Binghamton CS-550

University Spring 2020

Inter-Processes
Communication (IPC)

Modern Operating Systems, by Andrew Tanenbaum U Chap 2]
Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

U Chap 4&5]
A B B

http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton CS-550

University Spring 2020

Primary IPC styles

* Pipes
* Uni-directional passing of data (if used cleanly)
* e.g. Is -1 | more

* Signals
* Event notification from one process to another

* Shared Memory
* More than one process can read and write to the same memory
* Requires synchronization between the sharing processes!

Binghamton CS-550

University Spring 2020

Other forms of IPC

* Parent/Child IPC

 Command line arguments
* Process return codes wait(...), waitpid(...) and exit(...)

* Reading/Writing common files
* Servers use "/run/xyz.pid" file to determine other active servers

* Semaphores
* Locking and event signaling mechanisms between processes

e Sockets

e Bi-directional
* Not just across the network, but also between processes

Binghamton CS-550
University Spring 2020

Binghamton CS-550

University Spring 2020

Pipe Abstraction

 Write to one end, read from another

pipe(fd[2])

write()

Pipe

read()

Binghamton CS-550

University Spring 2020

UNIX : Files vs. Streams

* The original C standard library supports "Files Descriptors”
 Afile-descriptor is an integer index into a "File Descriptor table"
* Functions like open, close, read, write, pipe use file-descriptor indexes

 Streams are a more sophisticated /0 model built on top of file
descriptors
* A stream is (usually) a pointer to a FILE structure
* The FILE structure contains a file-descriptor index, plus more
* Functions like fopen, fclose, fread, fwrite, popen, and pclose use steams

* Both File Descriptors and Steams can be "attached” to hard disk
files, devices (such as keyboards and monitors), network, etc.

Binghamton CS-550

University Spring 2020

File-Descriptor Table

* Each process has a file-descriptor table
* One entry for each open file descriptor

m File Descriptor

0 stdin
1 stdout
2 stderr
? fd[0]

7+1 fd[1]

Binghamton CS-550

University Spring 2020

File Descriptors and Fork

* When a fork occurs, the entire address space, including the file
descriptor table, is cloned!

m File Descriptor m File Descriptor
0

stdin 0 stdin
1 stdout 1 stdout
2 stderr 2 stderr
? fd[0] ? fd[0]

7+1 fd[1] 7+1 fd[1]

Binghamton CS-550

University Spring 2020

Duplicating file descriptors

*int dup(oldfd)

 duplicates file descriptor with index x, returns the index of the duplicate

* Makes an exact copy of the file descriptor, including position in the "file"
* Well something of a cross between copy and reference

* int dup2(oldfd,newfd)

* if (newfd==oldfd) returns newfd
* if newfd is open, closes newfd

 duplicates oldfd to newfd
e dup2(fds[0], STDIN_FILENO); /* make stdin same as fds[0] */
e dup2(fds[1], STDOUT_FILENO); /* make stdout same as fds[1l] */

Binghamton CS-550

University Spring 2020

Parent/Child Process Pipes

Parent
Child —

fd[1] pipe()

close(fd[0]) fork()
write(fd[1]) close(fd[1])
read(fd[0])

See: Examples/ipc/pipel.c

10

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

CS-550
Spring 2020

Binghamton

University

Shell Pipes

Shell: ps -elf | less

pipe()
fork()
fork()

wait()
fork

less
dup2(fd[0],0)
execlp(less)

ps —elf
dup2(fd[1],1)

execlp(ps -elf)

11

Binghamton CS-550

University Spring 2020

Chains of Filters — Recursive approach

* Split chain into head "|" tail

* Create a pipe

* Fork a child

* Redirect stdout/stdin using dup2 in parent and child

* exec head in child

e if tail is not empty, parent invokes function recursively on tail

e if tail is empty, parent waits on all children

12

Binghamton CS-550

University Spring 2020

Pipes : byte-stream abstraction

* You can read from or write to a pipe at arbitrary byte boundaries
* E.g. write 10 bytes, 10 bytes, 10 bytes
* read 5 bytes 15 bytes 15 bytes 5 bytes

* Message abstraction imposes message boundaries
* E.g. network packets

13

Binghamton CS-550

University Spring 2020

Reading/Writing with pipes

 read(fds[0],buf,6);

* May not read 6 bytes!
* Why?

* Some reasons:
* read() could reach end of input stream (EOF)
* Other side of pipe may abruptly close the connection (broken pipe)
* read() could return on a signal

* You MUST use error handling with any system call (including 1/0)

14

Binghamton CS-550

University Spring 2020

Example of Error Handling

/* write "n" bytes to a descriptor. */
You must

ssize_t writen(int fd, const void *vptr, size_t n) {
size_t nleft; size_t nwritten; const char *ptr;

Check the return from every _
ptr = vptr;
system call nleft = n:

while (nleft > 0) {
if ((nwritten = write(fd, ptr, nleft))<=0){

 Then either handle errors

()I{ if (errno == EINTR) nwritten = 0; /* call write() again¥*/
. . else return(-1); /* error */
* continue processmg 1
hleft -= nwritten;
ptr += nwritten;
* Convenient to write wrapper }
functions return(n);

15

Binghamton CS-550

University Spring 2020

What Is a signal?

A notification to a process that an (asynchronous) event has
occurred

e May originate in this process, another process, or from the OS who
manages external devices

* There is no data associated with a signal
* A signal either occurs or does not occur

* There is a pre-defined set of signals supported by UNIX
* Send signals to a process with the "kill" command
e List all signal types with the command "kill -I"

* Some interesting signals: SIGCHILD, SIGKILL, SIGSTOP

17

Binghamton CS-550

University Spring 2020

Handling Signals

* When a signal is sent to a process, the OS stops that process from
executing, saves the execution state, and transfers control to a
signal handler routine

* The operating system signal handler routines typically print an
error message and exit the process (e.g. SIGSEGV)

* SIGSTOP halts execution, but leaves the process idle
* SIGCONT signal causes execution to continue

* If the signal handler routine returns, the process state is restored,
and the process continues to execute (e.g. SIGCHLD and SIGURG)

18

Binghamton CS-550

University Spring 2020

Overriding Default Signal Handler

* The C library function sigaction(...) allows us to specify a different
action for a specific signal

* except SIGKILL and SIGSTOP cannot be overiden!
* Note: sigaction uses C function pointers.

* For example, long running programs may use SIGUSR1 to report
current status

* For example, program may want to handle SIGSEGV like a C
version of try/catch

See: Examples/ipc/signals ex.c

19

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

CS-550
Spring 2020

Binghamton

University

More on SIGCHLD

* When child process terminates or stops, SIGCHLD is sent to parent

* By default, parent ignores SIGCHLD

* Override default by running sigaction() for SIGCHLD before parent
calls fork()
* If act.sa_handler is SIG_IGN, SIGCHLD will be ignored by parent
* If act.sa_flags is SA_NOCLDSTOP, SIGCHLD will not be generated by child
* If act.sa_flags is SA_NODLDWAIT, children will not become zombies when
they terminate

21

Binghamton CS-550

University Spring 2020

How to avoid waitpid blocking

* Parent installs signal handler for SIGCHLD
e Signal handler invokes wait(...) or waitpid(...)

/* SIGCHLD handler */
void int_handler(int sig) {
pid_t pid;
int stat;
pid = wait(&stat); // Never blocks!
printf("In Parent: Child %d terminated\n", pid);
printf("Parent continues...\n");

See: Examples/ipc/sigchld.c

22

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020

More Info

* Check "man sigaction”

* What happens when a signal occurs while a signal handler is
running?

 What happens when a signal is delivered in the middle of a system
call? (Different OS's have different behaviors)

* Google: "Unix Signals"... tons of useful links

23

Binghamton

University

CS-550
Spring 2020

Process 1

Process 2

N/

Shared Memory

Shared Memory

Shared Memory Library functions: shmget, shmat, shmdt, shmctl

24

Binghamton CS-550

University Spring 2020

Shared Memory Concepts

* Use ftok(...) to get a unique shared memory key
* ftok parameter : File name (controls access),
* ftok parameter: projid (enables multiple keys with a single file)

* Key is then used to reserve or connect to a block of memory with
shmget(...), which returns a schmid

* Memory can be attached to your process address space with
shmat(...) using schmid

* Memory can be deleted with shmctl(...)

25

Binghamton CS-550

University Spring 2020

Creating shared memory

See: Examples/ipc/sh create.c

Process 1
key=ftok(...)

shmid=shmget(key,...) Shared Memory(ke

Create

26

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020
Accessing shared memory

See: Examples/ipc/sh access.c

Shared Memory(key)
Create XyZ
——
A

Process 2
key=ftok(...)
shmid=shmget(key,...)
data=shmat(schmid,...)

50 0 A o+ >

strcpy(data,'xyz")
Shared Memory(key)

XV7Z

27

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020
Accessing Shared Memory

See: Examples/ipc/sh access.c

Shared Memory(key)
Create XyZ
 E—

A A

C A A C

C t t

€ ; ; Process 3

i ¢ o key=ftok(...)
h-h shmid=shmget(key,...)

data=shmat(schmid,...)
print(data)
Shared Memory(key) — Shared Memory(key)
XYZ XYZ
xyZz 28

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020

Deleting shared memory

See: Examples/ipc/sh delete.c

Process 1

Process 4
.key=ftok(...) key=ftok(...)
shmid=shmget(key,...) Shared Memory(key) shmid=shmget(key,...)

Create XyZ Access shmctl(shmid,...)

Delete

Process 2
key=ftok(...)
shmid=shmget(key,...)
data=shmat(schmid,...)
strcpy(data,'xyz")

Shared Memory(key)

XVZ

Process 3
key=ftok(...)
shmid=shmget(key,...)
data=shmat(schmid,...)

= SR SRR S e~
50 0 A o+ >

print(data)
Shared Memory(key)

XVZ

XyzZ 29

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020

Shared Memory Notes

* shmdet (shared memory detach) not shown above - see code.

* [PC commands:
* ipcs - lists all IPC objects owned by the user
* ipcrm - removes specific IPC object

* References
* Unix man pages
* "Advanced Programming in Unix Environment" by Richard Stevens
http://www.kohala.com/start/apue.html

30

http://www.kohala.com/start/apue.html

Binghamton CS-550

University Spring 2020

Shared Memory Warning

* C assumes it owns memory
 If your program hasn't changed a variable, it hasn't changed

* With shared memory, this assumption is incorrect
A different process may change the value of the memory

e At a minimum, mark variables in shared memory as "volatile"

* If processes are truly concurrent, need more control

if (shared!=0) result = 276/shared; // divide by zero error!

* Semaphores (yet to come)

31

File Descriptors Addendum

Binghamton CS-550

University Spring 2020

File Descriptor

* An integer index into a process specific "File Descriptor Table" kept in
the kernel

* Therefore, file descriptors are non-negative integers
* Negative integers are used to indicate an error

* File descriptors are normally created by an "open()" call, but may also
be created by other calls (such as dup or dup?Z or pipe)

* An entry in the file descriptor table contains:
* The position in the file (offset from the beginning of the file)
* flags: Binary bits to manage things like append, async, cloexec, create,...
* A pointer to a system-wide "File Table" (if the file is open)

* Use "fctl()" to modify a file descriptor table entry
» See /proc/pid/fdinfo for the list of file descriptors associated with pid

33

Binghamton CS-550

University Spring 2020

System Wide File Table

* Contains ONE entry for every "file" open for ALL processes!

» Multiple File Descriptor table entries all point to ONE file table entry

 e.g. after fork, both parent file descriptor tables and child file descriptor tables point to
the same File table entry

 e.g. after dup or dup2, both the old and new fd point to the SAME File table entry!

* Keeps track of the mode the file was opened (read or write or RW)

* Keeps track of the NUMBER of file descriptor entries which are "open”
and which point to this File table entry

 When you do a close, the number is decremented, and the pointer from
the file descriptor to the file table is removed

« When that number reaches zero, the file is ACTUALLY closed!

34

Binghamton CS-550

University Spring 2020

Implications of this Design

* Suppose I have a pipe created to pass data from one child to
another child

* When the first child closes the input side of the pipe, I want the
second child to see an end-of-file

 [f ALL fd's associated with the write end of the pipe are not closed,
the read end of the pipe will not see an end-of-file!
* Parent must close input side of pipe
* Both children must close input side of pipe

 If dup or dup? is called for input side, both old and new fd's must be
closed!

35

