
Binghamton

University

CS-220

Spring 2019

Buffer Overflow Attacks

Computer Systems 3.10.3-4,

Binghamton

University

CS-220

Spring 2019

Hacking

• Roots in phone phreaking

• White Hat vs Gray Hat vs Black Hat

• Over 50% of Modern Software Development is Black Hat!

Tip the balance: Be a force for good… not evil!

Binghamton

University

CS-220

Spring 2019

Disclaimer – Buffer Overflow Attack

• DO NOT ABUSE!

• Modern code is protected from this attack several ways

• Ancient form of hacking
• First documented in 1972

• Used in 1988 “Morris Worm” – First internet virus

• Used to hack Unix, Windows, Xbox, PS2, Wii

• Taught here as an example of what to watch out for!

Binghamton

University

CS-220

Spring 2019

Example Vulnerable Code

bool getString() {

char buffer[81];

buffer[0]='\0';

gets(buffer);

if (strlen(buffer)>0) {

printf("Read line: %s\n",buffer);

return true;

}

return false;

}

• “gets” reads from stdin until it
finds either an end-of-file or a
newline (which is replaced by a
null terminator).

• “gets” copies whatever it reads
into the argument (buffer).

• “gets” does not check to make
sure result fits in space allocated.

Binghamton

University

CS-220

Spring 2019

x86 expansion

bool getString() {

char buffer[81];

buffer[0]='\0';

gets(buffer);

if (strlen(buffer)>0) {

printf("Read line: %s\n",buffer);

return true;

}

return false;

}

push %rbp
mov %rsp,%rbp
sub $0x60,%rsp

movb $0x0,-0x60(%rbp)

lea -0x60(%rbp),%rax
mov %rax,%rdi
callq 4004c0 <gets@plt>

lea -0x60(%rbp),%rax
movzbl (%rax),%eax
test %al,%al
je 400649 <getString+0x40>

lea -0x60(%rbp),%rax
mov %rax,%rsi
mov $0x40071f,%edi
mov $0x0,%eax
callq 400490 <printf@plt>

mov $0x1,%eax
jmp 40064e <getString+0x45>

mov $0x0,%eax
leaveq
retq

Binghamton

University

CS-220

Spring 2019

return address

Address Value (64 bit)

0000 7FFF FFFF E890 0000 7FFF FFFF E980

0000 7FFF FFFF E888 0000 0001 5555 46E0

0000 7FFF FFFF E880 0000 7FFF FFFF E988

0000 7FFF FFFF E878 0000 5555 5555 483D

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 0000 0000 0000

… …

0000 7FFF FFFF E828 0000 0000 0000 0000

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 7FFF F7DD 4600

0000 7FFF FFFF E810 0000 0000 0000 0000

0000 7FFF FFFF E808 0000 7FFF F7AA EDB2

0000 7FFF FFFF E800 0000 0000 0000 0000

….

stack after call to getString

%rsp

…
while((gs=getString())) {};

833: b8 00 00 00 00 mov $0x0,%eax
838: e8 1c 00 00 00 callq 859 <getString>
83d: 88 45 ff mov %al,-0x1(%rbp)
840: 80 7d ff 00 cmpb $0x0,-0x1(%rbp)
844: 75 ed jne 833 <main+0x23>
…

main’s stack frame

%rbp

return address

Binghamton

University

CS-220

Spring 2019

Address Value (64 bit)

0000 7FFF FFFF E890 0000 7FFF FFFF E980

0000 7FFF FFFF E888 0000 0001 5555 46E0

0000 7FFF FFFF E880 0000 7FFF FFFF E988

0000 7FFF FFFF E878 0000 5555 5555 483D

0000 7FFF FFFF E870 0000 7FFF FFFF E8A0

0000 7FFF FFFF E868 0000 0000 0000 0000

… …

0000 7FFF FFFF E828 0000 0000 0000 0000

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 7FFF F7DD 4600

0000 7FFF FFFF E810 0000 0000 0000 0000

0000 7FFF FFFF E808 0000 7FFF F7AA EDB2

0000 7FFF FFFF E800 0000 0000 0000 0000

….

stack in getString after preamble

%rsp

…
bool getString() {

859: 55 push %rbp
85a: 48 89 e5 mov %rsp,%rbp
85d: 48 83 ec 60 sub $0x60,%rsp

char buffer[81];
buffer[0]='\0';

861: c6 45 a0 00 movb $0x0,-0x60(%rbp)…

main’s stack frame

%rbp

main’s %rbp

return address

buffer

getString’s stack frame

Binghamton

University

CS-220

Spring 2019

Stack left to right (little endian)

f
f

7
f

0
0

0
0

5
4

6
8

6
9

7
3

2
0

6
9

7
2

2
0

..

..
5
5

5
5

5
5

5
5

0
0

0
0

a
0

e
8

f
f

f
f

f
f

7
f

0
0

0
0

3
d

4
8

5
5

5
5

5
5

5
5

0
0

0
0

8
8

e
9

0000 7fff ffff e80c ffff e810 ffff e86A ffff e870 ffff e878

main’s stack framegetString’s stack frame

buffer return@main’s %rbp

Addresses

0x0000 7fff ffff e8a0 0x0000 5555 5555 483d“This is …Values

Binghamton

University

CS-220

Spring 2019

Buffer Overflow

• Put a very long string into an input file

• Much longer than the length of “buffer”

• So long that it writes over what is past “buffer” in getString’s frame
• What is past “buffer”?

• So long that it writes over the lowest address in main’s frame!
• What is in the lowest address in main’s frame?

Binghamton

University

CS-220

Spring 2019

“String” in file (stdin) read by gets

0 1 2 3 4 5 6 7 8 9 1 - - - - + - - - - 2 - - - - + - - - - 3 - - - - + - - - - 4 - - - - + - - - -

T h i s i s a c h a r a c t e r s t r i n g t h a t g o e s o n f o r a v e r y

5 - - - - + - - - - 6 - - - - + - - - - 7 - - - - + - - - - 8 - - - - + - - - - 9 - - - - + - - - -

l o n g d i s t a n c e s o t h a t i t o v e r f l o w s i t s b u f f e r m a i n

A - - - - + - - - - B - - - - + - - - - C - - - - + - - - - D - - - - + - - - - E - - - - + - - - -

s r b p r e t a d d r

buffermain’s rbp Return Address! Alignment Padding

Binghamton

University

CS-220

Spring 2019

Stack left to right (little endian)

0
0

0
0

0
0

0
0

5
4

6
8

6
9

7
3

2
0

6
9

7
3

2
0

..

..
6
2

7
5

6
6

6
6

6
5

7
2

6
d

6
1

6
9

6
e

7
3

7
2

6
2

7
0

7
2

6
5

7
4

2
0

6
1

6
4

6
4

7
2

f
0

e
9

0000 7fff ffff e87c ffff e880 ffff e8d8 ffff e8e0 ffff e8e8

main’s stack framegetString’s stack frame

buffer return@main’s %rbp

Addresses

“This is a character string that goes on for a very long distance so that it overflows its bufferValues

0x7062 7273 6e69 616d 0x7264 6461 2074 6572

Binghamton

University

CS-220

Spring 2019

Address Value (64 bit)

0000 7FFF FFFF E890 0000 7FFF FFFF E980

0000 7FFF FFFF E888 0000 0001 5555 46E0

0000 7FFF FFFF E880 0000 7FFF FFFF E988

0000 7FFF FFFF E878 7264 6461 2074 6572

0000 7FFF FFFF E870 7062 7273 6e69 616d

0000 7FFF FFFF E868 7265 6666 7562 6220

… …

0000 7FFF FFFF E828 2074 6168 7420 676e

0000 7FFF FFFF E820 6972 7473 2072 6574

0000 7FFF FFFF E818 6361 7261 6863 2061

0000 7FFF FFFF E810 2073 6920 7369 6854

0000 7FFF FFFF E808 0000 7FFF F7AA EDB2

0000 7FFF FFFF E800 0000 0000 0000 0000

….

stack in getString after gets

%rsp

…
gets(buffer);

865: 48 8d 45 a0 lea -0x60(%rbp),%rax
869: 48 89 c7 mov %rax,%rdi
86c: e8 3f fe ff ff callq 6b0 <gets@plt>

if (strlen(buffer)>0) {
871: 48 8d 45 a0 lea -0x60(%rbp),%rax
…

main’s stack frame

%rbp

main’s %rbp

return address

buffer

getString’s stack frame

Binghamton

University

CS-220

Spring 2019

Address Value (64 bit)

0000 7FFF FFFF E890 0000 7FFF FFFF E980

0000 7FFF FFFF E888 0000 0001 5555 46E0

0000 7FFF FFFF E880 0000 7FFF FFFF E988

0000 7FFF FFFF E878 7264 6461 2074 6572

0000 7FFF FFFF E870 7062 7273 6e69 616d

0000 7FFF FFFF E868 7265 6666 7562 6220

… …

0000 7FFF FFFF E828 2074 6168 7420 676e

0000 7FFF FFFF E820 6972 7473 2072 6574

0000 7FFF FFFF E818 6361 7261 6863 2061

0000 7FFF FFFF E810 2073 6920 7369 6854

0000 7FFF FFFF E808 0000 7FFF F7AA EDB2

0000 7FFF FFFF E800 0000 0000 0000 0000

….

stack in getString at return

…
return true;

894: b8 01 00 00 00 mov $0x1,%eax
899: eb 05 jmp 8a0 <getString+0x47>
…
8a0: c9 leaveq
8a1: c3 retq …

%rsp

return address

%rip (value is 0x7264 6461 2074 6572)

Segmentation
Fault

Binghamton

University

CS-220

Spring 2019

Mixing Hex and ASCII

• Normally treat a file as a string of ASCII characters

• In fact, each ASCII character has a hex representation…

• We can write a program to put non-ASCII hex data in a file
• See xmp_mix

• Use the command “od –Ax –t x1z” to show both ASCII and hex
000000 54 68 69 73 20 69 73 20 61 20 63 68 61 72 61 63 >This is a charac<

000010 74 65 72 20 73 74 72 69 6e 67 de ad be ef 0a >ter string.....<

00001f

T h i s i s a c h a r a c …

5
4

6
8

6
9

7
3

2
0

6
9

7
3

2
0

6
1

2
0

6
3

6
8

6
1

7
2

6
1

6
3

…

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_mix/

Binghamton

University

CS-220

Spring 2019

Example of a file with ASCII and Hex

• ASCII Representation on terminal “cat file”…
This is a character stringÞ¾ï

• Mixed representation “od –Ax -t x1z file”

000000 54 68 69 73 20 69 73 20 61 20 63 68 61 72 61 63 >This is a charac<

000010 74 65 72 20 73 74 72 69 6e 67 de ad be ef 0a >ter string.....<

00001f

Binghamton

University

CS-220

Spring 2019

GEDIT Mixed File

Binghamton

University

CS-220

Spring 2019

“String” in file (stdin) read by gets

0 1 2 3 4 5 6 7 8 9 1 - - - - + - - - - 2 - - - - + - - - - 3 - - - - + - - - - 4 - - - - + - - - -

T h i s i s a c h a r a c t e r s t r i n g t h a t g o e s o n f o r a v e r y

5 - - - - + - - - - 6 - - - - + - - - - 7 - - - - + - - - - 8 - - - - + - - - - 9 - - - - + - - - -

l o n g d i s t a n c e s o t h a t i t o v e r f l o w s i t s b u f f e r e
f

b
e

a
d

d
e

A - - - - + - - - - B - - - - + - - - - C - - - - + - - - - D - - - - + - - - - E - - - - + - - - -

e
f

b
e

a
d

d
e

a
2

4
8

5
5

5
5

5
5

5
5

0
0

0
0

buffermain’s ebp Return Address! Alignment Padding

Binghamton

University

CS-220

Spring 2019

Stack left to right (little endian)

0
0

0
0

0
0

0
0

5
4

6
8

6
9

7
3

2
0

6
9

7
3

2
0

..

..
6
2

7
5

6
6

6
6

6
5

7
2

e
f

b
e

a
d

d
e

e
f

b
e

a
d

d
e

a
2

4
8

5
5

5
5

5
5

5
5

0
0

0
0

f
0

e
9

0000 7fff ffff e87c ffff e880 ffff e8d8 ffff e8e0 ffff e8e8

main’s stack framegetString’s stack frame

buffer return@main’s %rbp

Addresses

“This is a character string that goes on for a very long distance so that it overflows its bufferValues

0xdead beef dead beef 0x0000 5555 5555 48a2

Binghamton

University

CS-220

Spring 2019

Address Value (64 bit)

0000 7FFF FFFF E890 0000 7FFF FFFF E980

0000 7FFF FFFF E888 0000 0001 5555 46E0

0000 7FFF FFFF E880 0000 7FFF FFFF E988

0000 7FFF FFFF E878 0000 5555 5555 48a2

0000 7FFF FFFF E870 dead beef dead beef

0000 7FFF FFFF E868 7265 6666 7562 6220

… …

0000 7FFF FFFF E828 2074 6168 7420 676e

0000 7FFF FFFF E820 6972 7473 2072 6574

0000 7FFF FFFF E818 6361 7261 6863 2061

0000 7FFF FFFF E810 2073 6920 7369 6854

0000 7FFF FFFF E808 0000 7FFF F7AA EDB2

0000 7FFF FFFF E800 0000 0000 0000 0000

….

stack in getString after gets

%rsp

…
gets(buffer);

865: 48 8d 45 a0 lea -0x60(%rbp),%rax
869: 48 89 c7 mov %rax,%rdi
86c: e8 3f fe ff ff callq 6b0 <gets@plt>

if (strlen(buffer)>0) {
871: 48 8d 45 a0 lea -0x60(%rbp),%rax
…

main’s stack frame

%rbp

main’s %rbp

return address

buffer

getString’s stack frame

Binghamton

University

CS-220

Spring 2019

Address Value (64 bit)

0000 7FFF FFFF E900 0000 7FFF FFFF E900F

0000 7FFF FFFF E8F8 0000 7FFF F7A5 2B45

0000 7FFF FFFF E8F0 0000 7FFF FFFF E90F

0000 7FFF FFFF E8E8 0000 5555 5555 48a2

0000 7FFF FFFF E8E0 dead beef dead beef

0000 7FFF FFFF E8D8 7265 6666 7562 6220

… …

0000 7FFF FFFF E898 0000 0000 0040 05D9

0000 7FFF FFFF E890 7465 7220 7374 7269

0000 7FFF FFFF E888 6120 6368 6172 6163

0000 7FFF FFFF E880 5468 6973 2069 7320

0000 7FFF FFFF E878 4206 4000 0000 0000

0000 7FFF FFFF E870 0100 0000 0000 0000

….

stack in getString after gets

%rsp

…
mov $0x1,%eax
jmp 40064e <getString+0x45>
…
leaveq
retq

main’s stack frame

%rbp

getString’s
stack frame

return address

buffer

Binghamton

University

CS-220

Spring 2019

What could be at return address?

Your evil code!

Binghamton

University

CS-220

Spring 2019

Problems with Buffer Overflow Attack

• Need to know offset from buffer to top of stack /
return @

• Need to mix ASCII with hexadecimal in input file

• String can’t contain “newline” (0x0A)

• Need to know address of pirate routine to “return”
to

• Hard to “return” to conventional flow after attack…
return @ overwritten

• %rbp has been overwritten – lost top of caller’s
stack frame

• Randomized load uses offsets, not absolute
addresses

• Get that from objdump –d

• Can write a program to do that

• Basic restriction

• Challenge for project 4

• Can get original return@ from objdump –d, or
just don’t return

• %rsp points to bottom of caller’s frame, and
we can find its size from objdump –d, or just
don’t use

• Turn off randomized load

Binghamton

University

CS-220

Spring 2019

Address Space Layout Randomization

• ASLR is a feature introduced to prevent things like buffer overflow
attacks

• Randomizes where your code is loaded
• Every time you execute, your function is loaded at a different address
• Hence objdump no longer prints complete address – just last three digits

• ASLR will prevent “return” to a different function in the same code
• function instructions are at a different place each run

• gdb turns off ASLR
• code is always loaded at 0x0000 5555 5555 xxxx

• To turn off ASLR on LDAP: >setarch linux64 –R <command>

Binghamton

University

CS-220

Spring 2019

Preventing Buffer Overflow w/ “Guard”

bool getString() {

struct bufStr {

char buffer[81];

int guard;

} buf = { { 0x00 } { 0xFEDCBA98 }} ;

gets(buf.buffer);

if (strlen(buffer)>0) {

assert(buf.guard==0xFEDCBA98);

printf("Read line: %s\n",buf.buffer);

return true;

}

return false;

}

• guard goes in stack frame after
(on top of) buffer

• If buffer overflow occurs, guard
will be modified

• If buffer overflow occurs, assert
will fail

• Unless hacker did objdump and
put the guard value in his hacked
file

Binghamton

University

CS-220

Spring 2019

gcc stack guarding

• If you compile with the –fstack-protector flag, gcc will
automatically provide stack guards for you

• If gcc finds a corrupted stack guard, it prints…
*** stack smashing detected ***: ./target terminated

Segmentation fault

• gcc stack protection is OFF by default on LDAP machines

Binghamton

University

CS-220

Spring 2019

Preventing Buffer Overflow w/ fgets

bool getString() {
char buffer[81];
buffer[0]='\0';
fgets(buffer,sizeof(buffer),stdin);
if (strlen(buffer)>0) {

printf("Read line: %s\n",buffer);
return true;

}
return false;

}

• “fgets” reads from any
stream (third parameter)

• “fgets” reads until EITHER
newline (0x10), OR second
parameter reached.

• “fgets” prevents buffer
overwrite

Binghamton

University

CS-220

Spring 2019

Preventing w/ Memory Protection

• Your entire address space is divided into 4096 byte “pages”
• 4096=212; It takes 12 bits, or 3 hex digits to count from 0 to 4095

• 64 bit addresses… first 52 bits (13 hex characters) are page number

• 64 bit addresses… last 12 bits (3 hex characters) are offset within page

• Each page in memory has three independent security attributes:
• Can I read memory in this page

• Can I write memory in this page

• Can I execute instructions in this page

• If you try to perform an action on a page which is not allowed, you
will get a segmentation violation

Binghamton

University

CS-220

Spring 2019

Default Memory Protection

• When you code is loaded into memory, it is loaded in pages that
allow read and execute, but not write

• Pages in the stack allow read or write, but not execution

• Pages on the heap (malloc’ed space) allow read or write, but not
execution

• There are library routines to modify memory protection for a
page, but by default, there is no memory you are allowed to both
write to, and execute from.

• If your evil code is not already loaded, it’s hard to execute it!
• Project 4 has special code to avoid this problem!

