CS-220
Spring 2019

10.3-4,

Computer Systems 3

Buffer Overflow Attacks

niversi

<
=]
s
g
(]
&
=
o i
/M

U

CS-220
Spring 2019

Binghamton

University

Hacking

* Roots in phone phreaking
 White Hat vs Gray Hat vs Black Hat
* Over 50% of Modern Software Development is Black Hat!

Tip the balance: Be a force for good... not evil!

CS-220
Spring 2019

Binghamton

University

Disclaimer — Buffer Overflow Attack

* DO NOT ABUSE!
* Modern code is protected from this attack several ways

* Ancient form of hacking

e First documented in 1972
e Used in 1988 “Morris Worm” - First internet virus
e Used to hack Unix, Windows, Xbox, PS2, Wii

* Taught here as an example of what to watch out for!

Binghamton CS-220

University Spring 2019

Example Vulnerable Code

bool getString() { * “gets” reads from stdin until it
char buffer[81]; finds either an end-of-file or a
buffer[0]="\0" newline (which is replaced by a
gets(buffen): null terminator).
if (strlen(buffer)>0) { * “gets” copies whatever it reads

printf("Read line: %s\n",buffer); into the argument (butfer).

return true,

}

return false;

* “gets” does not check to make
sure result fits in space allocated.

Binghamton CS-220

University Spring 2019

X86 expansionfi i

mov %rsp,%rbp
sub $0x60,%rsp

bool getString() { movb $0x0,-0x60(%rbp)

char buffer[81]: lea -0x60(%rbp),%rax

bUffe r[O] :'\Ol; mov %I‘aX,%I‘di lea -0X60(%I‘bp),%raX
callg 4004c0 <gets@plt>

gets(buffer); movzbl (%rax),%eax
: test %al,%al
if (strlen(buffer)>0) { je 400649 <getString+0x40>

printf("Read line: %s\n",buffer);
lea -0x60(%rbp),%rax

return true, IOV $0x1,%eax : mov %rax,%rsi
} jmp 40064e <getString+0x45> mov $0x40071f%edi

mov $0x0,%eax

return false; callq 400490 <printf@plt>

} mov $0x0,%eax
leaveq
retq

Binghamton CS-220

University Spring 2019

stack after call to getStrinc

Addrcess Value (64 bit)
T FFF E890
return address 0000/ FFF FFFF E888 T0000 0001 5555 46E(
TB6O-ZEEF FFFF E880 |0000 7FFF FFEF E988
5000 7FFF FFFF EB78. |0000 5555 5555 483D
0000 7FFF FFFEES70 0000 0000 0000 0000
0000 7FEBAFFF E868 0000 0000 0000 0000

main’s stack frame

while((gs=getString ;
833: b8 00 00 000 mov $0x0,%eax
838: e84 00 0000 callg 859 <getString>
83d: 88 45 ff mov %al,-0x1(%rbp)
840: 80 7dff00 cmpb $0x0,-0x1(%rbp)
844 75 ed jne 833 <main+0x23>

0000 7FFF FFFF E828 0000 0000 0000 0000
0000 7FFF FFFF E820 0000 0000 0000 0000
%rsp 0000 7FFF FFFF E818 0000 7FFF F7DD 4600
0000 7FFF FFFF E810 0000 0000 0000 0000
0000 7FFF FFFF ES08 0000 7FFF F7AA EDB2
0000 7FFF FFFF EB00 0000 0000 0000 0000

%rbp

Binghamton

CS-220

University

stack In getString after

main’s stack frame

return address

bool getString() {

859: 55 push %rbp
85a: 48 89 e5 mov %rsp,%rbp
85d: 48 83 ec 60 sub $0x60,%rsp
char buffer[81]; in’s %rb
buffer[0]="\0"; s PO
861: c6 45 a0 00 movb $0x0,-0x60(%rbp

getString’s stack frame

Spring 2019

Value (64 bit)
000 7FFF FFFF ES
000 0001 5555 46EC
0000 7FFF FFFF E988
0000 5555 5555 483D
0000 7FFF FFFF ESAQ
VUV

0000 0000 0000 0000

B reamble
Address

il
OU

0000 0000 0000 0000
0000 0000 0000 0000
0000 7FFF F7DD 4600
0000 0000 0000 0000

0000 7FFF FFFF E818
0000 7FFF FFFF E810

0000 7FFF FFFF EB00 0000 0000 0000 0000

Binghamton CS-220
University Spring 2019

Stack left to right (little endian)

“This is ... 0x0000 7fff ffff e8al 0x0000 5555 5555 483d

return@

buffer main’s %rbp

main’s stack frame

giString’s stack frame

0000 7fff ffff e80c [ffff e810 | ffff eB6A ffff €870 ffff e878

CS-220
Spring 2019

Binghamton

University

Buffer Overflow

* Put a very long string into an input file
* Much longer than the length of “buffer”

* So long that it writes over what is past “buffer” in getString’s frame
 What is past “buffer”?

* So long that it writes over the lowest address in main’s frame!
 What is in the lowest address in main’s frame?

Binghamton CS-220

University Spring 2019

“String” in file (stdin) read by gets

0/12[3]4567]8]9]1-|-[-[-|4-]-|-[-]2]-[-]-]-|4-[-]-]-[8]-]-| -] -] 4[] -[-] 4] -] -] -] -] 4] -] -] -
This is a character string that goes on for a very
EEEEEEREERCEREREEEREEEEEEEEREACREEREEEEEEEREEEREER
_long distance so that it

]l ows it s buf fer

overf
EERRREEERREREEE . EEEEERERECEEEEEEERE

main’s rbp Return Address! buffer Alignment Padding

Binghamton CS-220
University Spring 2019

Stack left to right (little endian)

Values “This is a character string that goes on for a very long distance so that it overflows its buffer

0x7062 7273 6e69 616d 0x7264 6461 2074 6572

4
5 712 712 6|7 7 6 706|7 702|6(6|6]|7
4 30 30 2|5 2 1 312|120 4101|442

buffer return@

main’s %rbp

main’s stack frame

galString’s stack frame

0000 7fff ffff e87c | ffff e880 | ffff e8d8 ffff e8e0 ffff e8e8

Binghamton CS-220

University Spring 2019

stack In getString after gets
g main’s stack frame

return address

Value (64 bit)

000 0001 5555 46ECQ
0000 7FFF FFFF E988

gets(buffer);
865: 488d 45 a0 lea -0x60(%rbp),%rax 7264 6461 2074 6572
869: 4889 c7 mov %rax,%rdi 0000 7FFF FFFF 7062 7273 6e69 616d
86c: e8 3f fe ff ff callg 6b0 <gets@plt> I

if (strlen(buffer)>0) { main’s %rbp 7 t E86ﬂ66 7562 6220
871: 488d 45 a0 lea -0x60(% ,

2074 6168 7420 676e
6972 7473 2072 6574
6361 7261 6863 2061
2073 6920 7369 6854

getString’s stack frame
0000 7FFF FFFF E818

0000 7FFF FFFF E810

0000 7FFF FFFF EB00 0000 0000 0000 0000

Binghamton

University

stack In getString at re

return address

return true;

894: b801 000000 mov $0x1,%eax

899: eb 05 jmp 8a0 <getString+0x47>
8a0: c9 leaveq

8al: c3 retq ...

%rip (value is 0x7264 6461 2074 6572)

Segmentation
Fault

turn

0000 7FFF FFFF E890
0000 7FFF FFFF E888

0000 7FFF FFFF E870
0000 7FFF FFFF E868

0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810
0000 7FFF FFFF E808
0000 7FFF FFFF E800

CS-220
Spring 2019

Value (64 bit)
000 7FFF FFFF ES
0000 0001 5555 46EC
0000 7FFF FFFF E988
7264 6461 2074 6572

7062 7273 6e69 616d
7265 6666 7562 6220

2074 6168 7420 676¢
6972 7473 2072 6574
6361 7261 6863 2061
2073 6920 7369 6854
0000 7FFF F7AA EDB2
0000 0000 0000 0000

Binghamton CS-220

University Spring 2019

Mixing Hex and ASCII

* Normally treat a file as a string of ASCII characters
* In fact, each ASCII character has a hex representation...

T hlils] lils| Jal lclhlalrlalcl..
5 6 6 7 2 6 7 2 6 2 6 6 6 7 6 6 ..
4 8 9 3 0 9 3 0 1 0 3 8 1 2 1 3

* We can write a program to put non-ASCII hex data in a file
e See xmp mix

e Use the command “od -Ax -t x1z” to show both ASCII and hex

000000 54 68 69 73 20 69 73 20 61 20 63 68 61 72 61 63 >This is a charac<
000010 74 65 72 20 73 74 72 69 6e 67 de ad be ef 0Oa >ter string..... <
00001f

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_mix/

Binghamton CS-220

University Spring 2019

Example of a file with ASCIl and Hex

» ASCII Representation on terminal “cat file”"...

This is a character stringP%i

* Mixed representation “od -Ax -t x1z file”

000000 54 68 69 73 20 69 73 20 61 20 63 68 61 72 61 63 >This is a charac<
000010 74 65 72 20 73 74 72 69 6e 67 de ad be ef 0Oa >ter string..... <
00001f

Binghamton CS-220

University Spring 2019
(; I D I I M Ixe d FI Ie fomphextxt (/import/linux/home/tbartens/C5220/1ab11) - gedit — O >
File Ed Wi Search Toaols Documents Help
[= =l
L] B = | ‘ - P v
Mew Opsn Save Frint Paste
| | xmphextxt X
There was a problem opening the file /import/linux/home/ & Retr
thartens/C5220/lab1l/xmphex.txt ¢ oeny

The file you nrcmd has some invalid characters. f you continue
editing this file you could corrupt this document. Edit Anyway
You can alse choose another character encoding and try again. =

Character Encoding: Current Locale (UTF-8) | -

% Cancel

1|'I'HE FIRST
ET ST
E]’ xmphex.txt (/import/linux/home/tbartens/CS220/lab11) - gedit — O X
Eile Edit View Search Tools Documents Help
1B . d|& | Q| a B
Mew Open Save Primt Find 11 INS

| | xmphextxt X

1 THE FIRST EIGHTY... e "Dc.

Binghamton CS-220

University Spring 2019

“String” in file (stdin) read by gets

Thi s character strlng that goes f or ver

[long di st ance so that it overfl]ows its bufferjebacd
s e e

A DR

|

main’s ebp Return Address! Alignment Padding

Binghamton CS-220
University Spring 2019

Stack left to right (little endian)

Values “This is a character string that goes on for a very long distance so that it overflows its buffer

Oxdead beef dead beef 0x0000 5555 5555 48a2

4
5 712 712 6|7 7 5 5
4 30 3]0 2|5 2 5 5

buffer return@

main’s %rbp

main’s stack frame

galString’s stack frame

0000 7fff ffff e87c | ffff e880 | ffff e8d8 ffff e8e0 ffff e8e8

Binghamton CS-220

University Spring 2019

stack In getString after gets
g main’s stack frame Value (64 bit)

UUU8 FFF E890 -6000 7FFF FFFF E980—
0000 0001 5555 46E0
0000 7FFF FFFF E988

return address

gets(buffer);
865: 488d 45 a0 lea -0x60(%rbp),%rax : 0000 5555 5555 48a2
869: 4889c7 mov %rax,%rdI 0000 7FFF FFFF dead beef dead beef
86c: e8 3f fe ff ff callg 6b0 <gets@plt> I

if (strlen (buffer)>0) { main’s %rbp - £ 868 7805 0060 1802 Bea8
871: 48 8d 45 a0 lea -0x60(% :

2074 6168 7420 676e
6972 7473 2072 6574
6361 7261 6863 2061
2073 6920 7369 6854

getString’s stack frame
0000 7FFF FFFF E818

0000 7FFF FFFF E810

0000 7FFF FFFF EB00 0000 0000 0000 0000

Binghamton CS-220

University Spring 2019
stack In getString after gets
Address Value (64 bit)
main’s stack frame 0000 7FFF FFFF E900 8600 7FFF FFFF E900E

0000 7FFF F7A5 2B4

0000 7FFFFEE
return address 0000 7FFF FFFF ESFO |0000 7FFF FFEF E9OF
%rbp 0000 7FFF FFFF EBE8 0000 5555 5555 48a2
mov $0x1,%eax
jmp 40064e <getString+0x45> 0000 7FF “E8EO— dead beef dead beef

0000 7FFF FFFF E8D8 | 7265 6666 7562 6220

leaveq
retq

getString’s

stack frame 0000 7FFF FFFF E898 (0000 0000 0040 05D9

0000 7FFF FFFF E890 (7465 7220 7374 7269

0000 7FFF FFFF E888 6120 6368 6172 6163

buffer 38015468 6973 2069 7320
4206 4000 0000 0000
0100 0000 0000 0000

0000 7FFF FFFF E870

CS-220

Spring 2019

What could be at return address?

Your evil code!

Binghamton CS-220

University Spring 2019

Problems with Buffer Overflow Attack

* Need to know offset from buffer to top of stack / Get that from objdump -d

return @

* Need to mix ASCII with hexadecimal in input file * Can write a program to do that

 String can’t contain “newline” (0x0A) » Basic restriction

* Need to know address of pirate routine to “return” ¢ Challenge for project 4
fo

* Hard to “return” to conventional flow after attack... ¢ Can §Et original return@ from objdump -d, or
return @ overwritten just don’t return

* %rbp has been overwritten - lost top of caller’s %rsp points to bottom of caller’s frame, and
stack frame we can find its size from objdump -d, or just

don’t use
« Randomized load uses offsets, not absolute e Turn off randomized load

addresses

Binghamton CS-220

University Spring 2019

Address Space Layout Randomization

* ASLR is a feature introduced to prevent things like buffer overflow
attacks

* Randomizes where your code is loaded

* Every time you execute, your function is loaded at a different address
* Hence objdump no longer prints complete address - just last three digits

* ASLR will prevent “return” to a different function in the same code
 function instructions are at a different place each run

* gdb turns off ASLR
* code is always loaded at 0x0000 5555 5555 xxxx

e To turn off ASLR on LDAP: >setarch linux64 -R <command>

Binghamton CS-220

University Spring 2019

Preventing Buffer Overflow w/ “Guard”

bool getString() {

. .
struct bufstr { guard goes in stack frame after

char buffer[81]; (OIl top Of) buffer
int guard; * If buffer overflow occurs, guard
} buf = {{ 0x00 } { OXFEDCBA98 }} : will be modified
gets(buf.buffer);
if (strlen(buffer)>0) { [f buffer overtlow occurs, assert
assert(buf.guard==0xFEDCBA98); will fail
printf("Read line: %s\n",buf.buffer); _ _
return true; * Unless hacker did objdump and
} put the guard value in his hacked

return false; file

Binghamton CS-220

University Spring 2019

gcc stack guarding

* If you compile with the -fstack-protector flag, gcc will
automatically provide stack guards for you

* If gcc finds a corrupted stack guard, it prints...
*** stack smashing detected ***: ./target terminated
Segmentation fault

* gcc stack protection is OFF by default on LDAP machines

Binghamton CS-220

University Spring 2019

Preventing Buffer Overflow w/ fgets

bool getString() { * “fgets” reads from any
char buffer[81]: stream (third parameter)
buffer[0]="\0" * “fgets” reads until EITHER
fgets(buffer,sizeof(buffer),stdin); ngﬁ&g%}ag&g& second
if (strlen(buffer)>0) { « “fgets” prevents buffer
printf("Read line: %s\n" buffer); overwrite
return true:
}

return false;

}

Binghamton CS-220

University Spring 2019

Preventing w/ Memory Protection

* Your entire address space is divided into 4096 byte “pages”
* 4096=21%; It takes 12 bits, or 3 hex digits to count from 0 to 4095
* 64 bit addresses... first 52 bits (13 hex characters) are page number
* 64 bit addresses... last 12 bits (3 hex characters) are offset within page

* Each page in memory has three independent security attributes:
* Can I read memory in this page
* Can I write memory in this page
* Can I execute instructions in this page

* If you try to perform an action on a page which is not allowed, you
will get a segmentation violation

Binghamton CS-220

University Spring 2019

Default Memory Protection

* When you code is loaded into memory, it is loaded in pages that
allow read and execute, but not write

* Pages in the stack allow read or write, but not execution

* Pages on the heap (malloc’ed space) allow read or write, but not
execution

* There are library routines to modify memory protection for a
page, but by default, there is no memory you are allowed to both
write to, and execute from.

* If your evil code is not already loaded, it's hard to execute it!
* Project 4 has special code to avoid this problem!

