
Binghamton

University

CS-220

Spring 2019

X86 Stack
Computer Systems Section 3.7

Binghamton

University

CS-220

Spring 2019

The Stack (as we learned in CS-120)

Binghamton

University

CS-220

Spring 2019

The x86 stack

Binghamton

University

CS-220

Spring 2019

Terminology Warning!

• The textbook uses the convention:
push and pop occurs at the “top” of the stack

• In x86 the “top” of the stack is at the “bottom” of memory

• I prefer calling the “top” of the stack the top of memory
• push and pop therefore occurs at the “bottom” of the stack

• To avoid confusion, I will try to say “high address” and “low
address” rather than “top” and “bottom”

Binghamton

University

CS-220

Spring 2019

x86 Stack Memory

Address Value

x7FFF FFFF FFFF FFFC …

x7FFF FFFF FFFF FFF8 x0000 0004

x7FFF FFFF FFFF FFF4 x0000 0003

x7FFF FFFF FFFF FFF0

x7FFF FFFF FFFF FFEC

x0000 0000 0000 0004

x0000 0000 0000 0000

%rsp points at
push/pop end of

stack

Start of stack at
high memory

• Memory above %rsp is in use
• Memory below %rsp is available

Reg Value

rsp x7FFF FFFF FFFF FFF4

rax x0000 0000 0000 000E

Binghamton

University

CS-220

Spring 2019

x86 Stack Memory

Address Value

xFFFF FFFC

xFFFF FFF8 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFF0

xFFFF FFEC

x0000 0004

x0000 0000

push %eax

Reg Value

rsp x7FFF FFFF FFFF FFF4

rax x???? ???? 0000 000E

Binghamton

University

CS-220

Spring 2019

x86 Stack Memory

Address Value

xFFFF FFFC

xFFFF FFF8 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFF0 x0000 000E

xFFFF FFEC

x0000 0004

x0000 0000

push %eax

subq $4,%rsp
movl %eax,(%rsp)

Reg Value

rsp x7FFF FFFF FFFF FFF0

rax x???? ???? 0000 000E

Binghamton

University

CS-220

Spring 2019

x86 Stack Memory

Address Value

xFFFF FFFC

xFFFF FFF8 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFF0 x0000 000E

xFFFF FFEC

x0000 0004

x0000 0000

pop %ebx

movl (%rsp),%ebx
addq $4,%rsp

Reg Value

rsp x7FFF FFFF FFFF FFF4

rax x???? ???? 0000 000E

rbx x???? ???? 0000 000E

Binghamton

University

CS-220

Spring 2019

x86 Stack Memory

Address Value

xFFFF FFFC

xFFFF FFF8 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFF0 x0000 0000

xFFFF FFEC x0000 000E

x0000 0004

x0000 0000

pushq %eax

subq $8,%rsp
movq %eax,(%rsp)

Reg Value

rsp x7FFF FFFF FFFF FFEC

rax x???? ???? 0000 000E

Binghamton

University

CS-220

Spring 2019

Stack Etiquette

• Rule 1: Push first

• Rule 2: Everything I push, I will also pop

• If intervening code follows etiquette, stack will work

• If I follow etiquette, I can be intervening code

PUSH POPIntervening Code

Binghamton

University

CS-220

Spring 2019

Use the stack for Function Invocation

• When a function is invoked, it’s preamble pushes invocation
specific information on the stack

• When a function returns, the function specific information is
popped off the stack, and the stack is restored to caller’s state

• The information associated with a function invocation is called an
invocation record, or “stack frame”

Binghamton

University

CS-220

Spring 2019

Stack Frame Memory

Address Value

xFFFF FFF4

xFFFF FFF0 x0000 0004

xFFFF FFF4 x0000 0003

xFFFF FFEC x7FFF FFFF

xFFFF FFE8 xFFFF FFF4

xFFFF FFE4 x0000 0003

xFFFF FFE0 x0000 0003

xFFFF FFDC x0000 0003

xFFFF FFD8 x0000 0003

x0000 0004

x0000 0000

Reg Value

rbp x7FFF FFFF FFFF FFE8

rsp x7FFF FFFF FFFF FFD8

rax x???? ???? 0000 000E

Previous Frame
directly above
current frame

Current Frame:
Eight byte words

between addresses
in %rbp and %rsp

Binghamton

University

CS-220

Spring 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

13

Inv Fn args vars Ret

OS main a=

Binghamton

University

CS-220

Spring 2019

What’s In a Stack Frame?

• Information to restore caller’s stack frame

• Space for Local Variable Values

• Space for saved state

• Space for parameter copies

• Return address (when calling functions)

Binghamton

University

CS-220

Spring 2019

How Big is a Stack Frame?

Info Size

Caller’s frame info 8 bytes

Local Variables ? (different for each function)

Copies of Parameter Values ? (different for each function)

Saved State ? (different for each function)

Return Address 8 bytes (if needed)

Total 8+???

Binghamton

University

CS-220

Spring 2019

When I am called…

• My caller’s stack frame is still active

• I need to save information about my callers frame

• I need to create my own stack frame

Binghamton

University

CS-220

Spring 2019

At entry to “main”

Address Value (64 bit)

0000 7FFF FFFF E880 0000 0002 0000 0000

0000 7FFF FFFF E878 0000 7FFF FFFF E948

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 0000 0000 0000

0000 7FFF FFFF E858 0000 0000 0000 0000

0000 7FFF FFFF E850 0000 7FFF FFFF E940

0000 7FFF FFFF E848 0000 0000 0040 0450

0000 7FFF FFFF E840 0000 0000 0040 06C0

0000 7FFF FFFF E838 0000 0000 0000 0000

…

%rsp

%rbp

pushq %rbp ; Save caller’s base
movq %rsp, %rbp ; Reset %rbp to my base
subq $32, %rsp ; Reset %rsp to frame size

Caller’s (OS)
stack frame

Binghamton

University

CS-220

Spring 2019

Main’s Preamble

Address Value (64 bit)

0000 7FFF FFFF E880 0000 0002 0000 0000

0000 7FFF FFFF E878 0000 7FFF FFFF E948

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0000 0000 0000

0000 7FFF FFFF E850 0000 7FFF FFFF E940

0000 7FFF FFFF E848 0000 0000 0040 0450

0000 7FFF FFFF E840 0000 0000 0040 06C0

0000 7FFF FFFF E838 0000 0000 0000 0000

…

%rsp

Caller’s (OS)
stack frame

%rbp

pushq %rbp ; Save caller’s base
movq %rsp, %rbp ; Reset %rbp to my base
subq $32, %rsp ; Reset %rsp to frame size

Binghamton

University

CS-220

Spring 2019

Main’s Preamble

Address Value (64 bit)

0000 7FFF FFFF E880 0000 0002 0000 0000

0000 7FFF FFFF E878 0000 7FFF FFFF E948

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0000 0000 0000

0000 7FFF FFFF E850 0000 7FFF FFFF E940

0000 7FFF FFFF E848 0000 0000 0040 0450

0000 7FFF FFFF E840 0000 0000 0040 06C0

0000 7FFF FFFF E838 0000 0000 0000 0000

…

%rsp

Caller’s (OS)
stack frame

%rbp

main’s
stack frame

pushq %rbp ; Save caller’s base
movq %rsp, %rbp ; Reset %rbp to my base
subq $32, %rsp ; Reset %rsp to frame size

Binghamton

University

CS-220

Spring 2019

Main’s Preamble

Address Value (64 bit)

0000 7FFF FFFF E880 0000 0002 0000 0000

0000 7FFF FFFF E878 0000 7FFF FFFF E948

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0000 0000 0000

0000 7FFF FFFF E850 0000 7FFF FFFF E940

0000 7FFF FFFF E848 0000 0000 0040 0450

0000 7FFF FFFF E840 0000 0000 0040 06C0

0000 7FFF FFFF E838 0000 0000 0000 0000

…

%rsp

pushq %rbp ; Save caller’s base
movq %rsp, %rbp ; Reset %rbp to my base
subq $32, %rsp ; Reset %rsp to frame size
; main x86 instructions

Caller’s (OS)
stack frame

%rbp

main’s
stack frame

Binghamton

University

CS-220

Spring 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

21

Inv Fn args vars Ret

OS main a=

Inv Fn args vars Ret

3.10 addem x=3,y=4

Binghamton

University

CS-220

Spring 2019

In main’s code Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0000 0000

0000 7FFF FFFF E830 0000 0000 0000 0000

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0010 0000 0010

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

(OS)
stack frame

%rbp

main’s
stack frame

…
4005D4 callq addem ; at 400621
4005D9 mov %eax,-08x(%rbp)
…

pushq %rip
jmp add

Binghamton

University

CS-220

Spring 2019

In main’s code Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 0000 0000 0000

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0010 0000 0010

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

(OS)
stack frame

%rbp

main’s
stack frame

…
4005D4 callq addem ; at 400621
4005D9 mov %eax,-08x(%rbp)
…

pushq %rip
jmp addem

Binghamton

University

CS-220

Spring 2019

addem’s preamble Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0010 0000 0010

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

pushq %rbp
movq %rsp, %rbp
…

%rbp

main’s
stack frame

(OS)
stack frame

Binghamton

University

CS-220

Spring 2019

addem’s preamble Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0010 0000 0010

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

%rbp

main’s
stack frame

pushq %rbp
movq %rsp, %rbp
…

(OS)
stack frame

Binghamton

University

CS-220

Spring 2019

addem’s preamble Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0010 0000 0010

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

pushq %rbp
movq %rsp, %rbp
…

(OS)
stack frame

%rbp

main’s
stack frame

addem’s
stack frame

the
“red zone”

Binghamton

University

CS-220

Spring 2019

The “red zone”

• 128 bytes (16 addresses) below %rsp (below stack)

• Operating system will not modify the red zone
• Any asynchronous interrupts may not modify the red zone!

• If this function does not invoke other functions (leaf function) it
may use the red zone WITHOUT modifying %rsp

• If lower level functions are called, the red zone would get modified

• gcc uses the red zone for local variables, parameters, and saved
registers for leaf functions

• Saves instructions to modify %rsp in entry and return

Binghamton

University

CS-220

Spring 2019

Return from addem Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0010 0000 0010

0000 7FFF FFFF E820 0000 0000 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

…

%rbp

main’s
stack frame

addem’s
stack frame

the
“red zone”

(OS)
stack frame

movl +12(%rbp), %eax; save return value
popq %rbp ; restore main’s stack frame
ret

Binghamton

University

CS-220

Spring 2019

return from addem Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0004 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0000 0000 0004

0000 7FFF FFFF E820 0000 0004 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

%rbp

main’s
stack frame

was add’s
stack frame

the
“red zone”

(OS)
stack frame

movl -12(%rbp), %eax; save return value
popq %rbp ; restore main’s stack frame
ret ; return to main

popq %rip

Binghamton

University

CS-220

Spring 2019

return from addem Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0007 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0000 0000 0004

0000 7FFF FFFF E820 0000 0004 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

%rbp

main’s
stack frame

…
4005D4 callq addem ; at 400621
4005D9 mov %eax,-08x(%rbp)
…

(OS)
stack frame

Binghamton

University

CS-220

Spring 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

31

Inv Fn args vars Ret

OS main a=7

Binghamton

University

CS-220

Spring 2019

return from main Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0007 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0000 0000 0004

0000 7FFF FFFF E820 0000 0004 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

%rbp

main’s
stack frame

(OS)
stack frame

leave ; restore OS stack frame
ret

movq %rbp,%rsp
popq %rbp

Binghamton

University

CS-220

Spring 2019

return from main Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0007 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0000 0000 0004

0000 7FFF FFFF E820 0000 0004 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

(OS)
stack frame

%rbp

main’s
stack frame

leave ; restore OS stack frame
ret

movq %rbp,%rsp
popq %rbp

Binghamton

University

CS-220

Spring 2019

return from main Address Value (64 bit)

0000 7FFF FFFF E870 0000 0000 0000 0000

0000 7FFF FFFF E868 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 0000 7FFF FFFF E888

0000 7FFF FFFF E858 0000 0007 0000 0000

0000 7FFF FFFF E850 0000 0010 FFFF E940

0000 7FFF FFFF E848 0000 0002 0040 0450

0000 7FFF FFFF E840 0000 7FFF FFFF E948

0000 7FFF FFFF E838 0000 0000 0040 05D9

0000 7FFF FFFF E830 0000 7FFF FFFF E860

0000 7FFF FFFF E828 0000 0000 0000 0004

0000 7FFF FFFF E820 0000 0004 0000 0000

0000 7FFF FFFF E818 0000 0007 0000 0000

0000 7FFF FFFF E810 0000 7FFF FFFF E940

….

%rsp

(OS)
stack frame

%rbp

