
Binghamton

University

CS-220

Spring 2019

X86 Debug

Computer Systems Section 3.11

Binghamton

University

CS-220

Spring 2019

GDB is a “Source Level” debugger

• We have learned how to debug at the C level

• But the machine is executing X86 object code!

• How does GDB play the shell game?
• Makes it seem like we execute C code

• Actually we are executing X86 Assembler Code

• How do we debug at the X86 level?

Binghamton

University

CS-220

Spring 2019

Simple C Function

int add(int x, int y) {
int op1=x;
int op2=y;
int res=op1+op2;
return res;

}

Binghamton

University

CS-220

Spring 2019

gcc -O0 -S x86Math.c

x86Math.c

int add(int x, int y) {

int op1=x;

int op2=y;

int res=op1+op2;

return res;

}

x86Math.s
.globl add

.type add, @function

add:

.LFB3:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

…

movl -12(%rbp), %eax

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE3:

.size add, .-add

Binghamton

University

CS-220

Spring 2019

gcc –O0 -g -Wall -fverbose-asm
-Wa,-adhln=x86Math.s x86Math.c

x86Math.c

int add(int x, int y) {

int op1=x;

int op2=y;

int res=op1+op2;

return res;

}

x86Math.s
132 .globl add

134 add:

32:x86Math.c **** int add(int x, int y) {

136 .loc 1 32 0

137 .cfi_startproc

138 00db 55 pushq %rbp #

139 .cfi_def_cfa_offset 16

140 .cfi_offset 6, -16

141 00dc 4889E5 movq %rsp, %rbp #,

…

36:x86Math.c **** return res;

156 .loc 1 36 0

157 00fc 8B45F4 movl -12(%rbp), %eax

res, D.2781

37:x86Math.c **** }

158 .loc 1 37 0

159 00ff 5D popq %rbp #

160 .cfi_def_cfa 7, 8

161 0100 C3 ret

162 .cfi_endproc

Binghamton

University

CS-220

Spring 2019

add x86 view

int add(int x, int y) {

int op1=x;

int op2=y;

int res=op1+op2;

return res;

}

pushq %rbp
movq %rsp, %rbp
movl %edi, -20(%rbp)
movl %esi, -24(%rbp)

Memory

xFFFF E860

op1 xFFFF E85C x0000 0000

op2 xFFFF E858 x0000 0004

res xFFFF E854 x0000 0004

xFFFF E850

x xFFFF E84C x0000 0000

y xFFFF E848 x0000 0004

…

Reg Value

rbp x7FFF FFFFF FFFF E860

rdi x0000 0000 0000 0000

rsi x0000 0000 0000 0004

rax temp-> x0000 0004

rdx temp

movl -20(%rbp), %eax
movl %eax, -4(%rbp)

movl -24(%rbp), %eax
movl %eax, -8(%rbp)

movl -4(%rbp), %edx
movl -8(%rbp), %eax
addl %edx, %eax
movl %eax, -12(%rbp)

movl -12(%rbp), %eax

popq %rbp
ret

Binghamton

University

CS-220

Spring 2019

Instruction in Memory

400621: 55 push %rbp

400622: 48 89 e5 mov %rsp,%rbp

400625: 89 7d ec mov %edi,-0x14(%rbp)

400628: 89 75 e8 mov %esi,-0x18(%rbp)

40062b: 8b 45 ec mov -0x14(%rbp),%eax

40062e: 89 45 fc mov %eax,-0x4(%rbp)

400631: 8b 45 e8 mov -0x18(%rbp),%eax

400634: 89 45 f8 mov %eax,-0x8(%rbp)

400637: 8b 55 fc mov -0x4(%rbp),%edx

40063a: 8b 45 f8 mov -0x8(%rbp),%eax

40063d: 01 d0 add %edx,%eax

Memory

xFFFF E860

op1 xFFFF E85C x0000 0004

op2 xFFFF E858 x0000 0003

xFFFF E854

xFFFF E850

x xFFFF E84C x0000 0000

y xFFFF E848 x0000 0004

…

35 0040 0638 x55fc 8b45

0040 0634 x8945 f88b

34 0040 0630 xfc8b 45e8

0040 062C x45ec 8945

33 0040 0628 x8975 e88b

0040 0624 xe589 7dec

32 0040 0620 x??55 4889

Binghamton

University

CS-220

Spring 2019

Displaying x86 instructions

(gdb) disas[semble] [/m]

• prints object and x86 assembler version of current function

• /m – include C symbols/instructions when available

Binghamton

University

CS-220

Spring 2019

Example of disassemble with debug
(gdb) disassemble /m
Dump of assembler code for function add:
32 int add(int x, int y) {

0x0000000000400621 <+0>: push %rbp
0x0000000000400622 <+1>: mov %rsp,%rbp
0x0000000000400625 <+4>: mov %edi,-0x14(%rbp)
0x0000000000400628 <+7>: mov %esi,-0x18(%rbp)

33 int op1=x;
=> 0x000000000040062b <+10>: mov -0x14(%rbp),%eax

0x000000000040062e <+13>: mov %eax,-0x4(%rbp)
34 int op2=y;

0x0000000000400631 <+16>: mov -0x18(%rbp),%eax
0x0000000000400634 <+19>: mov %eax,-0x8(%rbp)

35 int res=op1+op2;
0x0000000000400637 <+22>: mov -0x4(%rbp),%edx
0x000000000040063a <+25>: mov -0x8(%rbp),%eax
0x000000000040063d <+28>: add %edx,%eax
0x000000000040063f <+30>: mov %eax,-0xc(%rbp)

36 return res;
0x0000000000400642 <+33>: mov -0xc(%rbp),%eax

37 }
0x0000000000400645 <+36>: pop %rbp
0x0000000000400646 <+37>: retq

End of assembler dump.

Address of
x86 Instruction

Offset from start
of function

x86 instruction

Next instruction
waiting to execute

C line number
C Instruction

Binghamton

University

CS-220

Spring 2019

(gdb) b add
Breakpoint 1 at 0x400625
(gdb) run 4
Starting program: /import/linux/home/tbartens/CS220/lab07_sol/x86Math 4
Breakpoint 1, 0x0000000000400625 in add ()
(gdb) disassemble /m
Dump of assembler code for function add:

0x0000000000400621 <+0>: push %rbp
0x0000000000400622 <+1>: mov %rsp,%rbp

=> 0x0000000000400625 <+4>: mov %edi,-0x14(%rbp)
0x0000000000400628 <+7>: mov %esi,-0x18(%rbp)
0x000000000040062b <+10>: mov -0x14(%rbp),%eax
0x000000000040062e <+13>: mov %eax,-0x4(%rbp)
0x0000000000400631 <+16>: mov -0x18(%rbp),%eax
0x0000000000400634 <+19>: mov %eax,-0x8(%rbp)
0x0000000000400637 <+22>: mov -0x4(%rbp),%edx
0x000000000040063a <+25>: mov -0x8(%rbp),%eax
0x000000000040063d <+28>: add %edx,%eax
0x000000000040063f <+30>: mov %eax,-0xc(%rbp)
0x0000000000400642 <+33>: mov -0xc(%rbp),%eax
0x0000000000400645 <+36>: pop %rbp
0x0000000000400646 <+37>: retq

End of assembler dump.

gdb w/o
debug

Notice… break in add
AFTER function entry!

Binghamton

University

CS-220

Spring 2019

GDB at the Assembly Level

• To step through C code, use “step” or “next”

• To step through code at the X86 Assembly level use “stepi” or
“nexti”

• Executes a single x86 instruction

• If that instruction is a function call (mnemonic “call”)
• nexti stops when that function returns

• stepi stops at the first instruction in the function

Binghamton

University

CS-220

Spring 2019

Continuous x86 Assembler Print

• When I debug at the C level, gdb prints out the C instruction it is
about to execute

• When I do “stepi” or “nexti”, all I get is an address…

• Until I execute:

(gdb) set disassemble-next-line on

Binghamton

University

CS-220

Spring 2019

Stepping through C/x86 code

• With debug, step executes to next (debugged) C instruction
• If you invoke a function that was compiled without debug, skips that

function!

• Without debug, step moves to next (debugged) C instruction
• If code compiled without –g, executes until main ends

• Practically Useless!

• Alternatives : nexti and stepi
• Executes to the next x86 instruction

• nexti skips function calls

• stepi steps into functions [but might be protected (invisible) code!]

Binghamton

University

CS-220

Spring 2019

Avoid Stepping Into Protected/Lib Code

• If you do, stepi continues to work…

• But you can’t see where you are

• You can’t see the instructions you are executing

• You may use the “finish” command to continue this function until it
returns to its caller

Binghamton

University

CS-220

Spring 2019

stepi with disassemble-next-line

(gdb) set disassemble-next-line on
=> 0x0000000000400615 <main+207>: e8 f6 fd ff ff callq 0x400410 <printf@plt>
(gdb) stepi
0x0000000000400410 in printf@plt ()
=> 0x0000000000400410 <printf@plt+0>: ff 25 52 07 20 00 jmpq *0x200752(%rip) # 0x600b68 <printf@got.plt>
(gdb)
0x0000000000400416 in printf@plt ()
=> 0x0000000000400416 <printf@plt+6>: 68 00 00 00 00 pushq $0x0
(gdb) finish
Run till exit from #0 printf@plt ()

at ../sysdeps/x86_64/dl-trampoline.S:41
x=4, x squared - 4x + 4 =4 divided by x-2=2
0x000000000040061a in main ()
=> 0x000000000040061a <main+212>: b8 00 00 00 00 mov $0x0,%eax
(gdb)

library function
x86 instructions
library function
x86 instructions

Binghamton

University

CS-220

Spring 2019

Breakpoints in X86

• Its no fun to step through an entire program.

• I want to set a breakpoint… but there is no line number
• Especially if there is no debug turned on!

• (gdb) break *<address>

• Sets a breakpoint at a specific instruction address
• To specify a hexadecimal address, use “0x” prefix!

Binghamton

University

CS-220

Spring 2019

break at addr
(gdb) disassemble
Dump of assembler code for function add:

0x0000000000400621 <+0>: push %rbp
0x0000000000400622 <+1>: mov %rsp,%rbp

=> 0x0000000000400625 <+4>: mov %edi,-0x14(%rbp)
0x0000000000400628 <+7>: mov %esi,-0x18(%rbp)

…
End of assembler dump.
(gdb) break *0x400621
Breakpoint 3 at 0x400621
(gdb) run 4
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /import/linux/home/tbartens/CS220/lab07_sol/x86Math 4

Breakpoint 3, 0x0000000000400621 in add ()
=> 0x0000000000400621 <add+0>: 55 push %rbp
(gdb)

Binghamton

University

CS-220

Spring 2019

Register Information

• (gdb) info reg

• Displays x86 regs and values

• Individual registers can be
used like variables

• Use “$” prefix

• e.g. print $eax

• or print *((int *)$rbp-4)

(gdb) info reg
rax 0x0 0
rbx 0x0 0
rcx 0x0 0
rdx 0x10 16
rsi 0x4 4
rdi 0x0 0
rbp 0x7fffffffe860 0x7fffffffe860
rsp 0x7fffffffe838 0x7fffffffe838
r8 0x7ffff7dd6f20 140737351872288
r9 0x7fffffffebf0 140737488350192
r10 0x0 0
r11 0x4 4
r12 0x400450 4195408
r13 0x7fffffffe940 140737488349504
r14 0x0 0
r15 0x0 0
rip 0x400621 0x400621 <add>
eflags 0x246 [PF ZF IF]
cs 0x33 51
ss 0x2b 43
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0

Binghamton

University

CS-220

Spring 2019

Memory
• (gdb) x /nfu address_expression

• eXamines memory starting at address_expression using format nfu
• n - Number of values to print

• f - Format:

• u - Unit size (width)

• address_expression can be
• Constant, e.g. (gdb) x /4i 0x1004011b5

• Register, e.g. (gdb) x /4i $eip

• Pointer variable, e.g. (gdb) x /8cb argv[0]

• Expression, e.g. (gdb) x /d $rbp-0x20

f

x hexadecimal

d decimal

u unsigned dec

f floating point

a address

c character

s string

i instruction

u

b 1 8

h 2 16

w 4 32

q 8 64

Binghamton

University

CS-220

Spring 2019

Examine Examples

(gdb) p $rbp
$2 = (void *) 0x7fffffffe860
(gdb) x /10dw $rbp-32
0x7fffffffe840: -5816 32767 4195408 2
0x7fffffffe850: -5824 16 0 4
0x7fffffffe860: 0 0
(gdb) x /10xw $rbp-32
0x7fffffffe840: 0xffffe948 0x00007fff 0x00400450 0x00000002
0x7fffffffe850: 0xffffe940 0x00000010 0x00000000 0x00000004
0x7fffffffe860: 0x00000000 0x00000000
(gdb) x /s 0x400760
0x400760: "x=%d, x squared - 4x + 4 =%d divided by x-2=%d\n"
(gdb) x /4i $rip
=> 0x400621 <add>: push %rbp

0x400622 <add+1>: mov %rsp,%rbp
0x400625 <add+4>: mov %edi,-0x14(%rbp)
0x400628 <add+7>: mov %esi,-0x18(%rbp)

10 decimal 4 byte numbers
starting at %rbp-32

same, but in hex

null terminated string
starting at 0x400760

next 4 x86 instructions

Binghamton

University

CS-220

Spring 2019

Don’t Forget Other Cool GDB stuff

(gdb)break *0x080483c3 if $eax > 13

(gdb) commands

x /4dw $rsp

stepi

end

(gdb)

Binghamton

University

CS-220

Spring 2019

Parameter Passing Conventions

• Parameters are put into the following registers by the caller:
• (Parameters which don’t fit are pushed on the stack)

• Arguments are read from these registers by the callee
• (Parameters which don’t fit are read from caller’s stack frame)

Parm 1 Parm 2 Parm 3 Parm 4 Parm 5 Parm 6

%rdi %rsi %rdx %rcx %r8 %r9

Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

Binghamton

University

CS-220

Spring 2019

Return Value Convention

• Callee will put return value in %rax before return

• Caller can read return value from %rax after return

Binghamton

University

CS-220

Spring 2019

Working on the Bomb Project

• Use gdb (at X86 level)

• Abstract as much as possible
• If you invoke a function called “compare_two_strings”, don’t step into that

function…. you can guess what it does

• Look up X86 assembler you don’t understand
• e.g. “test %eax,%eax” – bitwise and’s %eax with itself to set condition

codes

• e.g. “bne <label>” – branch not equal… branches if ZF is off

• The two together are an idiom for “branch if %eax is not zero” (and %eax
is the 32 bit return value from a called function)

