
Binghamton

University

CS-220

Spring 2019

Exceptional Control Flow
Computer Systems Chapter 8

Binghamton

University

CS-220

Spring 2019

Normal Control Flow

• %rip set to the initial instruction when program loaded

• %rip updated
• Points to next sequential instruction after decode

• May be modified by jump/call/ret instructions

• Allows program to respond to internal state

• But what happens when things occur EXTERNAL to the program?

Binghamton

University

CS-220

Spring 2019

Reasons for Exceptional Control Flow

• Abnormal condition – e.g. segmentation violation or memory full

• I/O interrupt – e.g. requested READ completes

• Timer interrupt

• External interrupt – e.g. Ctrl-C (Kill signal)

• Operating System interrupt – e.g. swap-out

• Memory interrupt – e.g. page fault

• Network traffic – e.g. new packet arrives

• et cetera

Binghamton

University

CS-220

Spring 2019

Exceptions vs. Signals

Exceptions

• Low level X86 concept

• Implemented in hardware and
software

Signals

• Higher level UNIX concept

• Implemented only in software

• Built on top of exceptions

Binghamton

University

CS-220

Spring 2019

Exception

• “an abrupt change of control flow in response to
some change in the processor state”

• Change in state is called an “event”
• e.g. segmentation violation or IO signal

• Processor responds by transferring control to “exception handler”
• Different handlers for different exceptions : exception table

• When finished, the exception handler may:
• Return to the instruction that was executing when the event occurred

• Return to the next instruction after the one that was executing

• Abort the program

Binghamton

University

CS-220

Spring 2019

“Kernel” vs. “User” Execution

• Our code runs in “User” mode
• Runs normal x86 instructions

• To protect the system, certain functions are disabled
• Such as resource manipulation, cross-memory communication, etc.

• User must INVOKE “kernel” routines with a special “syscall” instruction to
invoke these functions

• Kernel Mode code
• Trusted functions – operating system code designed and proven to

prevent malicious actions

• May only invoke other kernel functions or return to User mode

• Uses it’s own “kernel” stack instead of the regular stack

Binghamton

University

CS-220

Spring 2019

Handling an Exception event

• When exception event occurs, it is assigned a numeric event type

• Depending on event type, return address is pushed onto the
(kernel) stack

• Either currently executing instruction, %rip, or abort routine

• Some state info is also pushed on stack (e.g. condition code flags)

• Event type is an index into exception table. Value in the exception
table is the “kernel” routine to handle that exception

Binghamton

University

CS-220

Spring 2019

Classes of Exceptions

Class Cause Return Behavior

Interrupt I/O event
e.g. read complete

Next Instruction

Trap Intentional Exception event
e.g. “syscall” to enter kernel

Next Instruction

Fault Potentially recoverable error event
e.g. page fault

Current Instruction
or abort

Abort Unrecoverable error event
e.g. RAM parity check

Abort

Binghamton

University

CS-220

Spring 2019

Exception Examples

Exc. Num Class Description

0 Fault Divide by zero (Floating point exceptions)

13 Fault Memory Protection Fault (Segmentation Fault)

14 Fault Page Fault (4K page not in real memory)

18 Abort Fatal hardware error

32-255 Interrupt
or Trap

OS-Defined exceptions

Binghamton

University

CS-220

Spring 2019

Syscall (Trap) Examples

Num Name Descr Num Name Descr

0 read Read file 33 pause Wait for signal

1 write Write file 37 alarm Schedule alarm

2 open Open file 39 getpid Get process ID

3 close Close file 57 fork Create new process

4 stat File info 59 execve Load/Execute a program

9 mmap Map file to memory 60 _exit Terminate process

12 brk Reset heap 61 wait4 Wait for child process

32 dup2 Copy file descriptor 62 kill Send signal to process

Binghamton

University

CS-220

Spring 2019

Invoking kernel functions (syscall)

• From C code:
• Usually we use C library wrappers around functions which invoke syscall

e.g. printf, sscanf, fork, execve, open, etc.
• There is a syscall library function : long syscall(long number, ...);

• In X86_64:
• Put the syscall number in %rax (see /usr/include/asm/unistd_64.h)

• Put parameters registers: %rdi, %rsi, %rdx, %r10, %r8, %r9

• Invoke “syscall” instruction

• return value in %rax

Binghamton

University

CS-220

Spring 2019

Hello World Examples

#include <stdio.h>

int main() {

printf(“Hello world\n”);

return 0;

}

#include <unistd.h>

int main() {

write(1,”Hello World\n”,12);

_exit(0);

}

.data

msg: .ascii “Hello World\n”

.text

movq $1, %rax ; use the write syscall

movq $1, %rdi ; write to stdout

movq $msg, %rsi ; use “Hello World”

movq $12, %rdx ; write 12 characters

syscall

movq $60, %rax ; use the _exit syscall

movq $0, %rdi ; return code of 0

syscall

Binghamton

University

CS-220

Spring 2019

Syscall Error Handling

• If there is a syscall error (e.g. “file not found” on open)

• Return value (%rax) set to -1

• Global variable errno (declared in errno.h) set to unique error
number

• use perror(“myfunc encounterred: ”); to print an error
message

Binghamton

University

CS-220

Spring 2019

UNIX Signals

• “A signal is a small message that notifies a program that an event
of some type has occurred”

• UNIX defines the list of valid signals – identified by an index

• Each signal corresponds to some type of system event (exception)
• Not all exceptions map to signals… only those that the programmer can do

something about

• Signals enable programs to respond to events (in user mode)

• If program does not handle a signal, default actions are supplied

Binghamton

University

CS-220

Spring 2019

Some Example Signals

Num Name Descr Default Action

1 SIGHUP Halt User Process Terminate

2 SIGINT Interrupt User Process (Ctrl-C) Terminate

3 SIGQUIT Quit User Process (Ctrl-/) Terminate

9 SIGKILL Kill User Process Terminate

6 SIGABRT Abort signal Terminate/Dump

10 SIGUSR1 User Signal 1 Terminate

12 SIGUSR2 User Signal 2 Terminate

11 SIGSEGV Segmentation Violation Terminate/Dump

19 SIGSTOP Stop processing (Ctrl-Z) Stop until SIGCONT

18 SIGCONT Continue Processing Ignore/Continue

… … … …

Binghamton

University

CS-220

Spring 2019

Sending Signals

• Exception events may cause signals to get sent
• e.g. Segmentation violation causes SIGSEGV to get sent

• Signals can get sent by keyboard actions
• e.g. Ctrl-C sends SIGINT to current executing processes

• Signals can get sent by programs via system call:
int kill(pid_t pid, int sig);

• The UNIX ”kill” command is a wrapper around kill system call
• e.g. >kill –CONT 31023

Binghamton

University

CS-220

Spring 2019

Receiving Signals

• Each signal has a default signal handler
• SIGSTOP and SIGKILL cannot be overridden
• All others: Specify a new signal handler to override default

• You may specify “SIG_IGN” to ignore this signal
• You may specify “SIG_DFL” to revert to the default signal handler
• You may specify the name of your own signal handler routine

• Use the C library “signal“ function defined in signal.h to override
• First argument is the signal number
• Second argument is the signal handling function

• Signal handling function takes a single int argument
• Signal handling function returns “void”
• May be SIG_IGN or SIG_DFL

• Returns “SIG_ERR” (-1) if it fails

Binghamton

University

CS-220

Spring 2019

Coding a signal handler

• Function that takes one argument
• The signal number of the signal sent to this process
• Useful only when a the signal handler function handles multiple signals

• Handler may run concurrently with the original function
• And can use the same global variables
• This can cause problems!

• Returns void

• May exit (to abort)

• If signal handler returns, returns to instruction that was executing
when the signal occurred

• Possibly a signal handler for a different signal!

Binghamton

University

CS-220

Spring 2019

Blocking / Unblocking Signals

• To prevent endless loops, while a signal handler is processing a
signal, that signal is automatically blocked

• When signal handler returns, signal is unblocked

• It is also possible to explicitly block a signal using the C library
sigprocmask function (and its helpers)

• A blocked signal is still sent, but cannot be received (handled)
• Signal handler not invoked for that signal

• When the signal is unblocked it can be received
• Signal handler can now be invoked

