
Binghamton

University

CS-220

Spring 2019

Cached Memory
Computer Systems Chapter 6.2-6.5

Binghamton

University

CS-220

Spring 2019

The Memory Hierarchy

C
o

st

C
ap

acity
Sp

ee
d

Binghamton

University

CS-220

Spring 2019

The Cache Concept

CPU

Registers

Memory

Addresses

Data

Instructions
ALU

Binghamton

University

CS-220

Spring 2019

The Cache Concept

CPU

Registers

Memory

Addresses

Data

Instructions
ALU

Cache

Fast,
Expensive,

Small

Binghamton

University

CS-220

Spring 2019

Your Workbench

Bin 10

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4

Bin 96

ORDER1 : Kit 1 – Birdhouse
1: Part 100 - Base
2: Part 967 – Left Wall
3: Part 963 – Left Wall Screw
4: Part 964 – Left Wall Bolt
5: Part 958 – Right Wall
6: Part 303 – Bracket
7: Part 959 – Back Wall
8: Part 958 – Front Wall
…

- Cost:

+Gain:

Net:

$0.00

$0.00
$0.00

$0.10
$0.10
$0.20
$0.20$0.30

$0.10

Cache Way

Cache Miss

Binghamton

University

CS-220

Spring 2019

Cache Pro’s and Con’s

Pro’s

• If CPU requests an address that
is in cache, it gets it MUCH
faster!

Cache Hit

Con’s

• If CPU requests an address that
is NOT in cache, it gets it
slower

Cache Miss

Binghamton

University

CS-220

Spring 2019

What happens on Cache Miss?

1. Recognize data is not in cache

2. Make room in Cache
copy modified data block from cache to memory

3. Copy requested block of memory into cache

4. Return data from cache

Binghamton

University

CS-220

Spring 2019

Challenge

• Don’t return a bin way that you are going to need soon!
• if you do, you have to pay (in time) for sending it back, and then getting it

again

• Don’t know if you will need that bin block of memory again soon!
• No “look-ahead” to see what parts addresses in the order memory you are

going to need

• Only know one thing about orders programs:

“Part numbers addresses tend to be sequential, but when the
sequence is not followed, there is a high probability that the next
part number address showed up recently on the order.”

Binghamton

University

CS-220

Spring 2019

Example Memory Trace

• Fetch Instruction at 0x0000555555554a92

• Fetch Integer at 0x00007fffffffffffab48

• Fetch Instruction at 0x0000555555554a94

• Store Integer at 0x00007fffffffffffab48

• Fetch Instruction at 0x0000555555554a96

• Fetch Integer at 0x00007fffffffffffab8c

• Fetch Instruction at 0x0000555555554905

• …

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Locality

• Local variables are next to each other in the stack frame

• Tend to read a matrix sequentially in row major order

• Instructions are read sequentially
• If there is a loop, a small cluster of instructions is re-read multiple times

• Chances are, for most memory accesses, the block is already in the
cache!

• It is not uncommon to get 98%+ cache hit rates!

Binghamton

University

CS-220

Spring 2019

Locality has two dimensions

0

3

6

9

12

15

18

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Probability of Cache Hit

Binghamton

University

CS-220

Spring 2019

Cache is in Hardware

• Small block of fast, expensive random-access memory
• Small because it’s expensive

When CPU requests memory:

• Need to check to see if that memory is in cache

• If not:
• need to eject a “victim” cache block, send it back to memory
• need to fetch block from memory into cache
• need to keep track of which block this is

• Return data values from cache

Binghamton

University

CS-220

Spring 2019

Fully Associative Cache

• Define cache block size = 2b the amount of data transferred
between cache and ROM memory – most often 64=26 bytes

• Divide the cache up into 2w ways
• Each way contains one block (e.g. 64 bytes)

• Each way contains an ID tag – where in memory does this block come
from

• Each way contains flags, valid flag and dirty flag

• For instance, an 8K fully associative cache contains 128=27 ways

Binghamton

University

CS-220

Spring 2019

Fully Associative Cache

Way ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0 0x0000555555554a80 1 0 x

1 0x00007fffffffffffab40 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

2 0x00007fffffffffffab80 1 1 x

3 0x0000555555554900 1 0 x

…

125 0 0

126 0 0

127 0 0

Instruction @
0x0000555555554a92

Integer @
0x00007fffffffffffab48

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Address Sub-Fields – Fully Associative

• Divide each memory address into two sub-fields
• Tag – High order bits - where in memory this block comes from

• Block Offset – b Low order bits that define the offset within a block

263 262 … 27 26 25 24 23 22 21 20

b63 b62 … b7 b6 b5 b4 b3 b2 b1 b0

Tag Block Offset

0x0000555555554a8[/12] 1 0 0 1 0 0 1 0

00007fffffffffffab4[/08] 0 1 0 0 1 0 0 0

00007fffffffffffab8[/0c] 1 0 0 0 1 1 0 0

55555555490[/05] 0 0 0 0 0 1 0 1

Note: Hex digit boundary

Binghamton

University

CS-220

Spring 2019

Random Access Memory (RAM)

ADDR DATA

00 0 0 0

01 0 0 1

10 0 1 0

11 1 1 1

Binghamton

University

CS-220

Spring 2019

Random Access vs. Content Addressable

RAM

• Write(address,data)
• Writes data to the address row

• data=Read(address)
• Reads data at the address row

CAM

• Write(address,data)
• Writes data to the address row

• address=Read(data)
• Returns the address of the row

that contains the data

• Or returns “data not found”

Binghamton

University

CS-220

Spring 2019

Content Addressable Memory (CAM)

ADDR DATA

00 1 0 1

01 1 1 0

10 0 0 1

11 1 1 1

Binghamton

University

CS-220

Spring 2019

CAM in Fully Associative Cache

• Keep tags in CAM – data width = tag size

• Address in CAM is the way index in the cache
• When main memory written to cache, also write its tag to CAM

• When accessing memory, provide requested tag to CAM
• CAM may find that tag is not available… cache miss

• CAM may find that tag is available and return way index of the way that
contains that data… probable cache hit!

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x

00007fffffffffffab8 2 1 1 x

000055555555490 3 1 0 x

…

125 0 0

126 0 0

127 0 0

TAG

OFFSET

WAY

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0 0 0

1 0 0

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

0000555555554a8

MISS

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

1 0 0

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

0000555555554a8

Instruction @
0x0000555555554a92

0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

1 0 0

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

00007fffffffffffab4

MISS

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 0 x

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

00007fffffffffffab4

1

Integer @
0x00007fffffffffffab48

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 0 x

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

0000555555554a8

0

Instruction @
0x0000555555554a94

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

00007fffffffffffab4

1

Integer @
0x00007fffffffffffab48

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 0 x

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

0000555555554a8

0

Instruction @
0x0000555555554a96

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

2 0 0

3 0 0

…

125 0 0

126 0 0

127 0 0

00007fffffffffffab8

MISS

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

00007fffffffffffab8 2 1 0 x

3 0 0

…

125 0 0

126 0 0

127 0 0

00007fffffffffffab8 2

Integer @
0x00007fffffffffffab8c

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

00007fffffffffffab8 2 1 0 x

3 0 0

…

125 0 0

126 0 0

127 0 0

000055555555490

MISS

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Fully Associative Cache

CAM Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0000555555554a8 0 1 0 x

00007fffffffffffab4 1 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

00007fffffffffffab8 2 1 0 x

000055555555490 3 1 0 x

…

125 0 0

126 0 0

127 0 0

000055555555490

Instruction @
0x0000555555554905

3
Trace

I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Cache Miss

• Select a “victim” way index … way to replace
• If there is an unused way (valid flag off) , use it

• Pick a way that is unlikely to be used in the near future (Project 1)
• Random, Least Recently Used, Least Frequently Used

• If “dirty” flag is on, copy block from this way to memory

• Write tag to CAM at the chosen way index

• Copy block starting at tag (with block offset zeroed) from memory
to the chosen way in Cache RAM

• Turn valid flag for this set on, and dirty bit off

Binghamton

University

CS-220

Spring 2019

Fully Associative Cache Pros and Cons

Advantages

• Cache always contains most
important memory

• Therefore, Cache Hit Rate is high

• Therefore, speed is fast

Disadvantages

• Lots of very expensive CAM
memory

• Choosing victim can be slow or
incorrect

• Need extra data to choose
victim

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

• Define cache block size = 2b the amount of data transferred
between cache and RAM memory – most often 64=26 bytes

• Divide the cache up into 2s sets
• Each set contains one way (e.g. 64 byte block of memory)

• Each set identified by ID tag – where this way comes from

• Each set contains flags, valid flag and dirty flag

• For instance, an 8K direct map cache contains 128=27 sets

Binghamton

University

CS-220

Spring 2019

Address Sub-Fields
• Divide each memory address into three sub-fields

• Tag – High order bits - where in memory this block comes from

• Set Index – s intermediate bits -which set this block is associated with

• Block Offset – b Low order bits that define the offset within a block

263 262 … 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

b63 b62 … b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Tag Set Index Block Offset

0000555555554[a92]
0 1 0 1 0 1 0 0 1 0 0 1 0

2 A 1 2

00007fffffffffffa[b48]
0 1 0 1 1 0 1 0 0 1 0 0 0

2 C 0 8

00007fffffffffffa[b8c]
0 1 0 1 1 1 0 0 0 1 1 0 0

2 D 0 C

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0 0

2B 0 0

2C 0 0

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

2A

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 0 0

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Instruction @
0x0000555555554a92

2A

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 0 0

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

2C MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 0 x

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Data @
0x00007fffffffffffab48

2C

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 0 x

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Instruction @
0x0000555555554a94

2A

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 1 x x x x x x x x x x x y y y y x x x x x x x x x x x x x

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

2C

Data @
0x00007fffffffffffab48

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 1 x x x x x x x x x x x y y y y x x x x x x x x x x x x x

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

Instruction @
0x0000555555554a96

2A

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 1 x x x x x x x x x x x y y y y x x x x x x x x x x x x x

2D 0 0

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

2D

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

2B 0 0

2C 00007fffffffffffa 1 1 x x x x x x x x x x x y y y y x x x x x x x x x x x x x

2D 00007fffffffffffa 1 0 x

…

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c
I 0000555555554905

2D

Data @
0x00007fffffffffffab8C

Binghamton

University

CS-220

Spring 2019

On memory access request

1. Use set index to choose correct set

2. If “valid” flag is off, cache miss…

3. Compare tag – if not equal evict block… cache miss…
• If “dirty” flag is on, write line back to main memory based on tag and set

• Read main memory line from new tag/set into this set

4. Use block offset to access data in cache
• If memory write, turn on “dirty” flag for this set.

Binghamton

University

CS-220

Spring 2019

Direct Map View of Real Memory
Address 64 byte block of memory

TAG SET OFFSET 00 01 02 … … 3E 3F

FFFF 7F 00-3F x

FFFF 7E 00-3F x

…

FFFF 00 00-3F x

… … …

0001 01 00-3F x

0001 00 00-3F x

0000 7F 00-3F x

… … …

0000 01 00-3F x

0000 00 00-3F x

Binghamton

University

CS-220

Spring 2019

Direct Map Hit Rates

• Sequential access – Cache miss after 8,192 = 0x2000 = 213 bytes
• 99.988% hit rate … pretty good!

• Problems occur when two access trends overlap
• For instance, if binary code is stored at 0x000000000ca4000

• data is stored at 0x7FFFFFFFFFF64000

• BOTH MAP TO SET 0!

• Assuming alternate code/data memory access, cache miss EVERY time!

• 0.000 hit rate … pretty bad!

Binghamton

University

CS-220

Spring 2019

Address Sub-Fields
• Divide each memory address into three sub-fields

• Tag – High order bits - where in memory this block comes from

• Set Index – s intermediate bits -which set this block is associated with

• Block Offset – b Low order bits that define the offset within a block

263 262 … 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

b63 b62 … b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Tag Set Index Block Offset

0000555555554[a92]
0 1 0 1 0 1 0 0 1 0 0 1 0

2 A 1 2

00007fffffffffffa[a88]
0 1 0 1 0 1 0 0 0 1 0 0 0

2 A 0 8

00007fffffffffffa[acc]
0 1 0 1 0 1 1 0 0 1 1 0 0

2 B 0 C

Binghamton

University

CS-220

Spring 2019

Direct Map Cache Overlap

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0 0

…

56 0 0

57 0 0

… 0 0

7F 0 0

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

2A

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

…

56 0 0

57 0 0

… 0 0

7F 0 0

Instruction @
0x0000555555554a92

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

…

56 0 0

57 0 0

… 0 0

7F 0 0

2A

MISS
Trace

I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 00007fffffffffffa 1 0 x

…

56 0 0

57 0 0

…

7F 0 0

Data @
0x00007fffffffffffaa88

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 00007fffffffffffa 1 0 x

…

56 0 0

57 0 0

… 0 0

7F 0 0

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

…

56 0 0

57 0 0

… 0 0

7F 0 0

Instruction @
0x0000555555554a94

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 0000555555554 1 0 x

…

56 0 0

57 0 0

… 0 0

7F 0 0

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 00007fffffffffffa 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

…

56 0 0

57 0 0

… 0 0

7F 0 0

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

Data @
0x00007fffffffffffaa88

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set ID V D Data (Line)

0 1 2 3 4 5 6 7 8 … 6
0

6
1

6
2

6
3

0 0 0

1 0 0

…

2A 00007fffffffffffa 1 1 x x x x x x x x y y y y x x x x x x x x x x x x x x x x

…

56 0 0

57 0 0

… 0 0

7F 0 0

2A

Trace
I 0000555555554a92
R 00007fffffffffffaa88
I 0000555555554a94
W 00007fffffffffffaa88
I 0000555555554a96
R 00007fffffffffffaaac

I 0000555555554905

MISS

Binghamton

University

CS-220

Spring 2019

Direct Map Cache Pros and Cons

Advantages

• No expensive CAM memory

• Choosing victim no cost / fast

• No extra data for victim choice

• Speeds up cache miss

Disadvantages

• Hit rate not always high

• Therefore, can be slow

Binghamton

University

CS-220

Spring 2019

Set Associative Cache (Hybrid)

• Define cache block size = 2b the amount of data transferred between
cache and ROM memory – most often 64=26 bytes

• Divide the cache up into 2s sets
• Each set contains several ways (e.g. 64 byte block of memory)
• Each set identified by ID tag – where this way comes from
• Each set contains flags, valid flag and dirty flag
• For instance, an 8K 4-way set associative cache contains 32=25 sets

• Divide each set up into 2w ways
• Each way contains one block (e.g. 64 bytes)
• Each way contains an ID tag – where in memory does this block come from
• Each way contains flags, valid flag and dirty flag
• For instance, an 8K 4-way set associative cache contains 4=22 ways

Binghamton

University

CS-220

Spring 2019

Address Sub-Fields
• Divide each memory address into three sub-fields

• Tag – High order bits - where in memory this block comes from

• Set Index – s intermediate bits -which set this block is associated with

• Block Offset – b Low order bits that define the offset within a block

263 262 … 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

b63 b62 … b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Tag Set Index Block Offset

000055555555548[/a92]
1 0 1 0 1 0 0 1 0 0 1 0

1 0 A 1 2

00007fffffffffffa8[/b48]
1 0 1 1 0 1 0 0 1 0 0 0

1 0 D 0 8

00007fffffffffffa8[/b8c]
1 0 1 1 1 0 0 0 1 1 0 0

1 0 E 0 C

Trace
I 0000555555554a92
R 00007fffffffffffab48
I 0000555555554a94
W 00007fffffffffffab48
I 0000555555554a96
R 00007fffffffffffab8c

I 0000555555554905

Binghamton

University

CS-220

Spring 2019

Example Set Associative Cache

Set CAMS Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0 0000000000000 0 0 0

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

… …

0A 0000000000000 0 0

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

…

OFFSET

WAY

Set

Binghamton

University

CS-220

Spring 2019

Example Set Associative Cache

Set CAMS Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0 0000000000000 0 0 0

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

… …

0A 0000000000000 0 0

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

…

WAY

0A

00005555555548

MISS

Binghamton

University

CS-220

Spring 2019

Example Set Associative Cache

Set CAMS Way Fast RAM

Tag V D 0 1 2 3 4 5 6 7 8 … 3
C

3
D

3
E

3
F

0 0000000000000 0 0 0

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

… …

0A 00005555555548 1 0 x

0000000000000 1 0 0

0000000000000 2 0 0

0000000000000 3 0 0

…

WAY

0A

00005555555548

Instruction @
0x0000555555554a94

Binghamton

University

CS-220

Spring 2019

On memory access request

1. Use set index to choose correct set

2. In that set, use tag w/ CAM to find correct way

3. If “valid” flag is off or tag not found, cache miss…
• Choose way to evict from this set

• If “dirty” flag is on, write line back to main memory based on tag and set

• Read main memory line from new tag/set into this set/way

4. Use block offset to access data in cache
• If memory write, turn on “dirty” flag for this set.

Binghamton

University

CS-220

Spring 2019

Multiple Cache Levels

CPU

Registers

Real Memory

(16G)

ALU

L3
Cache

(8096K)

L1
Cache
(64K)

L2
Cache

(2048K)

On-board,
Very Fast,
Expensive,

Small

Fast,
Expensive,

Larger

Slower,
Cheaper,
Larger

Binghamton

University

CS-220

Spring 2019

Virtual Memory

CPU

Registers

Real Memory

(16G)

ALU

L3
Cache

(8096K)

L1
Cache
(64K)

L2
Cache

(2048K)

Page
Space

4K
Page

