
CS-220 Spring 2019 Test 1 Version A Mar. 6, 2019

Name:

1. (10 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) T X F : One of the disadvantages of using the make command is that even if the Makefile
is written correctly, make will not guarranty that all of the pre-requisite steps in a build process are
completed before evaluating the requested target.

In fact, the real advantage of make is that, if the Makefile is written correctly, i.e. all dependencies
are correctly specified, make will perform all required pre-requisite steps before evaluating the
requested target.

(b) T X F : The main function should return a true value (e.g. 1) if it ends successfully, and
a false value (0) if there is a problem.

The operating system interprets any non-zero return value from main as an error, and a zero return
value as successful program completion.

(c) X T F : In an assignment statement, C will convert the value of the expression on the
right hand side of the equals sign to the type of the left hand side, even if this causes the value of
the expression to change.

(d) X T F : Upside down code can be avoided by putting function declarations at the top of
a C file. However doing so requires specification of the return type, function name, and argument
list twice.

(e) T X F : In C, the leftmost bit of an unsigned integer can be used to determine if that
number is positive or negative.

True for signed integers, but not true for unsigned integers, which are always positive no matter
what the leftmost bit value is.

(f) X T F : The advantage of little-endian numbers is that it is possible to cast a little-endian
number to a different width without changing its starting address.

(g) T X F : Floating point arithmetic is much simpler than integer arithmetic because floating
point numbers are already expressed in a normalized form.

We learned in Lab02 and HW02 just how difficult floating point addition and multiplication are,
much more complicated than integer arithmetic.

(h) T X F : A pointer to an int (int *) is 32 bits wide, but a pointer to a char (char *) is only
8 bits wide.

A pointer to anything takes as many bits as it takes to represent an address in memory, usually 64
bits.

(i) X T F : C functions always pass arguments by copying the value of the argument into
the parameter, but by passing a pointer, we can mimic ”call by reference” because even though the
address is copied, the memory at that address is shared between the caller and the called function.

(j) X T F : The malloc function returns a void pointer because it cannot predict what type
of data you will put into the malloced memory. Before you use the pointer, you need to cast it to
a pointer to a non-void type to tell the compiler what type of data that memory will hold.

Page 1 of 8

Answer the following by checking all correct answers.

2. (5 points) What is the output to stdout from the following code snippet?

int x=2; int y=4;
i f ((x = 5) | | (y = 8)) p r i n t f (”x=%d y=%d\n” ,x , y) ;
else p r i n t f (”y=%d x=%d\n” ,y , x) ;

x=2 y=4 y=4 x=2 x=5 y=8 X x=5 y=4 x=7 y=12

x=5 is an assignment, not a comparison, whose result is 5, and therefore true. Since the first half of the
logical or expression is true, the second half is not executed, so no assignment to y occurs. Partial credit
(-2) for answering x=5, y=8 because you got the assignment, but missed the short circuit.

3. (10 points) What does the following code snippet print?

char ∗ buf=c a l l o c (1 0 0 , 1) ;
s t r cpy (buf , ”Good s t u f f here ! ”) ;
f r e e (buf) ;
// Other code here which does not change bu f
p r i n t f (”Buf conta in s : %s \n” , buf) ;

Buf contains:

Buf contains: 0

X Buf contains: followed by arbitrary characters which may not be printable ASCII values.

Buf contains: Good Stuff here!

Compiler error.
After memory is freed, other parts of programs may modify that memory. It is possible that no other
part of the program has modified the memory that Buf is pointing at, but the most correct answer is
arbitrary characters.

4. (5 points) Which order represents increasing generality of numeric types in C.

double, float, unsigned int, int, char

X char, unsigned char, long, unsigned long, float, double

char, char *, string, struct record, union flint

unsigned char, char, unsigned long, long, float, double

char, short, long, double, short, char

Page 2 of 8

5. (10 points) Given the program in Listing 1 on page 7 on the tear-off page, check all of the programming
techniques used in this code:

X Array of Structures

Structure of Arrays

X Pointer notation used for Array access

X Array notation used for Pointer access

X Binary Tree Data Structure

Linked List Data Structure

Use of Dynamic(heap) Memory

X Pointer Arithmetic

Union to redefine memory

Explicit Casting

Answer the following questions by filling in the blanks.

6. (10 points) What does the following snippet of code print out?

int matrix [2] [4] ={{0 , 1 , 2 , 3} ,{1 0 , 1 1 , 1 2 , 1 3}} ;
i f (matrix [1] [2]== matrix [0] [6]) p r i n t f (”Very Cool !\n”) ;
else p r i n t f (”What were you th ink ing ?\n”) ;

Very Cool!

C doesn’t check for array bounds overflow, and matrix[1][2] is the 6th element of the matrix vector; and
so is matrix[0][6]!

7. (10 points) Given the program in Listing 1 on page 7 on the tear-off page, if this program is compiled
into an executable file called stray, what will get printed to the screen if the following command line is
run: ./stray these are arguments

./stray are arguments these

All four command line arguments will be put into a binary tree, and the contents of that tree will be
printed in alphabetical (ASCII) order.

Page 3 of 8

8. (10 points) Given the program in Listing 1 on page 7 on the tear-off page,
(a) How many command line arguments can be specified before errors may occur?

Up to 10 arguments (including the command itself) can be specified

After 10 arguments, the array bounds of the node array will overflow, and all sorts of bizzare
behavior may result.

(b) Would the following change to line 15 of the program...

for(int i=1; (i<argc) || (i<10) ;i++) {
... fix this problem?

No, need logical AND, not logical OR.

(c) (5 points (bonus)) If line 13 of the program were changed to...

struct tnode node[argc];

... would that remove the limit on the number of command line arguments?

Yes.

A new feature of C allows parameters to be used to allocate arrays. The compiler inserts code to
malloc the correct amount of space for you when the function starts.

9. (10 points) Given the program in Listing 1 on page 7 on the tear-off page,
(a) Is the tnode structure ”self-referential”? If so, why; if not, why not?

Officially tnode is not self-referential because it does not refer to struct tnode.

But, the intent is to refer to other instances of the tnode structure with the left and right fields, so
even though tnode is not officially self-referential, it does have an element of self-reference built in.

(b) If the tnode structure were re-defined so that the left and right fields were pointers intstead of
integers, would an instance of the structure be larger or smaller?

Larger - pointers take 8 bytes, integers take 4 bytes

Page 4 of 8

10. Consider the program in Listing 2 on page 8 on the tearoff pages. If this code is compiled as executable
file encode, then the command

echo "This is a test" | ./encode 3

... would (possibly) write the following string to stdout...

Thbilps jidgs rajx tceuyste

(a) (20 points) Write a C program (including the main function) which takes a single number as the
command line argument, and decodes the encoded result as specified by the encode function above.
For instance, the command... echo "This is a test" | ./encode 3 | ./decode 3 ... would
write the string This is a test to stdout.

Solution: Note... encode adds extra random letters to the output. If you run encode again (and
call it decode), it will just add MORE random letters to the output. This is not a code which has
it’s own encoder as a decoder.

Note also, if you use a loop like the following:

for (i =0; i<cn ; i++) {
i f (i ==0) putchar (c) ;

}

This loop will execute cn times, but only the first iteration of the loop body will do anything,
because only when i==0, the first iteration of the loop, will anything happen. Every other iteration
of the loop does nothing. Therefore, the loop itself could be replaced by the statement:

putchar (c) ;

... which accomplishes the same thing as the loop. The loop is ONLY useful if we do something in
other iterations of the loop.

The entire solution is not presented so we can study this more in lab.

(b) (5 points (bonus)) If your code from the previous question works correctly, and is compiled as
decode, what will get written to stdout as a result of the following command:

echo "I taopcekdbr thhwpism ontedssxt" | ./decode 3

Solution: I aced this test

Page 5 of 8

Page 6 of 8

Tear-off Page

Listing 1: stray.c

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 struct tnode {
4 char ∗ payload ;
5 int l e f t ;
6 int r i g h t ;
7 } ;
8 void def ineNode (struct tnode ∗node , char ∗ payload) ;
9 void insertNode (struct tnode ∗ node , int root , int n) ;

10 void pr intTree (struct tnode ∗node , int root) ;
11
12 int main (int argc , char ∗∗ argv) {
13 struct tnode node [1 0] ;
14 def ineNode (node , argv [0]) ;
15 for (int i =1; i<argc ; i++) {
16 def ineNode (node+i , argv [i]) ;
17 insertNode (node , 0 , i) ;
18 }
19 pr intTree (node , 0) ; p r i n t f (”\n”) ;
20 return 0 ;
21 }
22
23 void def ineNode (struct tnode ∗node , char ∗ payload) {
24 node−>payload=payload ;
25 node−> l e f t =−1; node−>r i g h t =−1;
26 }
27
28 void insertNode (struct tnode ∗ node , int root , int n) {
29 int c=strcmp ((node+n)−>payload , (node+root)−>payload) ;
30 i f (c<0) {
31 i f ((node+root)−> l e f t ==−1) (node+root)−> l e f t=n ;
32 else insertNode (node , (node+root)−> l e f t , n) ;
33 } else {
34 i f ((node+root)−> r i g h t==−1) (node+root)−> r i g h t=n ;
35 else insertNode (node , (node+root)−>r i ght , n) ;
36 }
37 }
38
39 void pr intTree (struct tnode ∗node , int root) {
40 i f (root==−1) return ;
41 pr intTree (node , (node+root)−> l e f t) ;
42 p r i n t f (”%s ” , (node+root)−>payload) ;
43 pr intTree (node , (node+root)−> r i g h t) ;
44 }

Page 7 of 8

Tear-off Page

Listing 2: encode.c

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <time . h>
char randChar () ;
int main (int argc , char ∗∗ argv) {

t ime t t ; srand ((unsigned) time(&t)) ;
int n=a t o i (argv [1]) ;
int cn=1; char c ;
while (EOF !=(c=getchar ())) {

int i ;
for (i =0; i<cn ; i++) putchar (i==0?c : randChar ()) ;
cn++;
i f (cn>n) cn=1;

}
return 0 ;

}
char randChar () {

char l t r s []= ” abcdefghi jklmnopqrstuvwxyz ” ;
return l t r s [rand()% s t r l e n (l t r s)] ;

}

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 10 5 10 5 10 10 10 10 10 20 100

Bonus Points: 0 0 0 0 0 0 0 5 0 5 10

Page 8 of 8

