Binghamton CS-220

University Spring 2019

X86 Stack

Computer Systems Section 3.7

Binghamton CS-220

University Spring 2019

The Stack (as we learned in CS-120)

Binghamton CS-220

University Spring 2019

The x86 stack

Binghamton
University

Terminology Warning!

* The textbook uses the convention:
push and pop occurs at the “top” of the stack

- In x86 the “top” of the stack is at the “bottom” of memory

* [prefer calling the “top” of the stack the top of memory
* push and pop therefore occurs at the “bottom” of the stack

 To avoid confusion, I will try to say “high address” and “low
address” rather than “top” and “bottom”

S

CS-220
pring 2019

‘
T\

Binghamton

CS-220

University

X86 Stack

rsp x7FFF FFFF FFFF FFF4 x7FFF FFFF FFFF FFFC | ...
rax x0000 0000 0000 000E X F FFF8 | x0000 0004

* Memory above %rsp is in use
* Memory below %rsp is available

x7FFF FFFF FFFF FFF4

x0000 0003

x7FFF FFFF FFFF FFFO

x7FFF FFFF FFFF FFEC

x0000 0000 0000 0004

x0000 0000 0000 0000

Spring 2019

Start of stack at
high memory

%rsp points at
push/pop end of
stack

Binghamton

CS-220

University

X86 Stack

Memory

Address Value

XxFFFF FFFC

Reg

xFFFF FFF8 x0000 0004

rsp X7FFF FFFF FFFF FFF4 s>

xFFFF FFF4 x0000 0003

rax x??7?7?7 77770000 O00E

xFFFF FFFO

XxFFFF FFEC

push %eax

x0000 0004

x0000 0000

Spring 2019

Binghamton

CS-220
Spring 2019

University

X86 Stack

Memory

Address

Value

XxFFFF FFFC

Reg

xFFFF FFF8

x0000 0004

xFFFF FFF4

x0000 0003

rsp x7FFF FFFF FFFF FFFQ \
rax x??7?7?7 77770000 O00E

xFFFF FFFO

x0000 000E

XxFFFF FFEC

push %eax

subq $4,%rsp

x0000 0004

movl %eax,(%rsp)

x0000 0000

Binghamton CS-220

University Spring 2019

X86 Stack Memory
Address Value

xFFFF FFFC
Reg xFFFF FFF8 x0000 0004
rsp x7FFF FFFF FFFF FFF4 ————— XFFFF FFF4 x0000 0003
rax x?772 7222 0000 000E xFFFF FFFO | x0000 000E

rbx x?772 7222 0000 000F xFFFF FFEC

pop %ebx
movl (%rsp),%ebx x0000 0004
addq $4,%rsp x0000 0000

Binghamton

CS-220

Spring 2019

University

X86 Stack

Memory

Address

Value

XxFFFF FFFC

Reg

xFFFF FFF8

x0000 0004

xFFFF FFF4

x0000 0003

xFFFF FFFO

x0000 0000

rsp X7FFF FFFF FFFF FFEC
rax x??7?7?7 77770000 O00E \

xFFFF FFEC

x0000 000E

pushq %eax

subq $8,%rsp

x0000 0004

movq %eax,(%rsp)

x0000 0000

Binghamton CS-220

University Spring 2019

Stack Etiquette

* Rule 1: Push first
* Rule 2: Everything I push, I will also pop

* [f I follow etiquette, I can be intervening code

Intervening Code

Binghamton CS-220

University Spring 2019

Use the stack for Function Invocation

* When a function is invoked, it's preamble pushes invocation
specific information on the stack

* When a function returns, the function specific information is
popped off the stack, and the stack is restored to caller’s state

* The information associated with a functlon 1nvocat10n is called an
invocation record, or “stack frame” [FES

Binghamton

University

CS-220
Spring 2019

Stack Frame

Reg

rbp x7FFF FFFF FFFF FFES
rsp x7FFF FFFF FFFF FFD8

rax X000 00140

Current Frame:
Eight byte words
between addresses
in %rbp and %rsp

x0000 0004

x0000 0000

Previous Frame
directly above
current frame

Binghamton CS-220

University Spring 2019

Example Call Stack

1. int addem(int x, inty);
m=) 2. int main() {

3. int a=addem(3,4);
a=addem(a,4);
return O;

args vars

4
5.

6.}
7. int addem(int x, inty) { return x+v;}

13

Binghamton CS-220

University Spring 2019

What's In a Stack Frame?

* Information to restore caller’s stack frame
* Space for Local Variable Values

* Space for saved state

* Space for parameter copies

* Return address (when calling functions)

Binghamton CS-220
University Spring 2019

How Big Is a Stack Frame?

Info Size

Caller’s frame info 8 bytes

Local Variables ? (different for each function)

Copies of Parameter Values ifferent for each function)

Saved State ? (different for each function)

Return Address 8 bytes (if needed)
Total 8+77?

Binghamton CS-220

University Spring 2019

When | am called...

* My caller’s stack frame is still active
* [need to save information about my callers frame
* [need to create my own stack frame

Binghamton CS-220

University Spring 2019

At entry to "main’ Caller's (05)

stack frame

%rbp Address

Value (64 bit)
0000 7FFF FFFF EB80 00000 0000
pushq %rbp ; Save caller’s base 0000 7FFF FFFF E878 B8

movq %rsp, %rbp ; Reset %rbp to my ba 0000 7FFF FFFF E870 (0000 0000 0000 0000
subq $32, %rsp ; Reset %rsp to frame o= 0000 7EFF F7AS 2BAS
0000 7FFF FFFF EB60 0000 0000 0000 0000
0000 7FFF FFFF E858 0000 0000 0000 0000
0000 7FFF FFFF E850 0000 7FFF FFFF E940
0000 7FFF FFFF E848 0000 0000 0040 0450
0000 7FFF FFFF E840 0000 0000 0040 06CO
0000 7FFF FFFF E838 0000 0000 0000 0000

Binghamton CS-220

University Spring 2019

Main’s Preamble Caller's (05)

stack frame

%rbp Address Value (64 bit)

0000 7FFF FFFF E880
pushq %rbp ; Save caller’s base 0000 7FFF FFFF E878
movq %rsp, %rbp ; Reset %rbp to my base 0000 7FFF FFFF E870 (0000 0000 0000 0000
subq $32,%rsp ; Reset %rsp to frame size 0000 7FFF FFFF E868 (0000 7FFF F7A5 2B45
0000 7FFF F 0000 7FFF FFFF E888
m&:ﬁg 0000 0000 0000 0000
0000 7FFF FFFF E850 0000 7FFF FFFF E940
0000 7FFF FFFF E848 0000 0000 0040 0450

0000 7FFF FFFF E840 0000 0000 0040 06CO
0000 7FFF FFFF E838 0000 0000 0000 0000

Binghamton CS-220

University Spring 2019

Main’s Preamble Caller's (05)

stack frame

Value (64 bit)

0000 7FFF FFFF EB80 00000 0000

pushq %rbp ; Save caller’s base 2000 7FFF FFFF E878 F FF
movq %rsp, %rbp ; Reset %rbp to my base 0000 FFFF E870 (0000 0000 0000 0000
Sihe i s i e e 0000 7FFF FFFRES68 (0000 7FFF F7A5 2B45
0000 7FFE F 0000 7FFF FFFF E888
0000 7FFF FEJ 0000 0000 0000 0000
F FFFF E850 0000 7FFF FFFF E940

main’s 0000 7FFF FFFF E848 0000 0000 0040 0450
stack frame 0000 7FFF FFFF E840 0000 0000 0040 06CO
0000 7FFF FFFF E838 0000 0000 0000 0000

Binghamton CS-220

University Spring 2019

Main’s Preamble Caller's (05)

stack frame

Value (64 bit)

0000 7FFF FFFF EB80 00000 0000

pushq %rbp ; Save caller’s base 2000 7FFF FFFF E878 F FF
movq %rsp, %rbp ; Reset %rbp to my base 0000 FFFF E870 (0000 0000 0000 0000
f‘rﬁ’a‘}n 8 g ?fsffgcsgons Reset %rsp to frame size 0000 7FFF FFFRES68 (0000 7FFF F7A5 2B45
main’s 0000 7FFF FFFF E860 |0000 7FFF FFFF E888

stack frame 2000 7FFF FFFF E858 (0000 0000 0000 0000

0000 7FFF 0000 7FFF FFFF E940
0000 7FFF FFFF E848 (0000 0000 0040 0450
0000 7FFF 0000 0000 0040 06CO
0000 7FFF FFFF E838 0000 0000 0000 0000

Binghamton CS-220

University Spring 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {
lnv Fn vars Ret
‘ 3. int a:addem(314); 3.10 addem x=3,y=4
4. a=addem(a,4); v |Fn |args [vars |Ret
5. return O; 0S main a=
6.}

7. int addem(int x, inty) { return x+v;}

21

Binghamton CS-220

University Spring 2019

I In’ d -

n m a I n S CO e stack frame Address Value (64 bit)
0000 7FFF FFFEE)000-G600 000678000
0000 7FFF FFFF E868 |0000 7FFF F7A5 2B45
0000 7FFF FFFF E860 | 0000 7FFF FFFF E888
S 2 it E858 | 0000 0004 0000 0000
4005D4 callq addem ; at 400621 BESEE@iENNE 0000 7FFF FFFF E850 | 0000 0010 FFFF E940
4005D9mov Y%eax-08x(%rbp) 0000 7FFF FFFF E848 | 0000 0002 0040 0450
0000 7FFF FFFF E840 | 0000 7FFF FFFF E948
0000 7FFF FFFF E838 0000 0000 0000 0000
0000 7FFF FFFF E830 0000 0000 0000 0000
0000 7FFF FFFFE828 0000 0010 0000 0010
0000 7FFF FFFF E820 0000 0000 0000 0000
0000 7FFF FFFF E818 0000 0010 0000 0010
0000 7FFF FFFFE810 0000 7FFF FFFF E940

pushq %rip

jmp add

Binghamton CS-220
University Spring 2019

(0S)

.)
In main’s code stack frame Address Value (64 bit)

0000 7FFF FFFEE)000-G600 000678000
0000 7FFF FFFF E868 | 0000 7FFF F7A5 2B45
0000 7FFF FFFF E860 | 0000 7FFF FFFF E888
S 2 it E858 | 0000 0004 0000 0000
4005D4 callq addem ; at 400621 BESEE@iENNE 0000 7FFF FFFF E850 | 0000 0010 FFFF E940
4005D9mov Y%eax-08x(%rbp) 0000 7FFF FFFF E848 | 0000 0002 0040 0450

0000 7FFF FFFF E840 | 0000 7FFF FFFF E948
0000 0000 0040 05D9
0000 7FFF FFFFE830 0000 0000 0000 0000
0000 7FFF FFFFE828 0000 0010 0000 0010
0000 7FFF FFFF E820 0000 0000 0000 0000
0000 7FFF FFFFE818 0000 0010 0000 0010
0000 7FFF FFFF E810 0000 7FFF FFFF E940

Binghamton CS-220

University Spring 2019

addem,s pream ble staciof?ime

0000 7FFF FFFF E870

%rbp 0000 7FFF FFFF E868 | 0000 7FFF F7A5 2B45

0000 7FFF FFFF E860 | 0000 7FFF FFFF E888

pushq %rbp main’s = L E858 | 0000 0004 0000 0000
movq %rsp, %rbp stack frame 0000 7FFF FFFF E850 |[0000 0010 FFFF E940
0000 7FFF FFFF E848 | 0000 0002 0040 0450
0000 7FFF FFFF E840 | 0000 7FFF FFFF E948

0000 0000 0040 05D9
0000 7FFF FFFFE830 0000 7FFF FFFF E860
0000 7FFF FFFFE828 0000 0010 0000 0010
0000 7FFF FFFF E820 0000 0000 0000 0000
0000 7FFF FFFFE818 0000 0010 0000 0010
0000 7FFF FFFFE810 0000 7FFF FFFF E940

Binghamton

University

addem’s preamble

pushq
movq

%rbp
%rsp, Y%rbp

%rbp

main’s
stack frame

(0S)

stack frame

0000 7FFF FFFF E870
0000 7FFF FFFF E868
0000 7FFF FFFF E860
E858
0000 7FFF FFFF E850
0000 7FFF FFFF E848
0000 7FFF FFFF E840
0000 7FFF FFFF E838
0000 7FF FE830
0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810

CS-220
Spring 2019

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888

0000 0004 0000 0000

0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9
0000 7FFF FFFF E860

0000 0010 0000 0010
0000 0000 0000 0000
0000 0010 0000 0010
0000 7FFF FFFF E940

Binghamton

CS-220

University

addem,s pream ble stacg)é;me

pushq
movq

%rbp
%rsp, %rbp

2 'l,]“ngs

Spring 2019

0000 7FFF FFFF E870

0000 7FFF FFFF E868

0000 7FFF FFFF E860
main’s _ i £858
0000 7FFF FFFF E850
0000 7FFF FFFF E848
0000 7FFF FFFF E840
000077

nnNnN 7FF

stack frame

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888
10000 0004 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9

0000 7FFF FFFF E860

[addem’s

stack frame 0000 7FFF FFFF E828

0000 7FFF FFFF E820

UJUUU 318

0000 7FFF FFFF E810

the

“red zone”

0000 0010 0000 0010
0000 0000 0000 0000
0000 0010 0000 0010
0000 7FFF FFFF E940

Binghamton CS-220

University Spring 2019

The “red zone”

* 128 bytes (16 addresses) below %rsp (below stack)

* Operating system will not modify the red zone
* Any asynchronous interrupts may not modify the red zone! ~

e If this function does not invoke other functions (leaf function) it
may use the red zone WITHOUT modifying %rsp

* If lower level functions are called, the red zone would get modified

* gcc uses the red zone for local variables, parameters, and saved
registers for leaf functions

* Saves instructions to modify %rsp in entry and return

CS-220
Spring 2019

Binghamton

University

Return from adde

(0S)
stack frame
0000 7FFF FFFF E870
0000 7FFF FFFF E868
FFFF E860
0000 7FFF FFFF E858

2 'l,]“ngs

0000 7FFF F7A5 2B45
0000 7FFF FFFF E888

main’s
stack frame

movl +12(%rbp), %eax; save return value 0000 0004 0000 0000
popq %rbp ; restore main’s stack frame 0000 7FFF FFFF E850 |0000 0010 FFFF E940
ret

0000 7FFF FFFF E848
0000 7FFF FFFF E840
000077

nnNnN 7FF

addem’s

stack frame

“red zone”

0000 7FFF FFFF E828
0000 7FFF FFFF E820

0000 7FFF FFFF E810

0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9

0000 7FFF FFFF E860

0000 0010 0000 0010
0000 0000 0000 0000
0000 0007 0000 0000
0000 7FFF FFFF E940

Binghamton

University

return from addem

(0S)

%rbp

movl -12(%rbp), %eax; save return value
popq %rbp ; restore main'’s stack frame

ret ; return to main
main’s

stack frame

stack frame

0000 7FFF FFFF E870
0000 7FFF FFFF E868

0000 7FFF F :
0000 7FFF FFFF E858

0000 7EEFE EELL l"n:;o

CS-220
Spring 2019

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888
0000 0004 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9

0000 7FFF FFFF E860

the

“red zone”

0000 7FFF FFFF E820

UJUUU 318

N
was add’s 0000 7FFF FFFF E828
stack frame

0000 7FFF FFFF E810

0000 0000 0000 0004
0000 0004 0000 0000
0000 0007 0000 0000

0000-7FFF FFEFE940

Binghamton

CS-220

University

return from addem

4005D4 callq
4005D9 mov

addem ; at 400621
%eax,-08x(%rbp)

main’s
stack frame

(0S)

stack frame

0000 7FFF FFFF E870
0000 7FFF FFFF E868

U000 7FFF FFFF E848
0000 7FFF FFFF E84
7FFF FFFF E838
0000 7FFF FFFF E830
0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810

Spring 2019

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888
0000 0007 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948

0000 0000 0040 05D9
0000 7FFF FFFF E860
0000 0000 0000 0004
0000 0004 0000 0000
0000 0007 0000 0000
0000 7FFF FFFF E940

Binghamton CS-220

University Spring 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {
m=) 3. int a=addem(3,4);
4. a=addem(a,4); v |Fn_ jargs |vars |Ret _
5. return O; 05| imain a=7
6.}

7. int addem(int x, inty) { return x+v;}

31

Binghamton

University

leave ; restore OS stack frame

ret

return from main

popq

movqa %rbp,%Trsp

%rbp

stack frame

(0S)

stack frame

0000 7FFF FFFF E870
0000 7FFF FFFF E868

U000 7FFF FFFF E848
0000 7FFF FFFF E840_

7FFF FFFF E838
0000 7FFF FFFF E830

0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810

CS-220
Spring 2019

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888
0000 0007 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948

0000 0000 0040 05D9
0000 7FFF FFFF E860
0000 0000 0000 0004
0000 0004 0000 0000
0000 0007 0000 0000
0000 7FFF FFFF E940

Binghamton

University

leave ; restore OS stack frame

ret

return from main

movq
DOPCAO

%rbp,%rsp
%rbp

(0S)

stack frame

main’s
stack frame

0000 7FFF FFFF
0000 7FFF FFFF E868

V000 7FFF FFFF E848
0000 7FFF FFFF E840
0000 7FFF FFFF E838
0000 7FFF FFFF E830
0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810

CS-220
Spring 2019

Value (64 bit)

0000 7FFF F7A5 2B45

0000 7FFF FFFF E888

0000 0007 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9
0000 7FFF FFFF E860
0000 0000 0000 0004
0000 0004 0000 0000
0000 0007 0000 0000
0000 7FFF FFFF E940

Binghamton

University

return from main

(0S)

stack frame

000 7FFF FFFF E850
0000 7FFF FFFF E848
0000 7FFF FFFF E840
0000 7FFF FFFF E838
0000 7FFF FFFF E830
0000 7FFF FFFF E828
0000 7FFF FFFF E820
0000 7FFF FFFF E818
0000 7FFF FFFF E810

0000 7FFF F7A5 2B45

CS-220
Spring 2019

Value (64 bit)

0000 7FFF FFFF E888
0000 0007 0000 0000
0000 0010 FFFF E940
0000 0002 0040 0450
0000 7FFF FFFF E948
0000 0000 0040 05D9
0000 7FFF FFFF E860
0000 0000 0000 0004
0000 0004 0000 0000
0000 0007 0000 0000
0000 7FFF FFFF E940

