Binghamton CS-220

University Spring 2019

Cached Memory . uwe

Computer Systems Chapter 6.2-6.5

Binghamton CS-220

University Spring 2019

The Memory Hierarchy

Aoeden

Binghamton CS-220

University Spring 2019

The Cache Concept

CPU Memory
- =

) Data ‘
v ~ Instructions

Binghamton CS-220

University Spring 2019

The Cache Concept

Memory

CPU

- o b
Data
v Instructions

L

Fast,
Expensive,
Small

Binghamton

CS-220

University

Spring 2019

YO ur WO rkb enc h ORDER1 : Kit 1 - Birdhouse

Bin 10

.

Slot O

| Part 100 - Base

: Part 967 - Left Wall

: Part 963 - Left Wall Screw
: Part 964 - Left Wall Bolt

: Part 958 - Right Wall

: Part 303 - Bracket

: Part 959 - Back Wall

: Part 958 - Front Wall

MHHB -@ost: $£0.20
Net: $0.00

|

1:
2
3
4:
5
6
7
8

Slot 2 Slot 3 Slot 4

Slot 1

Binghamton CS-220

University Spring 2019

Cache Pro’s and Con'’s

Pro’s Con’s

* [f CPU requests an address that e If CPU requests an address that
is in cache, it gets it MUCH is NOT in cache, it gets it
faster! slower

Cache Hit Cache Miss

Binghamton CS-220

University Spring 2019

What happens on Cache Miss?

1. Recognize data is not in cache

2. Make room in Cache
copy modified data block from cache to memory

3. Copy requested block of memory into cache
4. Return data from cache

Binghamton CS-220

University Spring 2019

Challenge

* Don’t return a bin way that you are going to need soon!
* if you do, you have to pay (in time) for sending it back, and then getting it
dgdln
* Don’t know if you will need that bin block of memory again soon!

* No “look-ahead” to see what parts addresses in the-erder memory you are
going to need

* Only know one thing about erders programs:

“Partnumbers addresses tend to be sequential, but when the
sequence is not followed, there is a high probability that the next
partaumber address showed up recently en-the-oerder.”

Binghamton

CS-220

University

Example Memory Trace

e Fetcl
e Fetc]
e Fetc]

1
1

1

e Store

e Fetc]
e Fetc]

1

1

e Fetc

1

Instruction at 0x0000555555554a392
Integer at 0x00007fftftttttftab48
Instruction at 0x00005555555544a94
Integer at 0x00007fttfttttttfab4 8
Instruction at 0x0000555555554a96
Integer at 0x00007fftfftfffffab8c
Instruction at 0x0000555555554905

Spring 2019

Trace
10000555555554a92
R 00007ffttttfttffab48
10000555555554a94

W 00007 ftftfffffffab4 8
10000555555554a96
R 00007 fftfftftfffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

Locality

e LLocal variables are next to each other in the stack frame
* Tend to read a matrix sequentially in row major order

* Instructions are read sequentially
* If there is a loop, a small cluster of instructions is re-read multiple times

* Chances are, for most memory accesses, the block is already in the
cache!

* [tis not uncommon to get 98%+ cache hit rates!

Binghamton
University

CS-220

Spring 2019
Locality has two dimensions

Probability of Cache Hit

100
90
80
70
60
50
40
30
20
10

Binghamton CS-220

University Spring 2019

Cache Is In Hardware

* Small block of fast, expensive random-access memory
* Small because it’'s expensive

When CPU requests memory:
* Need to check to see if that memory is in cache

e [f not:

* need to eject a “victim” cache block, send it back to memory
* need to fetch block from memory into cache
* need to keep track of which block this is

 Return data values from cache

Binghamton CS-220

University Spring 2019

Fully Associative Cache

* Define cache block size = 2P the amount of data transferred
between cache and ROM memory - most often 64=2° bytes

* Divide the cache up into 2V ways
* Each way contains one block (e.g. 64 bytes)

* Each way contains an ID ¢gg- where in memory does this block come
from

* Each way contains flags, validflag and dirty flag
 For instance, an 8K fully associative cache contains 128=27 ways

Binghamton CS-220

University Spring 2019

Fully Assoclative Cache instruction @

0x0000555555554a92

Way Data (Line)
012345678 ..

CCEF

0 0x0000555555554a80 1 0 X XXX XXX XXX XXX X/XXXXXXXXXXXXXX
1 0x00007ftttttttfffab40 1 1 XXXXXXXX XXXXXXXXXXXXXXXX
2 0x00007ftfttttffffab80 1 1 XXXXXXXX XXXXXXXXXXXXXXXXXX
3 0x0000555555554900 1 0 X XXX XXXX XXXXXXXXXXXXXXXXXX
Trace
[0000555555554a92
125 0 0 Integer @ R 00007 fftfffftfffab48
126 MY 0x00007fftfffffffab4s 10000555555554a94
W 00007fffttfftfffab4.8
127 0 O [0000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

Address Sub-Fields — Fully Associative

* Divide each memory address into two sub-fields
* Tag - High order bits - where in memory this block comes from
* Block Offset — b Low order bits that define the offset within a block

Note: Hex digit boundary

b N> b, b, b: b, b; b, b; b,
Tag Block Offset
0x0000555555554a8[/12] 1 0 0 1 o0 o0 1 O
0000 7fttftftffffab4[/08] o 1 0 0 1 0 o0 0
00007ffftftftfffab8[/0c] 1 0 0 o0 1 1 0 O
55555555490[/05] o o o0 o o 1 o0 1

Binghamton CS-220

University Spring 2019

Random Access Memory (RAM)

o1 [@}— p2[@}— pa[@}
FRQEH ..RQJDE ._RD_ES ADDR DATA
0 0 0

! L |
ck[@] '/ﬁ

wa__ R1D1 R1D2 R1D3
- FU FU h\}'
i l 1
R2D1 R2D2 R203
._V ._V_ ._V_
> l | () () jl
R3D1 R3D2 R303
_U _U_ _U_
‘ ‘ | 0 1 0
all all m i
ML ML ML

01 »
o —{@o @2 @as

Binghamton CS-220

University Spring 2019

Random Access vs. Content Addressable

RAM CAM
* Write(address,data) * Write(address,data)

 Writes data to the address row Writes data to the address row
* data=Read(address) * address=Read(data)

 Reads data at the address row Returns the address of the row

that contains the data
e Or returns “data not found”

Binghamton CS-220

University Spring 2019

Content Addressable Memory (CAM)
ot [o}—0:[0}—¢ D3[OF——

L ADDR DATA
oy ooe| b
1 0 1

— ..Ri‘EH-I:JDO--Ri‘Pz-jDOJ ||'-R:‘E'S "‘)DO_II__D LY Nediro n
‘-szm -I:JDOJ-R%’DZ:JDOJ ‘-szna l'-)Do_l LD_ @haarone 01 1 1 O
-RE‘EH—-JDO' _RS‘EH_—JDOJ _RSVDS_')DO_IL_} 10 O O 1

11 1 1 1

L‘J

CLK|®

ADDR[t ——ra

Binghamton CS-220

University Spring 2019

CAM In Fully Associative Cache

* Keep tags in CAM - data width = tag size

* Address in CAM is the way index in the cache
* When main memory written to cache, also write its tag to CAM

* When accessing memory, provide requested tag to CAM
 CAM may find that tag is not available... cache miss

 CAM may find that tag is available and return way index of the way that
contains that data... probable cache hit!

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Way
Tag V D 012345678 .. 3333
CCEF
0000555555554a8 0 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
00007 ftftftttttfab4 1 1 1 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
00007 ftftttttttfab8 2 1 1 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
000055555555490 3 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
125 0
126 0 O

127 0 O

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Tag V DO012345678.. 3333
CLEF
0 0 0
1 0 0
0000555555554a8 2 0 0
3 0 0

Trace
% R 00007 fffttttttffab48
[0000555555554a94

1250 0 W 00007 fFFEFFEFffab48
126 0 0 10000555555554a96
T R 00007 fFFEFEEFFEFabSc

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cachegmrm

0x0000555555554a92

Way

Tag D 012345678 ..

CLCEF

0000555555554a8 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
0 0
0000555555554a8 2 v[e
3 0 0

Trace

R 00007 ffftttfttffab48

125 0 10000555555554a94

W 00007fttffttffffab48

126 0 0 10000555555554a96

127 0 0 R 00007 ftftttfffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Tag V D 012345678 .. 3333

CCEF

0000555555554a8 0 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
1 0 0
00007 FEEFEFEFEFfab4 2 bje
3 0 0

Trace

[0000555555554a92

125 0 [0000555555554a94

W 00007ftttttfffffab4.8

126 0 0 10000555555554a96

127 0 0 R 00007 ffffttfffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cac —

0x00007ftftftfffffab48

Way
Tag D 012345678 ..
CCEF
0000555555554a8 0 1 0 XXXXXXXXXXXXEXXXXXXXXXXXXXXX
00007fftfttttfffab4 “1 0 XXXXXXXXXXXXYXXXXXXXXXXXXXXKXX
00007 EFFFEEEEffab4 2 vje
3 0 0
Trace

[0000555555554a92

125 0 [0000555555554a94

W 00007 ftftttfttftab48

126 0 0 10000555555554a96

127 0 0 R 0000 7fftffffffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cachefmrmmy:

0x0000555555554a94

Way

Tag D 012345678 .. 3333

CCEF

0000555555554a8 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX

0000 7fttttttttttab4 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
0000555555554a8 2 blY
3 0 O

Trace

[10000555555554292

R 00007 ffftfffffffab48

125 B W 00007 fFEFFEFeFFfab4s

126 0 0 [0000555555554a96

127 0 0 R 00007 fffffffffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cac —

0x00007ftftftfffffab48

Way
Tag D 012345678 ..
CCEF
0000555555554a8 0 1 0 XXXXXXXXXXXXEXXXXXXXXXXXXXXX
00007fftfttttfffab4 “1] XXXXXXXXVYVVYXXXXXKXXXXXXXXXXX
00007 FEEFEFErEffab4 2 vje
3 0 0
Trace

[0000555555554a92

R 00007fftfftftfffab48

125 0 [0000555555554a94

126 0 0 10000555555554a96

127 0 0 R 0000 7fftffffffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cachefmrmmy:

0x0000555555554a96

Way

Tag D 012345678 .. 3333

CCEF

0000555555554a8 1 0 XXXXXXXXXXXXXXXXXXIXXXXXXXXXX

0000 7fttttttttttab4 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
0000555555554a8 2 ve
3 0 O

Trace

[10000555555554292

R 00007fftfftftfffab48

125 0 [0000555555554a294

W 00007 fftttffffffab48
126 0 O

127 0 0 R 0000 7fftffffffffab8c

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Tag

V D 012345678 .. 3333

CCEF

0000555555554a8 0 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX

00007fftfttttfffab4 1 1 1 XXXXXXXXYYYVYyXXXXXXXXXXXXXXXZX
00007 £FFFEFEFfab8 2 ve
3 0 O

Trace

[10000555555554292

R 00007 ffftfffffffab48

195 0 [0000555555554a294

W 00007 fftttffffffab48

126 0 0 [0000555555554a96
127 0 O

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Tag V D 012345678 .. 3333
CCEF
0000555555554a8 0 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXZXZX
00007fftfttttfffab4 1 1 1 XXXXXXXXYYYVYyXXXXXXXXXXXXXXXZX
00007 FFFFFFFFFFfabS fffffab8 “ 1 0 XXXXXXXXXXXXXXXYXXXXXXXXXXXXX
3 0 0
Trace
10000555555554a92
R 00007 fftfftfftffab48
195 0 0 10000555555554a94
Integer @ W 00007fffffffffffab48
127 0 0

10000555555554905

Binghamton CS-220

University Spring 2019

Example Fully Associative Cache

Tag

V D 012345678 .. 3333
CCEF
0000555555554a8 0 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
00007fftfttttfffab4 1 1 1 XXXXXXXXYYYVYyXXXXXXXXXXXXXXXZX
000055555555490 fffffab8 2 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
3 0 0
Trace
[0000555555554a92
R 00007 ffttttftfffab48
125 0 [0000555555554a94
W 00007 ftftttfttftab48
126 0 0 [0000555555554a96

127 0 0 R 00007 ftfffffffffab8c

Binghamton

CS-220

University

Spring 2019

Example Fully Associative Cache

CAM

Tag

0000555555554a8
00007 fttftftffffab4

fffffab8
55555490

000055555555490
0000

0
1
2

125
126
127

VD 012345678 .. 3333

S = W =\

el =

CCEF
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXYVVVYVXXXXXXXXXXXXXXXX
X XXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXIXXXXXXXXXX

Trace
10000555555554a92
R 00007ffttttfttffab48
10000555555554a94

W 00007 ftftfffffffab4 8
10000555555554a96
R 00007 fftfftftfffab8c

Instruction @
0x0000555555554905

Binghamton CS-220

University Spring 2019

Cache Miss

* Select a “victim” way index ... way to replace
e If there is an unused way (valid flag off) , use it

* Pick a way that is unlikely to be used in the near future (Project 1)
* Random, Least Recently Used, Least Frequently Used

o If “dirty” flag is on, copy block from this way to memory
* Write tag to CAM at the chosen way index

* Copy block starting at tag (with block offset zeroed) from memory
to the chosen way in Cache RAM

* Turn valid flag for this set on, and dirty bit off

Binghamton CS-220

University Spring 2019

Fully Associative Cache Pros and Cons

Advantages Disadvantages
* Cache always contains most * Lots of very expensive CAM
important memory memory
* Therefore, Cache Hit Rate is high Choosing victim can be slow or
* Therefore, speed is fast incorrect

* Need extra data to choose
victim

Binghamton CS-220

University Spring 2019

Direct Map Cache

* Define cache block size = 2P the amount of data transferred
between cache and RAM memory - most often 64=2° bytes

* Divide the cache up into 25 sets
* Each set contains one way (e.g. 64 byte block of memory)
* Each setidentified by ID tag- where this way comes from
» Each set contains flags, validflag and dirtyflag
 For instance, an 8K direct map cache contains 128=27 sets

Binghamton CS-220

University Spring 2019

Address Sub-Flelds

* Divide each memory address into three sub-fields
* Tag - High order bits - where in memory this block comes from
» Set Index - s intermediate bits -which set this block is associated with
» Block Offset - b Low order bits that define the offset within a block

-_mm
b bz bis biz [bi B [bio by By by [bs bs b, by b, b by

0000555555554[a92] E-I 0 1o o 11 0 0 21 0
00007 fFEfffftfra[b48] E-I 1.0 1 0 0 1 0 80 0

00007 fFFfFEfFffa[bSc]

0
0 1011100 0 1 1 0 0
2 o

Binghamton CS-220

University Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123
0 0
1 0
2 0 0
2B 00 Trace
2C 0 0
D e R 00007 ffffffffffab48
10000555555554a94
3 W 00007ffffffffffab48
7F 0 0 10000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

D I re Ct M ap CaC h e Instruction @

0x0000555555554a92

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXZXXZX
2B 00 Trace
2C 0 0
2D 0 0 R 00007ftftfftffffab48
10000555555554a94
W 0000 7ftftfftffffab48
7F 0 0 10000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123

0 0
1 0
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
2B 0 0 Trace
2C 0 O [0000555555554a92
2D 0 O

[0000555555554a94
W 00007fffttfftfffab4.8
7F 0 O [0000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

Direct Map Cache pata @

0x00007ffttfffffffab48

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXX//XXXXXXXXXXXXXX
2B 0 0 Trace
|I:> 2C 00007fffefeerefa 1 0 XXXXXXXXXXXXXXXIXX XX Ay
2D 0 O
[0000555555554a94
W 00007fffttfftfffab4.8
7F 0 O [0000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

D I re Ct M ap CaC h e Instruction @

0x0000555555554a94

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXZX
2B 0 0 Trace
2C 00007 ffffffttttta 1 0 XXXXXXXXXXXXXXXXXXXX LEeessees e
2D 0 0 R 00007 fffffffffffab48

W 00007fttftftffffab48
7F 0 O [10000555555554a96
R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

Direct Map Cache pata @

0x00007ffttfffffffab48

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXX//XXXXXXXXXXXXXX
2B 0 0 Trace
@ 2C 00007ffeeeeefeea 1 1 XXXXXXXXXXX[VYYVYIXX XX ORISR RL L LY,
2D 0 0 R 0000 7ffftfffffffab4.8
1 0000555555554294
7F 0 0 1 0000555555554a96

R 00007fttftffffffab8c
10000555555554905

Binghamton CS-220

University Spring 2019

D I re Ct M ap CaC h e Instruction @

0x0000555555554a96

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXXXKXXXXXXXXXXXXX
2B 0 0 Trace
2C 00007fttftfteftfa 1 1 XXXXXXXXXXXYYVVVYXXXXX LU e
2D 0 0 R 00007 fffffffffffab48
1 0000555555554a94
W 0000 7fffffffffffab48
7F 0 O

R 00007fttftffffffab8c
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123
0 0
1 0
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
2B 0 0 Trace
2C 00007fttftfteftfa 1 1 XXXXXXXXXXXYYVVVYXXXXX LU e
0 0 R 00007 fftfffftfffab48
[0000555555554a94
W 00007fffttfftfffab4.8
0 O [0000555555554a96

10000555555554905

Binghamton CS-220

University Spring 2019

Direct Map Cache pata @

0x00007ffttffftfffab8C

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXX¥AXXXXXXXXXXXXXXX
2B 0 0 Trace
2C 00007fttftfteftfa 1 1 XXXXXXXXXXXYYVVYXXXXX LU e
2D 00007fffffffftffa 1 0 XXXXXXXX x X X X X X X 8 Uil
[0000555555554a94

W 00007fttftftffffab48
7F 0 O [10000555555554a96

10000555555554905

Binghamton CS-220

University Spring 2019

On memory access reqguest

1. Use setindex to choose correct set
2. If “valid” flag is off, cache miss...

3. Compare tag - if not equal evict block... cache miss...
* If “dirty” flag is on, write line back to main memory based on tag and set
* Read main memory line from new tag/set into this set

4. Use block offset to access data in cache
* [f memory write, turn on “dirty” flag for this set.

Binghamton CS-220

University Spring 2019
Direct Map View of Real Memory

NI EEEE

FFFF 7F 00-3F

FFFF 00-3F x X x x

FFFF 00 O00-3F x x X

0001 01 O00-3F x x X x

0001 0O0-3F x X x x
0000-003FXXXXXXXXXXXXXXXXXXXXXXX

0000 01 O00-3F x x X

0000 00 O00-3F x X x X

Binghamton CS-220

University Spring 2019

Direct Map Hit Rates

 Sequential access - Cache miss after 8,192 = 0x2000 = 213 bytes
* 99.988% hit rate ... pretty good!

* Problems occur when two access trends overlap
* For instance, if binary code is stored at 0x000000000ca4000
. data is stored at 0x7FFFFFFFFFF64000
« BOTH MAP TO SET 0!
* Assuming alternate code/data memory access, cache miss EVERY time!
* 0.000 hit rate ... pretty bad!

Binghamton CS-220

University Spring 2019

Address Sub-Flelds

* Divide each memory address into three sub-fields
* Tag - High order bits - where in memory this block comes from
» Set Index - s intermediate bits -which set this block is associated with
» Block Offset - b Low order bits that define the offset within a block

-_mm
b bz bis biz [bi B [bio by By by [bs bs b, by b, b by

0000555555554[a92] E-I 0 1o o 11 0 0 21 0
00007 fffffffffffa[a88] E-I 0 1.0 0 0 1 0 80 0

00007 ffFEFfrfffaacc]

0
0 1o 10110 0 1 1 0 0
B o

Binghamton CS-220

University Spring 2019

Direct Map Cache Overlap
Set v

012345678 .. 6666
0123
0 0
1 0
2 0 0
Trace
56 0 0
- e R 00007 fffEerffffaa88
10000555555554a94
0 0 W 00007 ffEEffEffffaa88
7F 0 0 10000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton CS-220

University Spring 2019

D I re Ct M ap CaC h e Instruction @

0x0000555555554a92

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXZXXZX
Trace
56 0 0
57 0 0 R 00007ftftfffffffaa88
10000555555554a94
00 W 00007fFEfffffffaa88
7F 0 0 10000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123
0 0
1 0
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trace
56 0 0 1 0000555555554292
57 0 0
1 0000555555554294
0 0 W 00007 ffFefEffffaa88
7F 0 0 1 0000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton CS-220

University Spring 2019

Direct Map Cache pata @

0x00007ffttfffffffaa88

Set Data (Line)
012345678 ..

0123
0
1
2A 00007 ffftttttttta 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trace
56 0 0 [00005555555544392
57 0
[0000555555554294
W 0000 7ftttfffffffaa88
7F 0 0 [0000555555554296

R 00007fttftffffffaaac
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123
0 0
1 0
2A 00007 fffeettftttta 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trace
56 0 O [0000555555554a92
57 0 0 R 0000 7fftffftffffaa88
0 0 W 00007 ffFefEffffaa88
7F 0 O [0000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton CS-220

University Spring 2019

D I re Ct M ap CaC h e Instruction @

0x0000555555554a94

Set Data (Line)
012345678 ..

0123
0
1
2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXZX
Trace
56 0 O [0000555555554392
e - R 00007ffffffffffaa88
0 0 W 00007 ffFefEffffaa88
7F 0 O [0000555555554396

R 00007fttftffffffaaac
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123

0 0

1 0

2A 0000555555554 1 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trace

56 0 O [0000555555554a92

57 0 0 R 0000 7fftffftffffaa88

[0000555555554a94
0 O
7F 0 O [0000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton CS-220

University Spring 2019

Direct Map Cache pata @

0x00007ftftftfffffaa88

Set Data (Line)
012345678 ..

0123
0
1
2A 00007fftffftftfta 1 1 XXXXXXXX[YVYVVVIXXXXXXXXXXXXXXXX
Trace
56 0 0 [10000555555554a92
57 0 0 R 00007 ffttfftffffaa88
10000555555554a94
0 0
7F 0 0 10000555555554a96

R 00007fttftffffffaaac
10000555555554905

Binghamton

University

CS-220

Spring 2019

Direct Map Cache

Set \' Data (Line)

012345678 .. 6666

0123
0 0
1 0
2A 00007fftffftftfta 1 1 XXXXXXXXYYYVYyXXXXXXXXXXXXXXXX
Trace
56 0 0 10000555555554a92
57 0 0 R 00007fffffffffffaa88
[10000555555554a94
L W 00007ffffffffffaa88
7F 0 0

R 00007fttftffffffaaac
10000555555554905

Binghamton CS-220

Spring 2019

University

Direct Map Cache Pros and Cons

Advantages Disadvantages
* No expensive CAM memory * Hit rate not always high

* Choosing victim no cost / fast ¢ Therefore, can be slow
* No extra data for victim choice

* Speeds up cache miss

Binghamton CS-220

University Spring 2019

Set Assoclative Cache (Hybrid)

e Define cache block size = 2P the amount of data transferred between
cache and ROM memory - most often 64=2° bytes

 Divide the cache up into 2% sets
* Each set contains several ways (e.g. 64 byte block of memory)
* Each set identified by ID tag- where this way comes from
» Each set contains flags, validflag and dirty flag
 For instance, an 8K 4-way set associative cache contains 32=2" sets

* Divide each set up into 2% ways
» Each way contains one block (e.g. 64 bytes)
* Each way contains an ID tag- where in memory does this block come from
* Each way contains flags, valid flag and dirty flag
 For instance, an 8K 4-way set associative cache contains 4=22 ways

Binghamton CS-220

University Spring 2019

Address Sub-Flelds

* Divide each memory address into three sub-fields
* Tag - High order bits - where in memory this block comes from
* Set Index - s intermediate bits -which set this block is associated with | 2000 AHEHEHESE
» Block Offset - b Low order bits that define the offset within a block

bgz be; by, by by, by by by bg b; bg bs b, by b, by by
Tag Set Index Block Offset
i o0 1 0 1 o0 O 1 0 0 1 o0
000055555555548[/a92]
1 0 A 1 2
i o 1 1 0 1 O O 1 0 o0 O
0000 7fffffffffffa8[/b4 8]
1 0 D 0 8
i o0 1 1 1 O O O 1 1 o0 O
0000 7ftftftftfffa8[/b8c]
1 0 E 0 C

Binghamton CS-220

University Spring 2019

Example Set Assoclative Cache

Set CAMS Way

Tag VD012345678.. 3333

CCEF
0 0000000000000 0 00
0000000000000 1 00
0000000000000 2 00
0000000000000 3 00

0A 0000000000000 m

0
0000000000000 1 0
0
0

Set 0000000000000 2

0000000000000 3

o o o O

Binghamton CS-220

University Spring 2019

Example Set Assoclative Cache

Tag VD012345678. 3333
CLEF
0 0000000000000 0 00
0000000000000 1 00
0000000000000 2 00
0000000000000 3 00
0A 0006000000000 m» 00
0000000000000 1 00
0A 0000000000 2 00
oooooooooom 00

Binghamton CS-220

University Spring 2019

Example Set Assoclative Cache

Tag VDO012345678.. 3333
CCEF
0 0000000000000 0 00
0000000000000 1 00 Instruction @
0000000000000 7 0 0 0x0000555555554a94
0000000000000 3 00
00005555555548
0A 00065555555548 -m»l 0 X XXXXXXXXXXXXXXYXXXXXXXXXXXXX
0000000000000 1 00
0A 0000000000000 2 00
0000000000000 3 00

Binghamton CS-220

University Spring 2019

On memory access reqguest

1. Use setindex to choose correct set
2. In that set, use tag w/ CAM to find correct way

3. If “valid” flag is off or tag not found, cache miss...
* Choose way to evict from this set
* If “dirty” flag is on, write line back to main memory based on tag and set
* Read main memory line from new tag/set into this set/way

4. Use block offset to access data in cache
 If memory write, turn on “dirty” flag for this set.

Binghamton CS-220

University Spring 2019

Multiple Cache Levels

Real Memory

(16G)

CPU 13

L1 H L2 - Cache
(64K) (8096K)

LK

(2048K) |‘

On-board,
Very Fast,

Fast, Slower,

Expensive, Cheaper,

Expensive,
Larger Larger

Small

Binghamton CS-220

University Spring 2019

Virtual Memory

Real Memory

(16G)
CPU 3 /
L1 L2 Cache 4K
(64K) (8096K)
= a0 B X

D

