre-defined set of signals supported by UNIX
• Send signals to a process with the "kill" command

• List all signal types with the command "kill –l"

• Some interesting signals: SIGCHILD, SIGKILL, SIGSTOP

17

Binghamton

University

CS-550

Spring 2020

Handling Signals

• When a signal is sent to a process, the OS stops that process from
executing, saves the execution state, and transfers control to a
signal handler routine

• The operating system signal handler routines typically print an
error message and exit the process (e.g. SIGSEGV)

• SIGSTOP halts execution, but leaves the process idle
• SIGCONT signal causes execution to continue

• If the signal handler routine returns, the process state is restored,
and the process continues to execute (e.g. SIGCHLD and SIGURG)

18

Binghamton

University

CS-550

Spring 2020

Overriding Default Signal Handler

• The C library function sigaction(…) allows us to specify a different
action for a specific signal
• except SIGKILL and SIGSTOP cannot be overiden!

• Note: sigaction uses C function pointers.

• For example, long running programs may use SIGUSR1 to report
current status

• For example, program may want to handle SIGSEGV like a C
version of try/catch

19

See: Examples/ipc/signals_ex.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

More on SIGCHLD

• When child process terminates or stops, SIGCHLD is sent to parent

• By default, parent ignores SIGCHLD

• Override default by running sigaction() for SIGCHLD before parent
calls fork()
• If act.sa_handler is SIG_IGN, SIGCHLD will be ignored by parent

• If act.sa_flags is SA_NOCLDSTOP, SIGCHLD will not be generated by child

• If act.sa_flags is SA_NODLDWAIT, children will not become zombies when
they terminate

21

Binghamton

University

CS-550

Spring 2020

How to avoid waitpid blocking

• Parent installs signal handler for SIGCHLD

• Signal handler invokes wait(…) or waitpid(…)

22

/* SIGCHLD handler */
void int_handler(int sig) {

pid_t pid;
int stat;
pid = wait(&stat); // Never blocks!
printf("In Parent: Child %d terminated\n", pid);
printf("Parent continues...\n");

}

See: Examples/ipc/sigchld.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

More Info

• Check "man sigaction"

• What happens when a signal occurs while a signal handler is
running?

• What happens when a signal is delivered in the middle of a system
call? (Different OS's have different behaviors)

• Google: "Unix Signals"… tons of useful links

23

Binghamton

University

CS-550

Spring 2020

Shared Memory
Shared Memory Library functions: shmget, shmat, shmdt, shmctl

24

Binghamton

University

CS-550

Spring 2020

Shared Memory Concepts

• Use ftok(…) to get a unique shared memory key
• ftok parameter : File name (controls access),

• ftok parameter: projid (enables multiple keys with a single file)

• Key is then used to reserve or connect to a block of memory with
shmget(…), which returns a schmid

• Memory can be attached to your process address space with
shmat(…) using schmid

• Memory can be deleted with shmctl(…)

25

Binghamton

University

CS-550

Spring 2020

Creating shared memory

26

Process 1
key=ftok(…)

shmid=shmget(key,…) Shared Memory(key)
Create

See: Examples/ipc/sh_create.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

Accessing shared memory

27

Process 1
key=ftok(…)

shmid=shmget(key,…) Shared Memory(key)

Process 2
key=ftok(…)

shmid=shmget(key,…)
data=shmat(schmid,…)

strcpy(data,"xyz")

Shared Memory(key)

Create

A

c

c

e

s

s

A

t

t

a

c

h

xyz

xyz

See: Examples/ipc/sh_access.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

Accessing Shared Memory

28

Process 1
key=ftok(…)

shmid=shmget(key,…) Shared Memory(key)
xyz

Process 2
key=ftok(…)

shmid=shmget(key,…)
data=shmat(schmid,…)

strcpy(data,"xyz")

Shared Memory(key)
xyz

Process 3
key=ftok(…)

shmid=shmget(key,…)
data=shmat(schmid,…)

print(data)

Shared Memory(key)
xyz

xyz

Create

A

c

c

e

s

s

A

c

c

e

s

s

A

t

t

a

c

h

A

t

t

a

c

h

See: Examples/ipc/sh_access.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

Deleting shared memory

29

Process 1
key=ftok(…)

shmid=shmget(key,…) Shared Memory(key)
xyz

Process 2
key=ftok(…)

shmid=shmget(key,…)
data=shmat(schmid,…)

strcpy(data,"xyz")

Shared Memory(key)
xyz

Process 3
key=ftok(…)

shmid=shmget(key,…)
data=shmat(schmid,…)

print(data)

Shared Memory(key)
xyz

xyz

Process 4
key=ftok(…)

shmid=shmget(key,…)
shmctl(shmid,…)Create

A

c

c

e

s

s

A

c

c

e

s

s

A

t

t

a

c

h

A

t

t

a

c

h

Access

Delete

See: Examples/ipc/sh_delete.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

Shared Memory Notes

• shmdet (shared memory detach) not shown above – see code.

• IPC commands:
• ipcs – lists all IPC objects owned by the user

• ipcrm – removes specific IPC object

• References
• Unix man pages

• "Advanced Programming in Unix Environment" by Richard Stevens
http://www.kohala.com/start/apue.html

30

http://www.kohala.com/start/apue.html

Binghamton

University

CS-550

Spring 2020

Shared Memory Warning

• C assumes it owns memory
• If your program hasn't changed a variable, it hasn't changed

• With shared memory, this assumption is incorrect
• A different process may change the value of the memory

• At a minimum, mark variables in shared memory as "volatile"

• If processes are truly concurrent, need more control
if (shared!=0) result = 276/shared; // divide by zero error!

• Semaphores (yet to come)

31

Binghamton

University

CS-550

Spring 2020

File Descriptors Addendum

32

Binghamton

University

CS-550

Spring 2020

File Descriptor

• An integer index into a process specific "File Descriptor Table" kept in
the kernel

• Therefore, file descriptors are non-negative integers
• Negative integers are used to indicate an error

• File descriptors are normally created by an "open()" call, but may also
be created by other calls (such as dup or dup2 or pipe)

• An entry in the file descriptor table contains:
• The position in the file (offset from the beginning of the file)
• flags: Binary bits to manage things like append, async, cloexec, create,…
• A pointer to a system-wide "File Table" (if the file is open)

• Use "fctl()" to modify a file descriptor table entry
• See /proc/pid/fdinfo for the list of file descriptors associated with pid

33

Binghamton

University

CS-550

Spring 2020

System Wide File Table

• Contains ONE entry for every "file" open for ALL processes!
• Multiple File Descriptor table entries all point to ONE file table entry

• e.g. after fork, both parent file descriptor tables and child file descriptor tables point to
the same File table entry

• e.g. after dup or dup2, both the old and new fd point to the SAME File table entry!

• Keeps track of the mode the file was opened (read or write or RW)

• Keeps track of the NUMBER of file descriptor entries which are "open"
and which point to this File table entry

• When you do a close, the number is decremented, and the pointer from
the file descriptor to the file table is removed

• When that number reaches zero, the file is ACTUALLY closed!

34

Binghamton

University

CS-550

Spring 2020

Implications of this Design

• Suppose I have a pipe created to pass data from one child to
another child

• When the first child closes the input side of the pipe, I want the
second child to see an end-of-file

• If ALL fd's associated with the write end of the pipe are not closed,
the read end of the pipe will not see an end-of-file!
• Parent must close input side of pipe

• Both children must close input side of pipe

• If dup or dup2 is called for input side, both old and new fd's must be
closed!

35

