CS-220 Spring 2019 Test 2 Version D Apr. 22,2019

Name:

1. (10 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) T I:] F : The X86 "mov” instruction handles initializing a register to a constant, initializing
memory to a constant, copying data from one register to another, copying data from a register to
memory, and copying data from memory to a register, but cannot copy data from memory to
another location in memory.

(b) T I:‘ F : One of the reasons that X86-64 is so complicated is because it is downward
compatible with over 40 years of X86 architecture development, including a version of X86 that ran
on the very first personal computers in the 1970’s.

(c) T I:] F : In the X86 calling conventions, the caller pushes the return address on the
stack in the ”callq” instruction, and the callee pops the return address from the stack in the "retq”
instruction. This violates stack ettiquette because the caller does not pop everything it pushed, but
it still works because the return address will always be popped just before returning to the caller.

(d) T I:‘ F : If an X86 instruction modifies the data in the %al register in X86, then it also
modifies the values in the %ax, %eax, and %rax registers.

(e) I:‘ T F : If two computers have different microprocessor chips, then they require different
Instruction Set Architectures (ISA’s) in order to support the different hardware.

Many different hardware implementations can support the same Instruction Set Architecture, and
it is very common for very different microprocessor chips to support a single ISA.

() T I:] F : If you are debugging code that has been compiled by gcc without the -g flag,
then the gdb "next” command will execute instructions until either the next breakpoint is reached,
or the program either normally or abnormally ends.

(2) I:‘ T F : The hardware required to add two unsigned integers to each other is different
than the hardware required to add two signed integers to each other.

The hardware is exactly the same. The only difference is how overflow is handled.

(h) I:‘ T F : If there is no width suffix (such as 'b’, 'w’, I, or ’q’) associated with an X86
op-code, and none of the arguments of the instruction are registers, then the op-code will perform
a 64 bit operation.

If no width is specified, then the assembler flags the instruction as illegal. There is no default width
in X86.

G]T F : In the X86-64 ISA, while an instruction is executing in the ALU, the %rip register
contains the address in memory of that instruction.

The %rip register points to the next instruction as soon as the previous instruction is decoded.

() T I:] F : If T execute the instruction "test -0x4(%rbp),$0x1”, followed by the instruction
”je .L5”, then the jump to .L5 will occur only if the four bytes of memory at %rbp-4, interpretted
as either a signed or unsigned number, is an exact multiple of some number times 2.

Page 1 of 9

Answer the following by checking all correct answers.

2. (6 points) Given the stack memory dump in figure 1 on page 9, and assuming that UNIX loaded the code
at address 0x564ce4d02000, which callq instruction in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 8 was run by the caller to generate the stack frame values?

D 963: callq a3l <printBin>

[] 96d: callq 991 <leftBit>

a0Ob: callq a31 <printBin>

[] a66: callq 740 <putchar@plt>
D a98: callq aa0 <printStackInfo>

D None of the above

The return address is above where %rbp points, and subtracting the return address from the load location
gets offset al0, which is the instruction after the callq instruction that generated the stack frame values.
Note that the question should have read generate the current stack frame values. Or better yet,
which callq instruction invoked the function executing in the current stack frame. Given the ambiguous
question, ”"b” is an acceptable answer as well, because leftBit’s return address of 0000564ce4d02972
has offset 972, which is the return from the callq at offset 96d. I gave 2 points partial credit for a98
printStackInfo because that is what prints the stack info (and it’s in the call stack, but not printed).

3. (6 points) Given the stack memory dump in figure 1 on page 9, what is the value of the caller’s %rbp
register?
|| 0x564ce4d02a9d [] 0x564ce60c96¢0 || 0x564ce4d02c80 || Oxffitfi33bdf170

7ffdc52e0070 D None of the above
The %rbp register always points at the value of the caller’s %rbp.

4. (6 points) The C while condition on line 23 in leftBit.c from Listing 1 on page 7 caused the gce compiler
to generate a compare instruction at which offset in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 87
D 90f D 99c E a26 D ab4 D a83 D None of the above
The gce compiler translates a while loop by putting the condition at the bottom of the loop, and branching
down to that condition at loop entry, in this case, the jmp instruction at offset 9ba, which jumps to
a26. The mstructlon at a26 compares a 1 value against -0x4(%rbp), which from the initializations, is a
reference to the ”w” local variable.

5. (6 points) The leftBit from Listing 1 on page 7 caused the gce compiler to generate the object code in
Listing 3 on page 8. In the leftBit function, which non-volatile (blue) registers are modified inside the
leftBit function, and must be restored before leftBit returns? (Check all that apply.)

D Yorbx . %rsp . %rbp D %r12 D %r13 D %r14 D %r15

The %rbp value is pushed on the stack in the preamble and popped off the stack in the exit code. The
%rsp value is not saved and restored in the stack, but it is logically saved and restored since we can
derive it’s value from %rbp. None of the other non-volatile registers are used in the leftBit function.

Page 2 of 9

6. (6 points) The x86 ”sar” instruction at offset 9¢6 in Listing 3 on page 8 shifts the value in the %eax
register one bit to the right. In class, we learned that shifting one bit to the right is almost the same
as dividing by two, but shifting to the right always rounds down, whereas dividing by two should round
towards zero. With this in mind, what is the range of offsets of instructions generated by the gcc compiler
to implement the C instruction on line 24 in Listing 1 on page 77
D 9ac-9b3 D 9bc-9cl D 9c6-9c8 D 9bc-9c6 9bc-9c8 D None of the above
The gce compiler checks to see if ”w” is negative starting at offset 9bc by copying it to %edx, and shifting
to the right by 31 bits, leaving just the sign bit in %edx. It adds the sign bit to the ”w” value before

offset 9¢6 does the divide, and the result is copied to "hw” at -Ocx(%rbp) at offset 9c8.

7. (6 points) The value "X= " referenced in the C instruction on line 14 in Listing 1 on page 7 is kept in
which section of the ELF executable file generated by the compiler from the leftBit.c code?
D text D .plt_got .rodata D .data D .bss D None of the above
Since the value does not fit in an instruction, the compiler needs to put it in a data section. It has an
initial value, so it can’t be in .bss, and there is no way to modify it, so .rodata is a better choice than
.data.

8. (6 points) The declaration/assignment statement on line 21 in leftBit.c from Listing 1 on page 7 caused
the gce compiler to generate an instruction at which offset in Listing 3 on page 87
[]999 [] 9a2 9ac |] ob3 [] obf [] None of the above
Line 21 initializes the local variable "w” to 32 or 0x20 after the if statement on line 20. If the if condition
on line 20 is false, the code jumps to offset 9ac, which assigns 0x20 to -0x4(%rbp) which is a valid location
for a local variable, so 9ac is the correct offset.

9. (6 points) The C if condition on line 20 in leftBit.c from Listing 1 on page 7 caused the gce compiler
to generate a compare instruction at which offset in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 87
D 90f 99c D a26 D ab4 D a83 D None of the above
Line 20 is in the leftBit function, and the if statement is the first instruction, so the compare right after
the preamble of the leftBit function at offset 99c is the correct offset. Furthermore, it is clear that this
instruction compares a zero value to the first parameter of leftBit.

Answer the following questions by filling in the blanks.

10. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the local variable, x, in the current function’s caller’s
caller’s stack frame? (You may express your answer in hexadecimal.)

0x00001003
The current %rbp points to the caller’s %rbp or 0x7ffdc52e0070. The caller’s %rbp is pointing at the
caller’s caller’s %rbp or 0x7ffdc52e00a0. The return address above the caller’s frame is 0x564ce4d02972,
so the offset is 0x972, which is an instruction in the main function, so the caller’s caller must be main. The
instruction at offset 94a writes the return value from atoi(argv([l]) to the local variable at -0x4(%rbp),
so x must be at -0x4(%rbp). In this case, that is, 0x7fldc52e009c. The 4 byte value at that address is
currently 0x00001003.

Page 3 of 9

11.

12.

13.

(6 points) Running the command objdump -s -j.rodata leftBit on the executable produced by com-
piling the code in Listing 1 on page 7 produces the following output...

leftBit : file format elf64 —x86—64

Contents of section .rodata:
0400 01000200 00000000 496e766f 6b652061 Invoke a
0d10 73202573 203c6e3e 200a0977 68657265 s %s <n> ..where
0d20 203c6e3e 20697320 616e2069 6e746567 <n> is an integ
0d30 65720a00 583d2000 54686520 6c656674 er..X= .The left
0d40 6d6f7374 20626974 206{6620 25642069 most bit of %d i
0d50 73206174 20706f73 6974696f 6e202564 s at position %d
0d60 0a002068 773d2564 206e3d25 64204d3d .. hw=%d n=%d M=
0d70 00000000 00000000 6261636b 74726163 backtrac
0d80 65517379 6d626f6¢c 73282900 00000000 e_symbols ().....
0490 202d2d2d 2d2d2d2d 2d2d2d2d 2d2d2d2d

What is the offset of the first argument to the printf function invoked on line 267 (You may express
your answer in hexadecimal.)

0xd62
The first argument to the printf function is the literal string ” hw=%d n=%d M=", which appears in the
rodata section of the executable file at offset d62 from above, or at offset 95, lea 0x366(%rip), where
Y%rip is at offset 9fc, and 9fc+366=9dc.

(6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived

from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, does the printBin

function use the red zone? If not, what prevents gcc from using the red zone for the printBin function
printBin cannot use the red zone becuase it invokes lower level function printf

printBin is not a leaf function because it invokes a lower level function, and only leaf functions can use

the red zone.

(6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the parameter, x, in the current function’s caller’s
stack frame? (You may express your answer in hexadecimal.)
0x00001003

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02a10, so the offset is OxalO, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction
at offset 999 saves the parameter value at -0x14(%rbp), or, in this case, 0x0x7ffdc52e005c. The 4 byte
value at that address is currently 0x00001003.

Page 4 of 9

14.

15.

16.

(6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the
code is loaded at 0x564ce4d02000, what is the value of the local variable, mask, in the current function’s
caller’s stack frame? (You may express your answer in hexadecimal.)

0x0000££00

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02al0, so the offset is OxalO, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction at
offset a06 copies the first local variable at -0x10(%rbp) to what will become the argument to printBin, so
mask must be at -0x10(%rbp). In this case, that is, 0x0x7ffdc52e0060. The 4 byte value at that address
is currently 0x0000ff00.

(6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the parameter, n, in the stack frame of the currently
executing function? (You may express your answer in hexadecimal.)

0x0000££00

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02al0, so the offset is Oxal0, which the instruction after the call to printBin, so the current
function must be printBin. The instruction at offset a39 saves the parameter value at -0x14(%rbp), or,
in this case, 0x7ffdc52e002c. The 4 byte value at that address is currently 0x0000ff00.

(6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the local variable, w, in the current function’s caller’s
stack frame? (You may express your answer in hexadecimal.)

16 or 0x010

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02al10, so the offset is OxalO, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction
at offset 9ac initializes the first local variable at -0x4(%rbp) to 0x20, or 32, so w must be at -0x4(%rbp).
In this case, that is, 0x0x7ffdc52e006¢c. The 4 byte value at that address is currently 0x00000010.

Page 5 of 9

Page 6 of 9

0 O Uik Wi

Tear-off Page

Listing 1: leftBit.c

#include <stdio.h>
#include <stdlib .h>
#include ”stack.h”

int leftBit (int x);
void printBin(int n);

int main(int argc, char sxargv) {
if (arge<2) {

printf(”Invoke as %s <n> \n\twhere <n> is an integer\n” ,argv|[0]);

return 1;

}

int x=atoi(argv[1l]);
printf(”X= "); printBin(x);

printf(”The leftmost bit of %d is at position %d\n” ,x,leftBit(x));

nw ones in

left half of range

start at left half

return 0;
}
int leftBit(int x) {
if (x==0) return —1;
int w=32; // Number of bits that might contain leftmost 1
int n=0; // Rightmost bit that might contain leftmost 1
while (w>1) { //Narrow down to a single
int hw=w/2; // Look at half the range of bits
int mask=((l<<hw)-1)<<(n+hw); // mask :
printf(” hw=%d n=%d M=” ,hw,n); printBin (mask);
if (x&mask) n=n+hw; // If left half has a one bit,
w=hw; // Ruled out either the left half or the right half
}
return n;
}
void printBin(int n) {
int i;
for (i=31;i>=0;i—) {
printf ("%c” | (n&l<<i)?’17:707);
if (0==1%4) printf(” 7);
printf(”\n”);
printStackInfo ();
}

Page 7 of 9

Tear-off Page

add
sar
mov
mov
mov
mov
shl
mov
lea
mov
mov
add
mov
shl
mov
mov
mov
mov
mov
lea
mov
callq
mov
mov
callq
mov
and
test
je
mov
add
mov
mov
cmpl
jg
mov
leaveq
retq

Y%edx,%eax

Yeax
%eax,—0xc(%rbp)
—0xc(%rbp),%eax
$0x1,%edx
Y%eax,%ecx
%cl , %edx
Yedx,%eax
—0x1(%rax),%esi
—0x8(%rbp),%edx
—0xc(%rbp),%eax
Y%edx,%eax
Y%eax,%ecx
%el , % esi
%esi,%eax
Y%eax,—0x10(%rbp)
—0x8(%rbp) ,%edx
—0xc(%rbp),%eax
Y%eax,%esi
0x366(%rip),%rdi
$0x0,%eax

780 <printf@plt>
—0x10(%rbp),%eax
Y%eax,%edi

a3l <printBin>
—0x14(%rbp),%eax
—0x10(%rbp),%eax
Y%eax,%eax

a20 <leftBit+0x8f>
—0xc(%rbp),%eax
%eax,—0x8(%rbp)
—0xc(%rbp),%eax
%eax,—0x4(%rbp)
$0x1,—0x4(%rbp)
9bc <leftBit+0x2b>
—0x8(%rbp) ,%eax

Listing 4: leftBit.s(printBin)

Listing 2: leftBit.s(main) 9c4:
900: push Y%rbp 9¢6:
901: mov Y%rsp,%rbp 9c8:
904: sub $0x20,%rsp 9cb:
908: mov %edi,—0x14(%rbp) dee:
90b: mov %rsi,—0x20(%rbp) 9d3:
90f: cmpl $0x1,—0x14(%rbp) 9d5:
913: jg 937 <main+0x37> 9dr:
915: mov —0x20(%rbp),%rax 9d9:
919: mov (%rax),%rax 9dc:
9lc: mov Yrax,%rsi 9df:
91f: lea 0x3e2(%rip),%rdi 9ge2:
926: mov $0x0,%eax 9ed:
92b: callqg 780 <printf@plt> 9e6:
930: mov $0x1,%eax 9e8:
935: jmp 98f <maint+0x8f> Jea:
937: mov —0x20(%rbp),%rax Jed:
93b: add $0x8 %rax 910
93f: mov (%rax),%rax 943
942: mov Y%rax,%rdi 9£5
945: callg 7a0 <atoi@plt> 9fc:
94a: mov Y%eax,—0x4(%rbp) a0l
94d: lea 0x3e0(%rip),%rdi a06:
954: mov $0x0,%eax 209:
959: callq 780 <printf@plt> a0b:
95e: mov —0x4(%rbp) ,%eax al0:
961: mov Yeax,%edi al3:
963: callg a3l <printBin> al6:
968: mov —0x4(%rbp) ,%eax als:
96b: mov Y%eax,%edi ala:
96d: callq 991 <leftBit> ald:
972: mov Yeax,%edx a20:
974: mov —0x4(%rbp) ,%eax a23:
977: mov Yeax, % esi 226:
979: lea 0x3b8(%rip),%rdi a2a:
980: mov $0x0,%eax aZc:
985: callgq 780 <printf@plt> a2f:
98a: mov $0x0,%eax a30:
98f: leaveq
990: retq
adl:
.. . . a32:
Listing 3: leftBit.s(leftBit) a35 -
991: push %rbp a39:
992: mov Y%rsp,%rbp a3c:
995: sub $0x20,%rsp ad3:
999: mov %edi,—0x14(%rbp) a4b:
99c: cmpl $0x0,—0x14(%rbp) a4l :
9a0: jne 9ac <leftBit+0x1b> adb:
9a2: mov $Oxffffffff %eax add :
9a7: jmpq a2f <leftBit+0x9e> adf:
9ac: movl $0x20,—0x4(%rbp) abl:
9b3: movl $0x0,—0x8(%rbp) ab4:
9ba: jmp a26 <leftBit+4+0x95> ad6:
9bc: mov —0x4(%rbp) ,%eax ab8:
9bf: mov Yeax,%edx abd:
9cl: shr $0x1f,%edx abf:

Page 8 of 9

push
mov
sub
mov
movl
jmp
mov
mov
mov
sar
mov
and
test
je
mov
Jjmp
mov

%rbp

%rsp,%rbp
$0x20,%rsp
%edi,—0x14(%rbp)
$0x1f,—0x4(%rbp)
a83 <printBin+0x52>
—0x4(%rbp),%eax
—0x14(%rbp),%edx
Y%eax,%ecx

%cl,%edx

Y%edx,%eax

$0x1,%eax
Y%eax,%eax

abf <printBin+4+0x2e>
$0x31,%eax

a64 <printBin+0x33>
$0x30,%eax

Tear-off Page

a64: mov Yeax,%edi a87: jns a4b5 <printBin+0x14>
a66: callq 740 <putchar@plt> a89: mov $0xa ,%edi
a6b: mov —0x4(%rbp) ,%eax a8e: callq 740 <putchar@plt>
abe: and $0x3 ,%eax a93: mov $0x0,%eax
a7l: test Yeax,%eax a98: callq aa0 <printStackInfo>
a73: jne a7f <printBin+0x4e> a9d: nop
a75: mov $0x20,%edi a%9e: leaveq
aT7a: callq 740 <putchar@plt> a9f: retq
a7f: subl $0x1,—0x4(%rbp)
a83: cmpl $0x0,—0x4(%rbp)
Figure 1: Contents of Stack Memory
Address 64-bit Value Value (32 bit) Comments
(big-endian) +0 +4
0x7ffdc52e00a0 | 0000564ce4d02c80 | e4d02c80 | 0000564c | <+ main’s %rbp
0x7££dc52e0098 | 0000100300000000 | 00000000 | 00001003
0x7££dc52e0090 | 00007££dc52e0180 | c52e0180 | 00007ffd
0x7££dc52e0088 | 00000002e4d027d0 | e4d027d0 | 00000002
0x7f£dc52e0080 | 00007ffdc52e0188 | ¢52e0188 | 00007ffd
0x7££dc52e0078 | 0000564ce4d02972 | e4d02972 | 0000564c | < leftBit’s ret addr & main’s %rsp
0x7f£dc52e0070 | 00007ffdc52e00a0 | c52e00a0 | 00007ffd | < leftBit’s %rbp
0x7££dc52e0068 | 0000001000000000 | 00000000 | 00000010
0x7f£dc52e0060 | 000000080000££00 | 0000££00 | 00000008
0x7f£dc52e0058 | 0000100300000000 | 00000000 | 00001003
0x7f£dc52e0050 | 00007ffdc52e0180 | c52e0180 | 00007ffd
0x7ffdc52e0048 | 0000564ce4d02a10 | e4d02al10 | 0000564c | < ret addr & leftBit’s %rsp
0x7f£dc52e0040 | 00007f£fdc52e0070 | c52e0070 | 00007ffd | <+ %rbp
0x7££dc52e0038 | ffffffff33bdf170 | 33bdf170 | ffffffff
0x7££dc52e0030 | 0000564ce4d02c80 | e4d02c80 | 0000564c
0x7f£dc52e0028 | 0000££0000000000 | 00000000 | 0000££00
0x7££dc52e0020 | 0000564ce60c96e0 | e60c96e0 | 0000564c
0x7f£dc52e0018 | 0000564ce4d02a9d | e4d02a9d | 0000564c | <+ %rsp
Question: 1 121345 71819110]11 |12 |13 | 14 | 15| 16 | Total
Points: 106|666 6|16|6]| 6 6 6 6 6 6 6 100
Bonus Points: | 0 | 0| 0|0 |0 0/0]0] O 0 0 0 0 0 0 0

Page 9 of 9

