
Binghamton

University

CS-220

Spring 2019

Using Processes
Computer Systems Chapter 8.2, 8.4

Binghamton

University

CS-220

Spring 2019

Abstract View

When I run my program, it has access to the entire computer,
including the processor, memory, keyboard, display, disk drives,

network connections, etc. etc. etc.

Binghamton

University

CS-220

Spring 2019

Leaky Abstraction

• In fact, most hardware supports multiple concurrent users

• Each user is often running multiple programs concurrently

• System services (called “deamons”) are often running to provide
real-time capabilities

• Even running on a multi-core machine, the number of
concurrently running programs almost always exceeds the
number of processors.

Binghamton

University

CS-220

Spring 2019

What is a Process?

An invocation of a program
• Created by C library call “fork”

• Process ID: a numeric identifier associated with a process (PID)
• Four digits long… 0001 to 9999

• Ended by “exit” library call (in stdlib.h) or “kill” interrupt
• Return from main returns to a function which issues an exit

• Process issues a return code

• Process is removed from the system when return code is read

Binghamton

University

CS-220

Spring 2019

Process Hierarchy

• New processes can only be created by existing processes
• The creator is called the parent process or “ppid”

• The spawned process is called a child process

• Parent processes are responsible for their children

• In UNIX, when you boot the machine, a root process is created
• Root process spawns a login monitor process

• When you log in, login monitor creates a terminal (shell) process

• When you type a command in a shell process, it creates a command
process.

Binghamton

University

CS-220

Spring 2019

Listing Processes
• In UNIX, the “ps” command lists processes

• By default, “ps” lists your process and all of it’s children

• To list all processes owned by you, “ps –uuserid”

• To list all processes by all owners on this machine, “ps –e”

alpha:~/CS220> ps
PID TTY TIME CMD

2933 pts/3 00:00:00 tcsh
3057 pts/3 00:00:00 ps

alpha:~/CS220> ps -utbartens
PID TTY TIME CMD

2836 ? 00:00:00 sshd
2837 ? 00:00:00 tcsh
2839 ? 00:00:00 sftp-server
2913 ? 00:00:00 sshd
2914 ? 00:00:00 tcsh
2923 ? 00:00:00 sftp-server
2932 ? 00:00:00 sshd
2933 pts/3 00:00:00 tcsh
3058 pts/3 00:00:00 ps

Binghamton

University

CS-220

Spring 2019

Process Resources

• Each process THINKS it owns all machine resources
• “virtual” processor, virtual memory, virtual keyboard, virtual monitor,

virtual disks, virtual network, …

• OS connects VIRTUAL resources to REAL resources

PID 4879

Processor

Memory

Disk

Monitor

PID 5321PID 4472

Binghamton

University

CS-220

Spring 2019

Time Slicing

PID 4879

Processor

Memory

Disk

Monitor

PID 5321

PID 4472

Swap In

Swap Out

Binghamton

University

CS-220

Spring 2019

Process Context

• There is information/data associated with each process
• Register values

• Values in memory

• How much data has been read from a file

• etc.

• The sum of all state for the entire process is called the process
context

• When a process is active, it has access to its entire context

Binghamton

University

CS-220

Spring 2019

Time Slicing Issue – Context Swap

• When a process is swapped out, we must save it’s context

• When a process is swapped in, we must load it’s context

• The process of saving the outgoing context, and loading
the incoming context is called a “context swap”

• Context swapping is “overhead” – extra resource needed
that does not do the processes work

• No context swapping required for batch jobs

Binghamton

University

CS-220

Spring 2019

Process Swapping / Context Switch

• Wait for Instruction to End

• Save context of swap out process
• Registers (especially %rip) & flags

• Main Memory (stack and heap)

• I/O status

• Restore swapped in context
• Registers and Memory and I/O status

• Restart instruction processing cycle

Binghamton

University

CS-220

Spring 2019

Swapping Memory
Bad Idea:

Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

• A 32 bit address space is 4G, 64 bit address space is huge

• Writing 4G to disk takes ~1G/sec or 4 seconds

• Times slices are MUCH smaller than 1 second

• You would spend 99.9999% of the time reading/writing memory!

Solution: Paged Memory

Binghamton

University

CS-220

Spring 2019

Operating System Process Status Table

• Keeps track of every process

• Process added to OS process status table when a parent spawns a
child process

• The child process is alive (running) as long as it continues to
execute instructions

• When a child exits (or is killed), it becomes “dead”, but it is still in
the process table! It is now a “zombie”

• Process table holds the return code from the process

• Process is removed from the OS process table when the parent
“reaps” the process (reads the child’s return code)

Binghamton

University

CS-220

Spring 2019

Forks

Binghamton

University

CS-220

Spring 2019

When you “fork” a single process…

• A new process is created… a child of the existing process

• The process doing the forking is the parent process

• At the point of the fork, the parent’s context is cloned
• The child gets a FULL COPY of the parent’s address space

• The child inherits a copy of the parent’s IO resources

• The parent’s register values are cloned, including %rip!

Binghamton

University

CS-220

Spring 2019

What does “clone” mean?
• Start out identical…

• … but as time goes by, clones diverge…

Binghamton

University

CS-220

Spring 2019

After the Fork

• Two independent copies of memory that start out identical, but
diverge as parent and child write different things in their memory

• Two independent copies of IO resources that start out pointing to
single IO resources, but may diverge as parent and child
manipulate these resources independently

• Two independent copies of Register values that start out identical,
but diverge as parent and child write different values

• No communication between parent and child through memory!

• Parent is still responsible for child.

Binghamton

University

CS-220

Spring 2019

How can you tell child from parent?

• Memory is cloned… parent and child are the same

• Register values are cloned… parent and child are the same
• Same %rip implies the same instruction(s) are executing

• The ONLY difference between parent and child is the return value
from the “fork” function

• %rax register is different!

• For the parent, the “fork” function returns the PID of the child

• For the child, the “fork” function returns zero (0)
• Zero is not a valid PID

Binghamton

University

CS-220

Spring 2019

fork standard library call

#include <unistd.h>

pid_t pid;

…

pid = fork();

if (pid==0) { // This is the child

…

} else { // This is the parent… pid is the child pid

…

}

Only the child executes if pid==0

Only parent executes…
No child yet.

Both parent and child
execute after fork

Only the parent executes if pid!=0

Binghamton

University

CS-220

Spring 2019

Cleaning Up After Your Kids

• When a child process exits, it posts its return code
• BUT IT STAYS ACTIVE

• Must stay active until it’s parent process reaps the child’s return code

• Parent must read the return code from its children
• Reading the return code is called reaping the child process

• When a child process has been reaped, it can be removed from OS tables

• Reaping a child process can be done with either “wait” or “waitpid” C
system library calls

• “wait” – allows you to reap any child process

• “waitpid” – allows you to reap a specific child process

• Both “wait” and “waitpid” make parent go idle until child exits

Binghamton

University

CS-220

Spring 2019

“Automatic” clean-up

• C “exit” processing performs automated clean-up:
• closes any files you have left open

• free’s any space you have malloc’ed

• waits for any unreaped children

• Automatic clean-up is frowned on!
• What happens if you never get there?

• It might take days before the parent exits

• It’s messy – you know when you are done with a resource better than the
OS

Binghamton

University

CS-220

Spring 2019

Loading and Running Programs

int execve(char * filename, char *argv[], char *envp[])

• Library function in unistd.h

• filename – Name of ELF executable file

• argv –> Null terminated array of arguments

• envp –> Null terminated array of environment variables

• Loads executable from filename

• Calls “main” function, but sets return value to OS

• Never returns to calling code! (unless error occurs loading)

Binghamton

University

CS-220

Spring 2019

Over-simplified “Shell”

char cbuf[256];

pid_t cpid; int cstat;

while(fgets(cbuf,sizeof(cbuf),stdin)) {

cpid=fork();

if (cpid==0) { execve(qfile(cbuf),qargs(cbuf),NULL); }

waitpid(cpid,&cstat,NULL);

}

exit(0);

Read command from stdin

child pid loads and executes command
Note: never returns!

parent (shell) pid waits for command to finish

