Binghamton CS-220

University Spring 2019

Loading Code

Computer Systems Chapter 7.5,7.8,7.9

Binghamton CS-220

University Spring 2019

gcc —g —o ttt ttt.c

Binghamton
University

gcc —g —o0 x86Math x86Math.c

x86Math.c

gCC

Pre-Processor Linker

Compiler Assembler
\/ V

x86Math.s x86Math.o

CS-220
Spring 2019

x86Math

Binghamton CS-220

University Spring 2019

What is in a binary executable file?

 Binary representation of X86 instructions
* “objdump -d x86Math” disassembles these and writes them out

Binary X86

00000000000006f0 <main>:
ﬁfo: 55 push %rbp

6f1: 48 89 e5 mov %rsp,%rbp

6f4: 48 83 ec 20 sub $0x20,%rsp

6f8: 89 7d ec mov %edi,-0x14(%rbp)

6fb: 4889 75 c0 mav. Yrsi)0x20(Yrhp)
6ff: 83 7d ec 01 cmpl $0x1,-0x14(%rbp) Disassembly
703: 7f25 jg 72a <main+0x3a>

N J N <

 What else is in the binary executable file? ...

Binghamton CS-220

University Spring 2019

What else Is in a binary file?

* Information about WHERE in memory the code is placed
 Cross-reference between function name and location in memory

* Information about constants

« Some constants can be literal values in X86 instructions... $12
* Not all constants fit in instructions... "Invoke as %s <number>\n"
* Binary file must contain both the value and location of constants

* Information about global variables
* Where each global variable exists in memory
 What the initial value of the global variable is (if initialized)

* All the debug information created by -g

Binghamton CS-220

University Spring 2019

Object/Executable Code ELF format

* ELF —-Acronym from: Executable and Linkable Format
* First defined in 1983 UNIX “System V”

* Used for many different architectures (very popular)
* [n 1996, chosen as standard for X86

* See
https://en.wikipedia.org/wiki/Executable and Linkable Format

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Binghamton CS-220

University Spring 2019

ELF File Sections

Program Header Table (TOC in memory)
<
text
<
rodata
.data
—

Section Header Table (TOC on disk)

Binghamton CS-220

University Spring 2019

ELF Header

* “Magic Number” - First 4 bytes identify this as ELF (0x7f 4+ ‘ELF’)

: E L F

 Information about this file:
* 32/64 bit addresses, big/little endian
* Target operating system and architecture
* relocatable, executable, shared, or core

* Program Table Info (loc, size, #entries) for use after load
e Offset of first instruction
 Section Table Info (offset, size, #entries) File table of contents

Binghamton CS-220

University Spring 2019

“Reading” ELF files : objdump

 -f: Interpret ELF header

* -h : List section headers (table of contents)

* -d : Disassemble x86 binary code (.text) segment
* -s: dump everything in hex

* -j<section> to restrict to a specific section

-t : print symbol table

Binghamton CS-220

University Spring 2019

ELF Header Information

> objdump -f x86Math

x86Math: file format elf64-x86-64
architecture: i1386:x86-64, flags 0x00000150:
HAS_SYMS, DYNAMIC, D_PAGED
start address 0x00000000000005c0

CS-220

Binghamton
Spring 2019

University

ELF file Sections

* Need different sections for different types of data
* Each section has it’s own internal data format

* ELF header points to section table
* Section Table keeps “Section Header” for each segment

Binghamton CS-220

University Spring 2019
objdump —h x86Math (section headers)

0 .interp 0000001c 0000000000000238 0000000000000238 00000238 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA

10 .init 00000017 0000000000000568 0000000000000568 00000568 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

11 .plt 00000030 0000000000000580 0000000000000580 00000580 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

12 .plt.got 00000008 00000000000005b0 00000000000005b0 000005b0 2**3
CONTENTS, ALLOC, LOAD, READONLY, CODE

13 .text 000002d2 00000000000005¢c0 00000000000005c0 000005c0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

14 fini 00000009 0000000000000894 0000000000000894 00000894 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

15 .rodata 00000050 00000000000008a0 00000000000008a0 000008a0 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA

31 .debug_str 000002be 0000000000000000 0000000000000000 00001750 2**0
CONTENTS, READONLY, DEBUGGING

Binghamton CS-220

University Spring 2019

Some Interesting Sections
Index|Name |Size |Addr |Flags

13 .text x02d2 5c0 CODEALLOC,READONLY
15 .rodata x0050 8a0 DATA,ALLOC,READONLY
24 .data x0010 201028 DATA,ALLOC...

24 .bss x0008 201038 ALLOC

Binghamton CS-220

University Spring 2019

text section — x86 binary Instructions

> objdump -s -j.text x86Math

x86Math: file format elf64-x86-64

Ccontents of section .text:
05c0 31ed4989 d15e4889 e24883e4 f050544c 1.I..AH..H...PTL
05d0 8d05ba02 0000488d 0d430200 00488d3d H..C...H.=

> objdump -d -j.text x86Math
Disassembly of section .text:

00000000000005c0 <_start>:
5c0: 31 ed xor %ebp ,%ebp
5c2: 49 89 di mov %rdx,%r9
5¢5: S5e pop %rsi

Binghamton CS-220

University Spring 2019

.data —Initialized global/static data

> objdump -s -j.data x86Math

x86Math: file format elf64-x86-64

Contents of section .data:
201028 00000000 00000000 30102000 00000000 0.

Binghamton CS-220

University Spring 2019

bss—Size of uninitialized data

* Takes no space in object code (or in file)!

* “bss” acronym for “Block Storage Start”
* or “Better Save Space”

* Header indicates where this segment should start in memory, and
how many bytes should be reserved for uninitialized data

Binghamton CS-220

University Spring 2019

rodata—Read only data (constants)

> objdump -s -j.rodata x86Math

x86Math: file format elf64-x86-64

Contents of section .rodata:

08a0 01000200 00000000 496e766f 6b652061 Invoke a
08b0 73202573 203c6e75 6d626572 3e0a0000 s %s <number>...
08c0 783d2564 2c207820 73717561 72656420 x=%d, x squared

08d0 2d203478 202b2034 203d2564 20646976 - 4x + 4 =%d div
08e0 69646564 20627920 782d323d 25640200 1ided by x-2=%d..

Binghamton CS-220

University Spring 2019

Running a command

* Loading the command:
* Find the binary file in the file system
* Create a new address space (and process ID) for the command
* Load the binary file into memory (new address space)
* Parse the command line into argc and argv

* Executing the command:
* Put argc in %rdi and argv in %rsi
* callg main (address is in symbol table)

Binghamton CS-220

University Spring 2019

Loading an ELF file into Memory

Operating System Reserved (kernel) Data

User Stack

%rsp —> l

Shared Library Region

[|

User Heap (malloc)

Uninitialized globals (.bss)
Initialized globals (.data)

Yorip =% Program Instructions (.text)

4 — :
0x0000 5555 5555 4000 Operating System Reserved Low Memory

Binghamton CS-220

University Spring 2019

Symbol Table

* ELF keeps track of various “symbol” names ; names of sections,
functions, external global variables, etc.

* These are keptin a “symbol table”

Mm

0000000000000238 Anterp 0000000000000000 .interp
00000000000005c0 I d text 0000000000000000 .text
00000000000007cf g F text 0000000000000026 add
0000000000000000 B *UND* 0000000000000000 printf@@GLIBC_2.2.5

* Loader resolves unresolved symbols

Binghamton CS-220

University Spring 2019

Object Code

* [tis possible to compile a single file of a multi-file program, and
save the x86 code generated

* The result is saved in an ELF format file <pgm>.o

» References to functions outside this file are unresolved, but still in
the symbol table

* A “Link Editor” combines object files from several C files into a
single executable
* Invoked by the gcc command
* Resolves any symbols it can

Binghamton CS-220

University Spring 2019

Make w/ Multiple Compiles

test: fact
Jfact

fact: fact.o stack.o
gcc -g -Wall -rdynamic -o fact fact.o stack.o

fact.o: fact.cstack.h
gcc -g -Wall -c fact.c

stack.o : stack.c stack.h
gcc -g -Wall -c stack.c

clean:
-rm fact fact.o stack.o

Binghamton CS-220

University Spring 2019

Link Editor resolves symbols

* objdump -d fact.o...

82: e8 00 00 00 00 callg 87 <factorial+0x54>
87. 8b 45 fc mov -0x4(%rbp),%eax

* objdump -d fact
b42: e8 0500 00 00 callg b4c <printStackinfo>
b47: 8b 45 fc mov -0x4(%rbp),%eax

* gdb --args fact

0x00005555555540h42 <+79>: callg 0x555555554b4c <printStackinfo>
=> 0x0000555555554b47 <+84>: mov -0x4(%rbp),%eax

CS-220
Spring 2019

Binghamton

University

Dynamically Resolved Symbols

* Library code often in “Dynamically Loadable Libraries” (DLL's)

* DLL's are loaded when they are first used
* Prevents loading enormous amounts of library code for each program

* May be shared across different programs

e Invocation of a function in a DLL is resolved when it is called

* Code invokes a wrapper function, e.g. printf@plt

 printf@plt function knows if printf has been resolved
 If not, load the DLL, find the address of printf, and save it
* In either case, call the real printf

