
Binghamton

University

CS-550

Spring 2020

Processes
Managing User Software

Modern Operating Systems, by Andrew Tanenbaum

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)

man pages in any UNIX system

1

Chap 2

Chap 4

http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton

University

CS-550

Spring 2020

Process Terminology

• A program is a set of instructions somewhere (like in a file)

• A process is the execution of a program
• And all the resources required to execute that program

• When execution starts, the OS reserves memory for the process,
and loads the program into that memory
• Then sends the CPU to execute the first instruction of the program

2

Binghamton

University

CS-550

Spring 2020

Von Neumann model of Computing

Fetch

DecodeExecute

3

CPU

Binghamton

University

CS-550

Spring 2020

Process vs. Program

Program

• Passive entity
• Static code and data

• Stored on disk

Process

• Program
• actively executing code

• Static code and data

• Dynamic code and data

• Memory

• Dynamic Data (e.g. registers)

• Many processes can run the
same program (e.g. "ls")

4

Binghamton

University

CS-550

Spring 2020

What's in a process?

• Memory space (static and dynamic)

• Procedure call stack

• Registers and counters
• Program counter, stack pointer, general purpose registers

• Open files and connections

• And more.

5

Binghamton

University

CS-550

Spring 2020

Process Memory Layout

System Reserved Data

User Stack

User Heap (malloc)

Program Data

Program Instructions

System Reserved Low Memory

stack pointer

Instruction pointer

0x0000 0000 0000 0000

Function Invocation Records:
Arguments, Return address
Return value, local variables

Dynamically Allocated Memory:
e.g. malloc()

Global Variables, Literal Values,
etc.

0xFFFF FFFF FFFF FFFF

Binghamton

University

CS-550

Spring 2020

Process Life Cycle

fork()

• Create a
process

exec()

• load a new
program in
the current
process

exit()

• Terminate this
process

wait()

waitpid()

• Wait for a
process to
terminate

7

System CallsSystem CallsSystem CallsSystem Calls Parent ProcessParent Process

Child Process Child Process

Binghamton

University

CS-550

Spring 2020

Process Creation (Using "fork")

• "root" OS process started at bootstrap time

• "root" process forks out service daemons
• See /etc/init.d on Linux for scripts that start services

• Login forks terminal window shell process

• Shell forks new process when you run a command

• Some user programs invoke fork

8

Binghamton

University

CS-550

Spring 2020

Example Process Creation

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int main() {

pid_t pid; int status; int ret;

pid = fork();

if (pid < 0) {

perror("fork failed:");

exit(1);

}

if (pid == 0) { // Child executes this block

printf("This is the child\n");

exit(99);

}

if (pid > 0) { //Parent executes this block

printf("This is parent. The child is %d\n", pid);

ret = waitpid(pid, &status, 0);

if (ret < 0) {

perror("waitpid failed:");

exit(2);

}

printf("Child exited with status %d\n", WEXITSTATUS(status));

}

return 0;

}

9

See: Examples/process/fork_ex.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton

University

CS-550

Spring 2020

The strange behavior of fork

• The fork() function is called once… but it returns TWICE!!!
• Once in the parent, once in the child

• parent and child are two different processes

• The child is an exact copy of the parent
• Address space is copied – that means the program is copied as well!

• Registers and pointers are also copied – e.g. instruction pointer

• Only difference is the return value… in child=0, in parent=<child PID>
• Process ID (PID) – a unique 4 digit number assigned to the process

10

Binghamton

University

CS-550

Spring 2020

After a fork()

• Now there are two processes running the same program

• That program can use the return code to make the child and
parent do different things

• But we really want the child to run a DIFFERENT program

• We can do that with the exec() system call

11

Binghamton

University

CS-550

Spring 2020

Example of Exec

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

#include <unistd.h>

int main() {

pid_t pid;

if ((pid = fork()) < 0) {

fprintf(stderr,

"fork failed\n");

exit(1);

}

if (pid == 0) {

if(

execlp("echo","echo","Hello from the child",(char *)NULL)
== -1) {

fprintf(stderr, "execlp failed\n");

}

exit(2);

}

printf("parent carries on\n");

return 0;

}

12

See: Examples/process/exec_ex.c

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/exec_ex.c

Binghamton

University

CS-550

Spring 2020

The strange behavior of exec

• exec() and all it's variant forms first checks to see if the arguments are
valid. If not, exec issues an error and returns

• If the arguments are OK, exec() :
• Loads a new program into the address space
• Resets the stack and heap
• Maintains all old I/O descriptors and status (Useful for implementing filters)
• Modifies instruction pointer to start at the beginning of the program
• Runs the code (fetch/decode/execute) until an exit occurs

• As a result… unless there is an error, exec() DOES NOT RETURN!
• The old program is gone!

13

Binghamton

University

CS-550

Spring 2020

Shell Pseudo-Code

while(1) {
print prompt (>) to terminal

read command from terminal

pid=fork()

if (pid==0) {
rc=exec(command)

if (rc!=0) { print error; continue }

}

cmdrc=waitpid(pid)

}

14

Q: Does child process ever wait?

Binghamton

University

CS-550

Spring 2020

Different flavors of exec()

• int execl(char * pathname, char * arg0, … , (char *)0);
• Full pathname + long listing of arguments

• int execv(char * pathname, char * argv[]);

• Full pathname + arguments in an array

• int execle(char * pathname, char * arg0, … , (char *)0, char envp[]);

• Full pathname + long listing of arguments + environment variables

• int execve(char * pathname, char * argv[], char envp[]);

• Full pathname + arguments in an array + environment variables

• int execlp(char * filename, char * arg0, … , (char *)0);

• Short pathname + long listing of arguments

• int execvp(char * filename, char * argv[]);

• Short pathname + arguments in an array

15

More Info: "man 3 exec"

Binghamton

University

CS-550

Spring 2020

Terminating a process

• Return from top level function (main)
• Return value (int) is the exit status of the process

• Invoke the exit(status) library function (in stdlib.h)
• The argument (int) is the exit status of the process

• See http://man7.org/linux/man-pages/man3/exit.3.html

• 0 or EXIT_SUCCESS if process worked

• non-zero or EXIT_FAILURE if an error occurred

16

http://man7.org/linux/man-pages/man3/exit.3.html

Binghamton

University

CS-550

Spring 2020

Process Hierarchy Tree

A
Parent of B and C

B
Parent of D, E, F

D
Leaf, Child of B

E
Leaf, Child of B

F
Leaf, Child of B

C
Leaf, Child of A

17

A forked B and C

B forked D, E, and F

Binghamton

University

CS-550

Spring 2020

Process Resources

• Each process THINKS it owns all machine resources
• “virtual” processor, virtual memory, virtual keyboard, virtual monitor,

virtual disks, virtual network, …

• OS connects VIRTUAL resources to REAL resources

PID 4879

Processor

Memory

Disk

Monitor

PID 5321PID 4472

Binghamton

University

CS-550

Spring 2020

Time Slicing

PID 4879

Processor

Memory

Disk

Monitor

PID 5321

PID 4472

Swap In

Swap Out

Binghamton

University

CS-550

Spring 2020

Process Swapping

• Time required to save the swap-out process state
• Memory, Registers, IO status, etc. etc. etc.

• Time required to restore the swap-in process state
• Memory, Registers, IO status, etc. etc. etc.

• All this is time when neither process can move forward
• Overhead

• Problem: Time slice needs to be long enough to minimize swap
overhead, but short enough so user's don't perceive swaps

20

Binghamton

University

CS-550

Spring 2020

Process Swapping and Virtual Memory

• Virtual Memory: Address space divided into 4K pages

• Only those pages we are actually using are in real memory
• Most 4K pages are either never referenced and never instantiated
• Or were referenced a "long" time ago, and are kept on disk

• Real memory holds pages for multiple processes
• Each page is connected to a specific process

• When real memory is full, the "oldest" page is swapped out
• No matter what process it's connected to

21

Binghamton

University

CS-550

Spring 2020

Process Swapping and Virtual Memory

• No need to swap active memory pages out of real memory!
• The will age, eventually become old enough to get swapped out of real

memory OR the process will become active and use those pages again

• When a process gets blocked, it may have many pages active

• When it resumes, at least some of those pages may be swapped out
and need to be reloaded
• But the impact is virtually imperceptible!

22

Binghamton

University

CS-550

Spring 2020

Side Topic: fork() and virtual memory

• When a fork occurs, active pages are tagged as belonging to BOTH
parent and child processes

• If modification of that page is required, it must be duplicated and
tagged as either a child or parent page

• Most of the time, exec will overwrite all pages, and they will revert
to parent only pages

23

Binghamton

University

CS-550

Spring 2020

Time Sharing – Concurrence on CPU

24

4472 5321 4879

Queue of Ready Processes

Who's
Next?

CPU Scheduler

CPU

Binghamton

University

CS-550

Spring 2020

Process States

• Running: executing on CPU

• Ready: Could run if CPU were available

• Blocked: Waiting for some event to occur
25

Running

Blocked
Ready

Process issues a "read"

Timeslice Ends
Process is swapped out

Process is swapped in
Scheduler picks this process

"read" completes

Binghamton

University

CS-550

Spring 2020

Tracing Process States (CPU intensive)

Time PID 4879 PID 5321 Notes

1 Running Ready Scheduler chose 4879

2 Running Ready Time slice is 2 ticks, 4879 swapped out

3 Ready Running Scheduler chose 5321, 5321 swapped in

4 Ready Running for 2 ticks, then 5321 swapped out

5 Running Ready Process 4879 exits, swapped out

6 -- Running Scheduler chose 5321

7 -- Running Time slice is 2 ticks, Process 5321 exits

8 -- --

26

Binghamton

University

CS-550

Spring 2020

Tracing Process States (I/O intensive)

Time PID 4879 PID 5321 Notes

1 Running Ready Scheduler chose 4879, 4879 initiates I/O

2 Blocked Running 4879 swapped out, 5321 swapped in

3 Blocked Running Time slice is 2 ticks, 5321 still running

4 Blocked Running No one else is waiting, 5321 can still run

5 Ready Running IO for 4879 completes, 5321 exits

6 Running -- Scheduler chose 4879

7 Running -- 4879 initiates another I/O, and is swapped out

8 Blocked -- Nothing running… CPU idle

27

Binghamton

University

CS-550

Spring 2020

Data kept by OS (Kernel) for a Process

Process Management Memory Management File Management

Process ID Pointer to Text Segment Root directory

Parent Process Pointer to Data Segment Working directory

Process Group Pointer to Stack Segment File Descriptors

Process State User ID

Priority Group ID

Scheduling Parameters

Registers

Instruction Pointer

Stack Pointer

Signals

Time started

… 28

See task_struct in Linux Source Code

Binghamton

University

CS-550

Spring 2020

UNIX Process Info

• "ps" command
• Standard process attributes

• /proc directory
• If you have root privilege, more interesting information

• "top" command
• CPU/Memory usage statistics with "top" processes identified

29

Binghamton

University

CS-550

Spring 2020

Orphan process

• Parent process are responsible for "reaping" the status of a child
process
• OS keeps child process alive, even after exit, to maintain exit status

• If a parent dies before waitpid completes for a child, the child
becomes an orphan process
• The "init" process (pid=1) becomes the parent of the orphan process

• For an example, run examples/process/orphan
• Do a "ps –l" to see the result… look at the parent pid

• Remember to kill the orphan: "kill -9 <pid>"

30

Binghamton

University

CS-550

Spring 2020

Zombie Processes

• When a child dies, a SIGCHILD signal is sent to the parent

• If the parent doesn't wait and the child exits, it becomes a
"Zombie" (status of "Z" in ps)
• The child is dead, but OS keeps it's status alive

• Zombie processes are around until either the parent calls wait() or
waitpid(), Or the parent exits (when the Zombie becomes an
orphan)

• OS Keeps integer status, but frees up all other process resources

31

Binghamton

University

CS-550

Spring 2020

Using "man" pages

• The "man" command accesses the on-line UNIX documentation

• Optionally, specify which "page" to look at by specifying a numeric
argument to the "man" command
• Page 2: system calls

• Page 3: Library functions

• E.g. "man 2 exec" or "man 3 execlp"

• Or go on-line to: http://man7.org/linux/man-pages/index.html

32

http://man7.org/linux/man-pages/index.html

