
Binghamton

University

CS-220

Spring 2019

Loading Code
Computer Systems Chapter 7.5, 7.8, 7.9

Binghamton

University

CS-220

Spring 2019

gcc –g –o ttt ttt.c

ttt.c

gcc

ttt

Binghamton

University

CS-220

Spring 2019

gcc –g –o x86Math x86Math.c

x86Math.c gcc

x86Math

x86Math.s x86Math.o

AssemblerCompiler

Pre-Processor Linker

stdio.hstdio.hstdio.h

stdio.hstdio.hstdio.o

Binghamton

University

CS-220

Spring 2019

What is in a binary executable file?

• Binary representation of X86 instructions
• “objdump –d x86Math” disassembles these and writes them out

• What else is in the binary executable file? …

00000000000006f0 <main>:
6f0: 55 push %rbp
6f1: 48 89 e5 mov %rsp,%rbp
6f4: 48 83 ec 20 sub $0x20,%rsp
6f8: 89 7d ec mov %edi,-0x14(%rbp)
6fb: 48 89 75 e0 mov %rsi,-0x20(%rbp)
6ff: 83 7d ec 01 cmpl $0x1,-0x14(%rbp)
703: 7f 25 jg 72a <main+0x3a>

…

Binary X86

Disassembly

Binghamton

University

CS-220

Spring 2019

What else is in a binary file?

• Information about WHERE in memory the code is placed

• Cross-reference between function name and location in memory

• Information about constants
• Some constants can be literal values in X86 instructions… $12
• Not all constants fit in instructions… "Invoke as %s <number>\n"
• Binary file must contain both the value and location of constants

• Information about global variables
• Where each global variable exists in memory
• What the initial value of the global variable is (if initialized)

• All the debug information created by -g

Binghamton

University

CS-220

Spring 2019

Object/Executable Code ELF format

• ELF –Acronym from: Executable and Linkable Format

• First defined in 1983 UNIX “System V”

• Used for many different architectures (very popular)

• In 1996, chosen as standard for X86

• See
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Binghamton

University

CS-220

Spring 2019

ELF File Sections

ELF Header

Program Header Table (TOC in memory)

.text

.rodata

…

.data

Section Header Table (TOC on disk)

Binghamton

University

CS-220

Spring 2019

ELF Header

• “Magic Number” – First 4 bytes identify this as ELF (0x7f + ‘ELF’)

• Information about this file:
• 32/64 bit addresses, big/little endian
• Target operating system and architecture
• relocatable, executable, shared, or core

• Program Table Info (loc, size, #entries) for use after load

• Offset of first instruction

• Section Table Info (offset, size, #entries) File table of contents

x7f x45 x4C x46

. E L F

Binghamton

University

CS-220

Spring 2019

“Reading” ELF files : objdump

• -f : Interpret ELF header

• -h : List section headers (table of contents)

• -d : Disassemble x86 binary code (.text) segment

• -s : dump everything in hex

• -j<section> to restrict to a specific section

• -t : print symbol table

Binghamton

University

CS-220

Spring 2019

ELF Header Information

> objdump -f x86Math

x86Math: file format elf64-x86-64

architecture: i386:x86-64, flags 0x00000150:

HAS_SYMS, DYNAMIC, D_PAGED

start address 0x00000000000005c0

Binghamton

University

CS-220

Spring 2019

ELF file Sections

• Need different sections for different types of data

• Each section has it’s own internal data format

• ELF header points to section table

• Section Table keeps “Section Header” for each segment

Binghamton

University

CS-220

Spring 2019

objdump –h x86Math (section headers)

Idx Name Size VMA LMA File off Algn

0 .interp 0000001c 0000000000000238 0000000000000238 00000238 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

…

10 .init 00000017 0000000000000568 0000000000000568 00000568 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

11 .plt 00000030 0000000000000580 0000000000000580 00000580 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

12 .plt.got 00000008 00000000000005b0 00000000000005b0 000005b0 2**3

CONTENTS, ALLOC, LOAD, READONLY, CODE

13 .text 000002d2 00000000000005c0 00000000000005c0 000005c0 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

14 .fini 00000009 0000000000000894 0000000000000894 00000894 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

15 .rodata 00000050 00000000000008a0 00000000000008a0 000008a0 2**3

CONTENTS, ALLOC, LOAD, READONLY, DATA

…

31 .debug_str 000002be 0000000000000000 0000000000000000 00001750 2**0

CONTENTS, READONLY, DEBUGGING

Binghamton

University

CS-220

Spring 2019

Some Interesting Sections

Index Name Size Addr Flags

…

13 .text x02d2 5c0 CODE,ALLOC,READONLY

… …

15 .rodata x0050 8a0 DATA,ALLOC,READONLY

… …

24 .data x0010 201028 DATA,ALLOC…

24 .bss x0008 201038 ALLOC

…

Binghamton

University

CS-220

Spring 2019

.text section – x86 binary instructions
> objdump -s -j.text x86Math

x86Math: file format elf64-x86-64

Contents of section .text:
05c0 31ed4989 d15e4889 e24883e4 f050544c 1.I..^H..H...PTL
05d0 8d05ba02 0000488d 0d430200 00488d3d H..C...H.=
…
> objdump -d -j.text x86Math
Disassembly of section .text:

00000000000005c0 <_start>:
5c0: 31 ed xor %ebp,%ebp
5c2: 49 89 d1 mov %rdx,%r9
5c5: 5e pop %rsi

…

Binghamton

University

CS-220

Spring 2019

.data –initialized global/static data

> objdump -s -j.data x86Math

x86Math: file format elf64-x86-64

Contents of section .data:

201028 00000000 00000000 30102000 00000000 0.

Binghamton

University

CS-220

Spring 2019

.bss–Size of uninitialized data

• Takes no space in object code (or in file)!

• “bss” acronym for “Block Storage Start”
• or “Better Save Space”

• Header indicates where this segment should start in memory, and
how many bytes should be reserved for uninitialized data

Binghamton

University

CS-220

Spring 2019

.rodata–Read only data (constants)

> objdump -s -j.rodata x86Math

x86Math: file format elf64-x86-64

Contents of section .rodata:

08a0 01000200 00000000 496e766f 6b652061 Invoke a

08b0 73202573 203c6e75 6d626572 3e0a0000 s %s <number>...

08c0 783d2564 2c207820 73717561 72656420 x=%d, x squared

08d0 2d203478 202b2034 203d2564 20646976 - 4x + 4 =%d div

08e0 69646564 20627920 782d323d 25640a00 ided by x-2=%d..

Binghamton

University

CS-220

Spring 2019

Running a command

• Loading the command:
• Find the binary file in the file system

• Create a new address space (and process ID) for the command

• Load the binary file into memory (new address space)

• Parse the command line into argc and argv

• Executing the command:
• Put argc in %rdi and argv in %rsi

• callq main (address is in symbol table)

Binghamton

University

CS-220

Spring 2019

Loading an ELF file into Memory
Operating System Reserved (kernel) Data

User Stack

Shared Library Region

User Heap (malloc)

Uninitialized globals (.bss)

Initialized globals (.data)

Program Instructions (.text)

Operating System Reserved Low Memory

%rsp

%rip

0x0000 5555 5555 4000

Binghamton

University

CS-220

Spring 2019

Symbol Table

• ELF keeps track of various “symbol” names ; names of sections,
functions, external global variables, etc.

• These are kept in a “symbol table”

• Loader resolves unresolved symbols

Offset Flags Section Length Name

0000000000000238 l d .interp 0000000000000000 .interp

00000000000005c0 l d .text 0000000000000000 .text

00000000000007cf g F .text 0000000000000026 add

0000000000000000 F *UND* 0000000000000000 printf@@GLIBC_2.2.5

Binghamton

University

CS-220

Spring 2019

Object Code

• It is possible to compile a single file of a multi-file program, and
save the x86 code generated

• The result is saved in an ELF format file <pgm>.o

• References to functions outside this file are unresolved, but still in
the symbol table

• A “Link Editor” combines object files from several C files into a
single executable

• Invoked by the gcc command

• Resolves any symbols it can

Binghamton

University

CS-220

Spring 2019

Make w/ Multiple Compiles

test : fact
./fact

fact: fact.o stack.o
gcc -g -Wall -rdynamic -o fact fact.o stack.o

fact.o : fact.c stack.h
gcc -g -Wall -c fact.c

stack.o : stack.c stack.h
gcc -g -Wall -c stack.c

clean:
-rm fact fact.o stack.o

Binghamton

University

CS-220

Spring 2019

Link Editor resolves symbols

• objdump –d fact.o…
82: e8 00 00 00 00 callq 87 <factorial+0x54>

87: 8b 45 fc mov -0x4(%rbp),%eax

• objdump –d fact
b42: e8 05 00 00 00 callq b4c <printStackInfo>

b47: 8b 45 fc mov -0x4(%rbp),%eax

• gdb --args fact
0x0000555555554b42 <+79>: callq 0x555555554b4c <printStackInfo>

=> 0x0000555555554b47 <+84>: mov -0x4(%rbp),%eax

Binghamton

University

CS-220

Spring 2019

Dynamically Resolved Symbols

• Library code often in “Dynamically Loadable Libraries” (DLL’s)

• DLL’s are loaded when they are first used
• Prevents loading enormous amounts of library code for each program

• May be shared across different programs

• Invocation of a function in a DLL is resolved when it is called
• Code invokes a wrapper function, e.g. printf@plt

• printf@plt function knows if printf has been resolved
• If not, load the DLL, find the address of printf, and save it

• In either case, call the real printf

