Binghamton CS-220

University Spring 2019

Cax
. had %
Using Processes

Computer Systems Chapter 8.2, 8.4

Binghamton CS-220

University Spring 2019

Abstract View

When I run my program, it has access to the entire computer;
including the processor, memory, keyboard, display, disk drives,
network connections, etc. etc. etc.

CS-220
Spring 2019

Binghamton

University

Leaky Abstraction

* In fact, most hardware supports multiple concurrent users
* Each user is often running multiple programs concurrently

* System services (called “deamons”) are often running to provide
real-time capabilities

* Even running on a multi-core machine, the number of
concurrently running programs almost always exceeds the
number of processors.

Binghamton CS-220

University Spring 2019

What Is a Process?

An invocation of a program

* Created by C library call “fork”

* Process ID: a numeric identifier associated with a process (PID)
* Four digits long... 0001 to 9999

* Ended by “exit” library call (in stdlib.h) or “kill” interrupt

* Return from main returns to a function which issues an exit

* Process issues a return code
* Process is removed from the system when return code is read

CS-220

Binghamton
Spring 2019

University

Process Hierarchy

* New processes can only be created by existing processes

* The creator is called the parent process or “ppid”
* The spawned process is called a child process

* Parent processes are responsible for their children

* In UNIX, when you boot the machine, a root process is created
* Root process spawns a login monitor process
* When you log in, login monitor creates a terminal (shell) process

* When you type a command in a shell process, it creates a command
process.

Binghamton CS-220

University Spring 2019

Listing Processes

* In UNIX, the “ps” command lists processes

* By default, “ps” lists your process and all of it’s children
* To list all processes owned by you, “ps —uuserid’

* To list all processes by all owners on this machine, “ps -e”

alpha:~/CS220> ps -utbartens
PID TTY TIME CMD

2836 ? 00:00:00 sshd

alpha:~/C5220> ps 2837 7 00:00:00 tcsh
PID TTY TIME CMD 2839 7 00:00:00 sftp-server

2933 pts/3 00:00:00 tcsh 2913 ? 00:00:00 sshd

3057 pts/3 00:00:00 ps 2914 7 00:00:00 tcsh
2923 ? 00:00:00 sftp-server

2932 ? 00:00:00 sshd
2933 pts/3 00:00:00 tcsh
3058 pts/3 00:00:00 ps

Binghamton CS-220

University Spring 2019

Process Resources

* Each process THINKS it owns all machine resources

e “virtual” processor, virtual memory, virtual keyboard, virtual monitor,
virtual disks, virtual network, ...

 OS connects VIRTUAL resources to REAL resources

. . > '

Binghamton CS-220
University Spring 2019

Time Slicing

PID 5321

PID 4879

PID 4472

Swap Out

Binghamton CS-220

University Spring 2019

Process Context

* There is information/data associated with each process
* Register values
 Values in memory
* How much data has been read from a file
. etc.

* The sum of all state for the entire process is called the process
context

* When a process is active, it has access to its entire context

Binghamton CS-220

University Spring 2019

Time Slicing Issue — Context Swap

* When a process is swapped out, we must save it's context
* When a process is swapped in, we must load it’s context

* The process of saving the outgoing context, and loading
the incoming context is called a “context swap”

* Context swapping is “overhead” - extra resource needed
that does not do the processes work
* No context swapping required for batch jobs

Binghamton CS-220

University Spring 2019

Process Swapping / Context Switch

* Wait for Instruction to End

* Save context of swap out process
* Registers (especially %rip) & flags
* Main Memory (stack and heap)
* [/0 status

* Restore swapped in context
* Registers and Memory and I/0 status

* Restart instruction processing cycle

Binghamton CS-220

University Spring 2019

Swapping Memory

Bad Idea:
Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

* A 32 bit address space is 4G, 64 bit address space is huge

* Writing 4G to disk takes ~1G/sec or 4 seconds

* Times slices are MUCH smaller than 1 second

* You would spend 99.9999% of the time reading/writing memory!

Solution: Paged Memory

Binghamton CS-220

University Spring 2019

Operating System Process Status Table

* Keeps track of every process

* Process added to OS process status table when a parent spawns a
child process

* The child process is alive (running) as long as it continues to
execute instructions

* When a child exits (or is killed), it becomes “dead”, but it is still in
the process table! It is now a “zombie”
* Process table holds the return code from the process

* Process is removed from the OS process table when the parent
“reaps” the process (reads the child’s return code)

Binghamton CS-220

University Spring 2019

Forks

Binghamton

CS-220

University

When you “fork™ a single process...

Spring 2019

* A new process is created... a child of the existing process
* The process doing the forking is the parentprocess

At the point of the fork, the parent’s context is cloned

‘he child gets a FULL COPY of the parent’s address space

T'he child inherits a copy of the parent’s 10 resources

rmy]

['he parent’s register values are cloned, including %rip!
8 p

Binghamton CS-220

University Spring 2019
What does “clone” mean?

e Start out identical...

Binghamton CS-220

University Spring 2019

After the Fork

* Two independent copies of memory that start out identical, but
diverge as parent and child write different things in their memory

* Two independent copies of 10 resources that start out pointing to
single 10 resources, but may diverge as parent and child
manipulate these resources independently

* Two independent copies of Register values that start out identical,
but diverge as parent and child write different values

* No communication between parent and child through memory!
* Parent is still responsible for child.

CS-220
Spring 2019

Binghamton

University

How can you tell child from parent?

* Memory is cloned... parent and child are the same

* Register values are cloned... parent and child are the same
» Same %rip implies the same instruction(s) are executing

* The ONLY difference between parent and child is the return value

from the “fork” function

* %rax register is different!
* For the parent, the “fork” function returns the PID of the child

* For the child, the “fork” function returns zero (0)
e Zero is notavalid PID

Binghamton CS-220

University Spring 2019

fork standard library call

. _ D\ Only parent executes...
#include <unistd.h> No child yet.

pid_t pid; Both parent and child
.. execute after fork

‘pid = forko(); Only the child executes if pid==
if (pid==0) {]// This is the child

A)
}else { // This is the parent... pid is the child pid

A

y _)
§
Only the parent executes if pid!=0

Binghamton CS-220

University Spring 2019

Cleaning Up After Your Kids

 When a child process exits, it posts its return code

« BUT IT STAYS ACTIVE
* Must stay active until it's parent process reaps the child’s return code

 Parent must read the return code from its children
* Reading the return code is called reapingthe child process
 When a child process has been reaped, it can be removed from OS tables

* Reaping a child process can be done with either “wait” or “waitpid” C
system library calls
* “wait” - allows you to reap any child process
» “waitpid” - allows you to reap a specific child process

* Both “wait” and “waitpid” make parent go idle until child exits

Binghamton CS-220

University Spring 2019

"Automatic” clean-up

* C “exit” processing performs automated clean-up:
* closes any files you have left open
* free’s any space you have malloc’ed
* waits for any unreaped children

* Automatic clean-up is frowned on!
 What happens if you never get there?
* It might take days before the parent exits

* [t's messy - you know when you are done with a resource better than the
OS

Binghamton CS-220

University Spring 2019

Loading and Running Programs

int execve(char * filename, char *argvi], char *envpl])
* Library function in unistd.h

* filename - Name of ELF executable file

* argv —> Null terminated array of arguments

* envp —> Null terminated array of environment variables

* Loads executable from filename
e Calls “main” function, but sets return value to OS
* Never returns to calling code! (unless error occurs loading)

Binghamton CS-220

University Spring 2019

Over-simplified “Shell”

Read command from stdin

char cbuf[256];
pid_t cpid; int cstat;
while(fgets(cbuf,sizeof(cbuf),stdin)) {

cpid=fork();

if (cpid==0) { execve(qfile(cbuf),qargs(cbuf),NULL); }
waitpid(cpid,&cstat,NULL);

child pid loads and executes command
Note: never returns!

parent (shell) pid waits for command to finish

