
CS-220 Spring 2019 Test 2 Version C Apr. 22, 2019

Name:

1. (10 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) X T F : If an X86 instruction modifies the data in the %al register in X86, then it also
modifies the values in the %ax, %eax, and %rax registers.

(b) T X F : If there is no width suffix (such as ’b’, ’w’, ’l’, or ’q’) associated with an X86
op-code, and none of the arguments of the instruction are registers, then the op-code will perform
a 64 bit operation.

If no width is specified, then the assembler flags the instruction as illegal. There is no default width
in X86.

(c) X T F : One of the reasons that X86-64 is so complicated is because it is downward
compatible with over 40 years of X86 architecture development, including a version of X86 that ran
on the very first personal computers in the 1970’s.

(d) X T F : If I execute the instruction ”test -0x4(%rbp),$0x1”, followed by the instruction
”je .L5”, then the jump to .L5 will occur only if the four bytes of memory at %rbp-4, interpretted
as either a signed or unsigned number, is an exact multiple of some number times 2.

(e) X T F : The X86 ”mov” instruction handles initializing a register to a constant, initializing
memory to a constant, copying data from one register to another, copying data from a register to
memory, and copying data from memory to a register, but cannot copy data from memory to
another location in memory.

(f) T X F : If two computers have different microprocessor chips, then they require different
Instruction Set Architectures (ISA’s) in order to support the different hardware.

Many different hardware implementations can support the same Instruction Set Architecture, and
it is very common for very different microprocessor chips to support a single ISA.

(g) T X F : The hardware required to add two unsigned integers to each other is different
than the hardware required to add two signed integers to each other.

The hardware is exactly the same. The only difference is how overflow is handled.

(h) X T F : If you are debugging code that has been compiled by gcc without the -g flag,
then the gdb ”next” command will execute instructions until either the next breakpoint is reached,
or the program either normally or abnormally ends.

(i) X T F : In the X86 calling conventions, the caller pushes the return address on the
stack in the ”callq” instruction, and the callee pops the return address from the stack in the ”retq”
instruction. This violates stack ettiquette because the caller does not pop everything it pushed, but
it still works because the return address will always be popped just before returning to the caller.

(j) T X F : In the X86-64 ISA, while an instruction is executing in the ALU, the %rip register
contains the address in memory of that instruction.

The %rip register points to the next instruction as soon as the previous instruction is decoded.

Page 1 of 9

Answer the following by checking all correct answers.

2. (6 points) Given the stack memory dump in figure 1 on page 9, and assuming that UNIX loaded the code
at address 0x564ce4d02000, which callq instruction in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 8 was run by the caller to generate the stack frame values?

963: callq a31 <printBin>

96d: callq 991 <leftBit>

X a0b: callq a31 <printBin>

a66: callq 740 <putchar@plt>

a98: callq aa0 <printStackInfo>

None of the above
The return address is above where %rbp points, and subtracting the return address from the load location
gets offset a10, which is the instruction after the callq instruction that generated the stack frame values.
Note that the question should have read generate the current stack frame values. Or better yet,
which callq instruction invoked the function executing in the current stack frame. Given the ambiguous
question, ”b” is an acceptable answer as well, because leftBit’s return address of 0000564ce4d02972
has offset 972, which is the return from the callq at offset 96d. I gave 2 points partial credit for a98
printStackInfo because that is what prints the stack info (and it’s in the call stack, but not printed).

3. (6 points) The declaration/assignment statement on line 21 in leftBit.c from Listing 1 on page 7 caused
the gcc compiler to generate an instruction at which offset in Listing 3 on page 8?

999 9a2 X 9ac 9b3 9bf None of the above
Line 21 initializes the local variable ”w” to 32 or 0x20 after the if statement on line 20. If the if condition
on line 20 is false, the code jumps to offset 9ac, which assigns 0x20 to -0x4(%rbp) which is a valid location
for a local variable, so 9ac is the correct offset.

4. (6 points) The leftBit from Listing 1 on page 7 caused the gcc compiler to generate the object code in
Listing 3 on page 8. In the leftBit function, which non-volatile (blue) registers are modified inside the
leftBit function, and must be restored before leftBit returns? (Check all that apply.)

%rbx X %rsp X %rbp %r12 %r13 %r14 %r15
The %rbp value is pushed on the stack in the preamble and popped off the stack in the exit code. The
%rsp value is not saved and restored in the stack, but it is logically saved and restored since we can
derive it’s value from %rbp. None of the other non-volatile registers are used in the leftBit function.

5. (6 points) The value ”X= ” referenced in the C instruction on line 14 in Listing 1 on page 7 is kept in
which section of the ELF executable file generated by the compiler from the leftBit.c code?

.text .plt got X .rodata .data .bss None of the above
Since the value does not fit in an instruction, the compiler needs to put it in a data section. It has an
initial value, so it can’t be in .bss, and there is no way to modify it, so .rodata is a better choice than
.data.

Page 2 of 9

6. (6 points) The x86 ”sar” instruction at offset 9c6 in Listing 3 on page 8 shifts the value in the %eax
register one bit to the right. In class, we learned that shifting one bit to the right is almost the same
as dividing by two, but shifting to the right always rounds down, whereas dividing by two should round
towards zero. With this in mind, what is the range of offsets of instructions generated by the gcc compiler
to implement the C instruction on line 24 in Listing 1 on page 7?

9ac-9b3 9bc-9c1 9c6-9c8 9bc-9c6 X 9bc-9c8 None of the above
The gcc compiler checks to see if ”w” is negative starting at offset 9bc by copying it to %edx, and shifting
to the right by 31 bits, leaving just the sign bit in %edx. It adds the sign bit to the ”w” value before
shifting, so that if ”w” is negative, it will round up instead of rounding down. The ”sar” instruction at
offset 9c6 does the divide, and the result is copied to ”hw” at -0cx(%rbp) at offset 9c8.

7. (6 points) The C if condition on line 20 in leftBit.c from Listing 1 on page 7 caused the gcc compiler
to generate a compare instruction at which offset in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 8?

90f X 99c a26 a54 a83 None of the above
Line 20 is in the leftBit function, and the if statement is the first instruction, so the compare right after
the preamble of the leftBit function at offset 99c is the correct offset. Furthermore, it is clear that this
instruction compares a zero value to the first parameter of leftBit.

8. (6 points) The C while condition on line 23 in leftBit.c from Listing 1 on page 7 caused the gcc compiler
to generate a compare instruction at which offset in either Listing 2 on page 8, Listing 3 on page 8, or
Listing 4 on page 8?

90f 99c X a26 a54 a83 None of the above
The gcc compiler translates a while loop by putting the condition at the bottom of the loop, and branching
down to that condition at loop entry, in this case, the jmp instruction at offset 9ba, which jumps to
a26. The instruction at a26 compares a 1 value against -0x4(%rbp), which from the initializations, is a
reference to the ”w” local variable.

9. (6 points) Given the stack memory dump in figure 1 on page 9, what is the value of the caller’s %rbp
register?

0x564ce4d02a9d 0x564ce60c96e0 0x564ce4d02c80 0xffffffff33bdf170

X 7ffdc52e0070 None of the above
The %rbp register always points at the value of the caller’s %rbp.

Answer the following questions by filling in the blanks.

10. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the parameter, n, in the stack frame of the currently
executing function? (You may express your answer in hexadecimal.)

0x0000ff00

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02a10, so the offset is 0xa10, which the instruction after the call to printBin, so the current
function must be printBin. The instruction at offset a39 saves the parameter value at -0x14(%rbp), or,
in this case, 0x7ffdc52e002c. The 4 byte value at that address is currently 0x0000ff00.

Page 3 of 9

11. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the local variable, x, in the current function’s caller’s
caller’s stack frame? (You may express your answer in hexadecimal.)

0x00001003

The current %rbp points to the caller’s %rbp or 0x7ffdc52e0070. The caller’s %rbp is pointing at the
caller’s caller’s %rbp or 0x7ffdc52e00a0. The return address above the caller’s frame is 0x564ce4d02972,
so the offset is 0x972, which is an instruction in the main function, so the caller’s caller must be main. The
instruction at offset 94a writes the return value from atoi(argv[1]) to the local variable at -0x4(%rbp),
so x must be at -0x4(%rbp). In this case, that is, 0x7ffdc52e009c. The 4 byte value at that address is
currently 0x00001003.

12. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the
code is loaded at 0x564ce4d02000, what is the value of the local variable, mask, in the current function’s
caller’s stack frame? (You may express your answer in hexadecimal.)

0x0000ff00

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02a10, so the offset is 0xa10, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction at
offset a06 copies the first local variable at -0x10(%rbp) to what will become the argument to printBin, so
mask must be at -0x10(%rbp). In this case, that is, 0x0x7ffdc52e0060. The 4 byte value at that address
is currently 0x0000ff00.

13. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the parameter, x, in the current function’s caller’s
stack frame? (You may express your answer in hexadecimal.)

0x00001003

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02a10, so the offset is 0xa10, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction
at offset 999 saves the parameter value at -0x14(%rbp), or, in this case, 0x0x7ffdc52e005c. The 4 byte
value at that address is currently 0x00001003.

14. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, and assuming the code
is loaded at 0x564ce4d02000, what is the value of the local variable, w, in the current function’s caller’s
stack frame? (You may express your answer in hexadecimal.)

16 or 0x010

The current %rbp points at the top of the current stack frame. The return address above the frame is
0x564ce4d02a10, so the offset is 0xa10, which the instruction in the leftBit function, so the caller must
be leftBit. The caller’s %rbp is the value that %rbp is pointing at, or 0x7ffdc52e0070. The instruction
at offset 9ac initializes the first local variable at -0x4(%rbp) to 0x20, or 32, so w must be at -0x4(%rbp).
In this case, that is, 0x0x7ffdc52e006c. The 4 byte value at that address is currently 0x00000010.

Page 4 of 9

15. (6 points) Based on the stack information in figure 1 on page 9, and the x86 assembler code derived
from leftBit.c in Listing 2 on page 8, Listing 3 on page 8 and Listing 4 on page 8, does the printBin
function use the red zone? If not, what prevents gcc from using the red zone for the printBin function

printBin cannot use the red zone becuase it invokes lower level function printf
printBin is not a leaf function because it invokes a lower level function, and only leaf functions can use
the red zone.

16. (6 points) Running the command objdump -s -j.rodata leftBit on the executable produced by com-
piling the code in Listing 1 on page 7 produces the following output...

l e f t B i t : f i l e format e l f 6 4−x86−64

Contents o f s e c t i o n . rodata :
0d00 01000200 00000000 496 e766 f 6b652061 Invoke a
0d10 73202573 203 c6e3e 200 a0977 68657265 s %s <n> . . where
0d20 203 c6e3e 20697320 616 e2069 6 e746567 <n> i s an i n t e g
0d30 65720 a00 583 d2000 54686520 6 c656674 er . . X= . The l e f t
0d40 6 d6f7374 20626974 206 f6620 25642069 most b i t o f %d i
0d50 73206174 20706 f73 6974696 f 6 e202564 s at p o s i t i o n %d
0d60 0a002068 773 d2564 206 e3d25 64204d3d . . hw=%d n=%d M=
0d70 00000000 00000000 6261636b 74726163 backtrac
0d80 655 f7379 6 d626f6c 73282900 00000000 e symbols ()
0d90 202d2d2d 2d2d2d2d 2d2d2d2d 2d2d2d2d −−−−−−−−−−−−−−−
. . .

What is the offset of the first argument to the printf function invoked on line 26? (You may express
your answer in hexadecimal.)

0xd62
The first argument to the printf function is the literal string ” hw=%d n=%d M=”, which appears in the
.rodata section of the executable file at offset d62 from above, or at offset 9f5, lea 0x366(%rip), where
%rip is at offset 9fc, and 9fc+366=9dc.

Page 5 of 9

Page 6 of 9

Tear-off Page

Listing 1: leftBit.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include ” stack . h”
4
5 int l e f t B i t (int x) ;
6 void pr intBin (int n) ;
7
8 int main (int argc , char ∗∗ argv) {
9 i f (argc <2) {

10 p r i n t f (” Invoke as %s <n> \n\ twhere <n> i s an i n t e g e r \n” , argv [0]) ;
11 return 1 ;
12 }
13 int x=a t o i (argv [1]) ;
14 p r i n t f (”X= ”) ; pr intBin (x) ;
15 p r i n t f (”The l e f t m o s t b i t o f %d i s at p o s i t i o n %d\n” ,x , l e f t B i t (x)) ;
16 return 0 ;
17 }
18
19 int l e f t B i t (int x) {
20 i f (x==0) return −1;
21 int w=32; // Number o f b i t s t h a t might conta in l e f tmo s t 1
22 int n=0; // Rightmost b i t t h a t might conta in l e f tmo s t 1
23 while (w>1) { //Narrow down to a s i n g l e b i t
24 int hw=w/2 ; // Look at h a l f the range o f b i t s
25 int mask=((1<<hw)−1)<<(n+hw) ; // mask : nw ones in l e f t h a l f o f range
26 p r i n t f (” hw=%d n=%d M=” ,hw, n) ; pr intBin (mask) ;
27 i f (x&mask) n=n+hw; // I f l e f t h a l f has a one b i t , s t a r t a t l e f t h a l f
28 w=hw; // Ruled out e i t h e r the l e f t h a l f or the r i g h t h a l f
29 }
30 return n ;
31 }
32
33 void pr intBin (int n) {
34 int i ;
35 for (i =31; i >=0; i−−) {
36 p r i n t f (”%c” , (n&1<< i)? ’ 1 ’ : ’ 0 ’) ;
37 i f (0== i %4) p r i n t f (” ”) ;
38 }
39 p r i n t f (”\n”) ;
40 p r i n t S t a c k I n f o () ;
41 }

Page 7 of 9

Tear-off Page

Listing 2: leftBit.s(main)

900 : push %rbp
901 : mov %rsp ,%rbp
904 : sub $0x20 ,%rsp
908 : mov %edi ,−0x14(%rbp)
90b : mov %rsi ,−0x20(%rbp)
90 f : cmpl $0x1 ,−0x14(%rbp)
913 : jg 937 <main+0x37>
915 : mov −0x20(%rbp) ,%rax
919 : mov (%rax) ,%rax
91 c : mov %rax ,% rs i
91 f : lea 0x3e2(%rip) ,% rdi
926 : mov $0x0 ,%eax
92b : cal lq 780 <pr int f@p l t>
930 : mov $0x1 ,%eax
935 : jmp 98 f <main+0x8f>
937 : mov −0x20(%rbp) ,%rax
93b : add $0x8 ,%rax
93 f : mov (%rax) ,%rax
942 : mov %rax ,%rdi
945 : cal lq 7a0 <ato i@plt>
94a : mov %eax ,−0x4(%rbp)
94d : lea 0x3e0(%rip) ,% rdi
954 : mov $0x0 ,%eax
959 : cal lq 780 <pr int f@p l t>
95 e : mov −0x4(%rbp) ,%eax
961 : mov %eax,%edi
963 : cal lq a31 <printBin>
968 : mov −0x4(%rbp) ,%eax
96b : mov %eax,%edi
96d : cal lq 991 < l e f tB i t>
972 : mov %eax,%edx
974 : mov −0x4(%rbp) ,%eax
977 : mov %eax,%es i
979 : lea 0x3b8(%rip) ,% rdi
980 : mov $0x0 ,%eax
985 : cal lq 780 <pr int f@p l t>
98a : mov $0x0 ,%eax
98 f : leaveq
990 : retq

Listing 3: leftBit.s(leftBit)

991 : push %rbp
992 : mov %rsp ,%rbp
995 : sub $0x20 ,%rsp
999 : mov %edi ,−0x14(%rbp)
99 c : cmpl $0x0 ,−0x14(%rbp)
9a0 : jne 9ac < l e f t B i t+0x1b>
9a2 : mov $ 0 x f f f f f f f f ,%eax
9a7 : jmpq a2 f < l e f t B i t+0x9e>
9ac : movl $0x20 ,−0x4(%rbp)
9b3 : movl $0x0 ,−0x8(%rbp)
9ba : jmp a26 < l e f t B i t+0x95>
9bc : mov −0x4(%rbp) ,%eax
9 bf : mov %eax,%edx
9c1 : shr $0x1f ,%edx

9c4 : add %edx,%eax
9c6 : sar %eax
9c8 : mov %eax ,−0xc(%rbp)
9cb : mov −0xc(%rbp) ,%eax
9 ce : mov $0x1 ,%edx
9d3 : mov %eax,%ecx
9d5 : shl %cl ,%edx
9d7 : mov %edx,%eax
9d9 : lea −0x1(%rax) ,% es i
9dc : mov −0x8(%rbp) ,%edx
9df : mov −0xc(%rbp) ,%eax
9e2 : add %edx,%eax
9e4 : mov %eax,%ecx
9e6 : shl %cl ,%es i
9e8 : mov %esi ,%eax
9ea : mov %eax ,−0x10(%rbp)
9ed : mov −0x8(%rbp) ,%edx
9 f0 : mov −0xc(%rbp) ,%eax
9 f3 : mov %eax,%es i
9 f5 : lea 0x366(%rip) ,% rdi
9 f c : mov $0x0 ,%eax
a01 : cal lq 780 <pr int f@p l t>
a06 : mov −0x10(%rbp) ,%eax
a09 : mov %eax,%edi
a0b : cal lq a31 <printBin>
a10 : mov −0x14(%rbp) ,%eax
a13 : and −0x10(%rbp) ,%eax
a16 : test %eax,%eax
a18 : je a20 < l e f t B i t+0x8f>
a1a : mov −0xc(%rbp) ,%eax
a1d : add %eax ,−0x8(%rbp)
a20 : mov −0xc(%rbp) ,%eax
a23 : mov %eax ,−0x4(%rbp)
a26 : cmpl $0x1 ,−0x4(%rbp)
a2a : jg 9bc < l e f t B i t+0x2b>
a2c : mov −0x8(%rbp) ,%eax
a2 f : leaveq
a30 : retq

Listing 4: leftBit.s(printBin)

a31 : push %rbp
a32 : mov %rsp ,%rbp
a35 : sub $0x20 ,%rsp
a39 : mov %edi ,−0x14(%rbp)
a3c : movl $0x1f ,−0x4(%rbp)
a43 : jmp a83 <pr intBin+0x52>
a45 : mov −0x4(%rbp) ,%eax
a48 : mov −0x14(%rbp) ,%edx
a4b : mov %eax,%ecx
a4d : sar %cl ,%edx
a4 f : mov %edx,%eax
a51 : and $0x1 ,%eax
a54 : test %eax,%eax
a56 : je a5 f <pr intBin+0x2e>
a58 : mov $0x31 ,%eax
a5d : jmp a64 <pr intBin+0x33>
a5 f : mov $0x30 ,%eax

Page 8 of 9

Tear-off Page

a64 : mov %eax,%edi
a66 : cal lq 740 <putchar@plt>
a6b : mov −0x4(%rbp) ,%eax
a6e : and $0x3 ,%eax
a71 : test %eax,%eax
a73 : jne a7 f <pr intBin+0x4e>
a75 : mov $0x20 ,%edi
a7a : cal lq 740 <putchar@plt>
a7 f : subl $0x1 ,−0x4(%rbp)
a83 : cmpl $0x0 ,−0x4(%rbp)

a87 : jns a45 <pr intBin+0x14>
a89 : mov $0xa ,%edi
a8e : cal lq 740 <putchar@plt>
a93 : mov $0x0 ,%eax
a98 : cal lq aa0 <pr in tStack In fo>
a9d : nop
a9e : leaveq
a9 f : retq

Figure 1: Contents of Stack Memory

Address 64-bit Value Value (32 bit) Comments
(big-endian) +0 +4

0x7ffdc52e00a0 0000564ce4d02c80 e4d02c80 0000564c ← main’s %rbp
0x7ffdc52e0098 0000100300000000 00000000 00001003

0x7ffdc52e0090 00007ffdc52e0180 c52e0180 00007ffd

0x7ffdc52e0088 00000002e4d027d0 e4d027d0 00000002

0x7ffdc52e0080 00007ffdc52e0188 c52e0188 00007ffd

0x7ffdc52e0078 0000564ce4d02972 e4d02972 0000564c ← leftBit’s ret addr & main’s %rsp
0x7ffdc52e0070 00007ffdc52e00a0 c52e00a0 00007ffd ← leftBit’s %rbp
0x7ffdc52e0068 0000001000000000 00000000 00000010

0x7ffdc52e0060 000000080000ff00 0000ff00 00000008

0x7ffdc52e0058 0000100300000000 00000000 00001003

0x7ffdc52e0050 00007ffdc52e0180 c52e0180 00007ffd

0x7ffdc52e0048 0000564ce4d02a10 e4d02a10 0000564c ← ret addr & leftBit’s %rsp
0x7ffdc52e0040 00007ffdc52e0070 c52e0070 00007ffd ← %rbp
0x7ffdc52e0038 ffffffff33bdf170 33bdf170 ffffffff

0x7ffdc52e0030 0000564ce4d02c80 e4d02c80 0000564c

0x7ffdc52e0028 0000ff0000000000 00000000 0000ff00

0x7ffdc52e0020 0000564ce60c96e0 e60c96e0 0000564c

0x7ffdc52e0018 0000564ce4d02a9d e4d02a9d 0000564c ← %rsp

Question: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

Points: 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 100

Bonus Points: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 9 of 9

