Binghamton CS-550

University Spring 2020

Processes

Managing User Software
Modern Operating Systems, by Andrew Tanenbaum U Chap 21

Operating Systems: Three Easy Pieces (a.k.a. the OSTEP book)U Chap 4]
man pages in any UNIX system

http://pages.cs.wisc.edu/~remzi/OSTEP

Binghamton CS-550

University Spring 2020

Process Terminology

* A program is a set of instructions somewhere (like in a file)

* A processis the execution of a program
* And all the resources required to execute that program

* When execution starts, the OS reserves memory for the process,
and loads the program into that memory

* Then sends the CPU to execute the first instruction of the program

Binghamton CS-550

University Spring 2020

Von Neumann model of Computing
CPU

—
—
—_
=
) -
=

=

Execute | Decode

Binghamton CS-550

University Spring 2020

Process vs. Program

Program Process
* Passive entity * Program

* Static code and data * actively executing code
e Stored on disk e Static code and data

* Dynamic code and data
* Memory
* Dynamic Data (e.g. registers)

* Many processes can run the
same program (e.g. "Is")

Binghamton CS-550

University Spring 2020

What's In a process?

* Memory space (static and dynamic)
* Procedure call stack

* Registers and counters
* Program counter, stack pointer, general purpose registers

* Open files and connections
 And more.

Binghamton CS-550

University Spring 2020
Process Memory Layout
0xFFFF FFFF FFFF FFFF —» Function Invocation Records:
System Reserved Data Arguments, Return address
Return value, local variables
User Stack

stack pointer —» l

t Dynamically Allocated Memory:
e.g. malloc()
User Heap (malloc)

Global Variables, Literal Values,

Program Data etc.

Instruction pointer — Program Instructions

00000 0000 0000 0000 —» System Reserved Low Memory

Binghamton CS-550

University Spring 2020

Process Life Cycle

[Parent Process] [Parent Process

System Calls

wait()

waitpid()

e Create a e Wait for a
process process to
J terminate
Y,
e load a new e Terminate this
program in process
Child Process the current Child Process
process

Binghamton CS-550

University Spring 2020

Process Creation (Using "fork™)

* "root" OS process started at bootstrap time

* "root" process forks out service daemons
e See /etc/init.d on Linux for scripts that start services

* Login forks terminal window shell process
* Shell forks new process when you run a command
* Some user programs invoke fork

Binghamton CS-550

University Spring 2020

Example Process Creation

See: Examples/process/fork ex.c

#include <stdio.h> if (pid == 0) { // Child executes this block
#include <stdlib.h> printf("This is the child\n");
#include <unistd.h> exit(99);
#include <sys/types.h> }
#include <sys/wait.h> if (pid > 0) { //Parent executes this block
printf("This is parent. The child is %d\n", pid);
int main() { ret = waitpid(pid, &status, 0);
pid_t pid; int status; int ret; if (ret < 0) {
pid = fork(Q); perror("waitpid failed:");
if (pid < 0) { exit(2);
perror("fork failed:"); }
exit(l); printf("Child exited with status %d\n", WEXITSTATUS(status));
} }
return 0;
}

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/fork_ex.c

Binghamton CS-550

University Spring 2020

The strange behavior of fork

* The fork() function is called once... but it returns TWICE!!!
* Once in the parent, once in the child
 parent and child are two different processes

* The child is an exact copy of the parent
* Address space is copied - that means the program is copied as well!
* Registers and pointers are also copied - e.g. instruction pointer

* Only difference is the return value... in child=0, in parent=<child PID>
* Process ID (PID) - a unique 4 digit number assigned to the process

10

Binghamton CS-550

University Spring 2020

After a fork()

* Now there are two processes running the same program

* That program can use the return code to make the child and
parent do different things
* But we really want the child to run a DIFFERENT program

* We can do that with the exec() system call

11

Binghamton CS-550

University Spring 2020

Example of Exec

See: Examples/process/exec ex.c

#include <stdio.h> 1f (pid == 0) {
#include <sys/types.h> 1f(
#include <stdlib.h> execlp("echo","echo","Hello from the child", (char *)NULL)

#include <unistd.h> . .
fprintf(stderr, "execlp failed\n");

int main() { } |
pid_t pid; exit(2);
if ((pid = fork()) < 0) { } |] | "
fprintf(stderr, printf("parent carries on\n");
"fork failed\n'): return O;
ex1t(1l); }

}

12

http://www.cs.binghamton.edu/~tbartens/CS550_Spring_2020/examples/process/exec_ex.c

Binghamton CS-550

University Spring 2020

The strange behavior of exec

* exec() and all it's variant forms first checks to see if the arguments are
valid. If not, exec issues an error and returns

* If the arguments are OK, exec() :
* Loads a new program into the address space
* Resets the stack and heap
* Maintains all old I/0 descriptors and status (Useful for implementing filters)
* Modifies instruction pointer to start at the beginning of the program
* Runs the code (fetch/decode/execute) until an exit occurs

* As aresult... unless there is an error, exec() DOES NOT RETURN!

* The old program is gone!

13

Binghamton CS-550

University Spring 2020

Shell Pseudo-Code

while(1) {
print prompt (>) to terminal
read command from terminal
pid=fork()
if (pid==0) {
rc=exec(command)
if (rc!=0) { print error; continue }

. : . : -
Cmdrc=wa1tp1d(p1d) Q: Does child process ever wait?

14

Binghamton CS-550

University Spring 2020

Different flavors of exec()

Yo
«

int execl(char pathname, char * arg0, .. , (char *)0);
* Full pathname + long listing of arguments

 int execv(char pathname, char * argv[]);
* Full pathname + arguments in an array

« int execle(char * pathname, char * arg0, .. , (char *)0, char envpl[]);
* Full pathname + long listing of arguments + environment variables

« int execve(char * pathname, char * argv[], char envp[]);
* Full pathname + arguments in an array + environment variables

« int execlp(char * filename, char * arg0O, .. , (char *)0);
* Short pathname + long listing of arguments

 int execvp(char * filename, char *
* Short pathname + arguments in an array

ala
ZAY

ot ala
2y ZAY

argvll); More Info: "man 3 exec"

15

Binghamton CS-550

University Spring 2020

Terminating a process

* Return from top level function (main)
* Return value (int) is the exit status of the process

* Invoke the exit(status) library function (in stdlib.h)
* The argument (int) is the exit status of the process
* See http://man7.org/linux/man-pages/man3/exit.3.html

* 0 or EXIT_SUCCESS if process worked
 non-zero or EXIT FAILURE if an error occurred

16

http://man7.org/linux/man-pages/man3/exit.3.html

Binghamton CS-550

University Spring 2020

Process Hierarchy Tree

A forked B and C
Parent of B and C

B forked D, E, and F

Parent of D, E, F Leaf, Child of A

Leaf, Child of B Leaf, Child of B Leaf, Child of B

17

Binghamton CS-550

University Spring 2020

Process Resources

* Each process THINKS it owns all machine resources

e “virtual” processor, virtual memory, virtual keyboard, virtual monitor,
virtual disks, virtual network, ...

 OS connects VIRTUAL resources to REAL resources

. . > '

Binghamton CS-550
University Spring 2020

Time Slicing

PID 5321

PID 4879

PID 4472

Swap Out

CS-550
Spring 2020

Binghamton

University

Process Swapping

* Time required to save the swap-out process state
* Memory, Registers, 10 status, etc. etc. etc.

* Time required to restore the swap-in process state
* Memory, Registers, 10 status, etc. etc. etc.

e All this is time when neither process can move forward
* Overhead

* Problem: Time slice needs to be long enough to minimize swap
overhead, but short enough so user's don't perceive swaps

20

Binghamton CS-550

University Spring 2020

Process Swapping and Virtual Memory

* Virtual Memory: Address space divided into 4K pages

* Only those pages we are actually using are in real memory
* Most 4K pages are either never referenced and never instantiated
* Or were referenced a "long" time ago, and are kept on disk

* Real memory holds pages for multiple processes
* Each page is connected to a specific process

* When real memory is full, the "oldest" page is swapped out
* No matter what process it's connected to

21

Binghamton CS-550

University Spring 2020

Process Swapping and Virtual Memory

* No need to swap active memory pages out of real memory!

* The will age, eventually become old enough to get swapped out of real
memory OR the process will become active and use those pages again

* When a process gets blocked, it may have many pages active

 When it resumes, at least some of those pages may be swapped out
and need to be reloaded

* But the impact is virtually imperceptible!

22

Binghamton CS-550

University Spring 2020

Side Topic: fork() and virtual memory

* When a fork occurs, active pages are tagged as belonging to BOTH
parent and child processes

* [f modification of that page is required, it must be duplicated and
tagged as either a child or parent page

* Most of the time, exec will overwrite all pages, and they will revert
to parent only pages

23

Binghamton CS-550

University Spring 2020

Time Sharing — Concurrence on CPU

Queue of Ready Processes

| 44725321 (4879

CPU Scheduler

24

Binghamton CS-550

University Spring 2020

Process States

Running

Timeslice Ends

Process issues a "read” Process is swapped out

Process is swapped in
Scheduler picks this process

Blocked

"read" completes

* Running: executing on CPU
* Ready: Could run if CPU were available
* Blocked: Waiting for some event to occur

25

Binghamton

University

CS-550
Spring 2020

Tracing Process States (CPU intensive)

0 N O U1 S W DN

Running
Running
Ready
Ready

Running

Ready
Ready
Running
Running
Ready
Running

Running

Scheduler chose 4879

Time slice is 2 ticks, 4879 swapped out
Scheduler chose 5321, 5321 swapped in
for 2 ticks, then 5321 swapped out
Process 4879 exits, swapped out
Scheduler chose 5321

Time slice is 2 ticks, Process 5321 exits

26

Binghamton CS-550

University Spring 2020

Tracing Process States (/O intensive)

Running Ready Scheduler chose 4879, 4879 initiates I/0O

2 Blocked @~ Running 4879 swapped out, 5321 swapped in

3 Blocked Running Time slice is 2 ticks, 5321 still running

4 Blocked Running No one else is waiting, 5321 can still run

5 Ready Running 10 for 4879 completes, 5321 exits

6 Running -- Scheduler chose 4879

7 Running -- 4879 initiates another 1/0, and is swapped out
8

Blocked -- Nothing running... CPU idle

27

Binghamton CS-550

University Spring 2020

Data kept by OS (Kernel) for a Process

Process Management Memory Management File Management

Process ID Pointer to Text Segment Root directory
Parent Process Pointer to Data Segment Working directory
Process Group Pointer to Stack Segment File Descriptors
Process State User ID

Priority Group ID

Scheduling Parameters
Registers
Instruction Pointer
_ See task struct in Linux Source Code
Stack Pointer
Signals

Time started

28

Binghamton CS-550

University Spring 2020

UNIX Process Info

* "ps" command
» Standard process attributes

* /proc directory
* If you have root privilege, more interesting information

* "top" command
 CPU/Memory usage statistics with "top" processes identified

29

Binghamton CS-550

University Spring 2020

Orphan process

* Parent process are responsible for "reaping” the status of a child
process
* OS keeps child process alive, even after exit, to maintain exit status

* [f a parent dies before waitpid completes for a child, the child
becomes an orphan process

* The "init" process (pid=1) becomes the parent of the orphan process

* For an example, run examples/process/orphan
* Do a "ps -1" to see the result... look at the parent pid
 Remember to Kkill the orphan: "kill -9 <pid>"

30

Binghamton CS-550

University Spring 2020

Zombie Processes

* When a child dies, a SIGCHILD signal is sent to the parent

e If the parent doesn't wait and the child exits, it becomes a
"Zombie" (status of "Z" in ps)
* The child is dead, but OS keeps it's status alive

* Zombie processes are around until either the parent calls wait() or
waitpid(), Or the parent exits (when the Zombie becomes an
orphan)

* OS Keeps integer status, but frees up all other process resources

31

Binghamton CS-550

University Spring 2020

Using "man" pages

* The "man"” command accesses the on-line UNIX documentation

* Optionally, specify which "page" to look at by specifying a numeric
argument to the "man” command
* Page 2: system calls
* Page 3: Library functions

* E.g. "man 2 exec" or "man 3 execlp”

* Or go on-line to: http://man7.org/linux/man-pages/index.html

32

http://man7.org/linux/man-pages/index.html

