Binghamton CS-220

University Spring 2019

X86 Debug

Computer Systems Section 3.11

Binghamton CS-220

University Spring 2019

GDB is a "Source Level” debugger

* We have learned how to debug at the C level
* But the machine is executing X86 object code!
* How does GDB play the shell game?

* Makes it seem like we execute C code
* Actually we are executing X86 Assembler Code

* How do we debug at the X86 level?

Binghamton €5-220

University Spring 2019

Simple C Function

int add(int x, inty) {
int opl=x;
iInt op2=y;
int res=opl+op?2;
return res;

Binghamton CS-220

University Spring 2019

gcc -00 -S x86Math.c

x86Math.c

int add(int x, inty) {

Int opl =Xx;
int op2=y;

int res=opl+op2;

return res:

x86Math.s

.globl add
type add, @function
add:
.LFB3:
.cfi_startproc
pushq %rbp
.cfi_def cfa_offset 16
.cfi_offset 6, -16
mov(q %rsp, %rbp
.cfi_def cfa_register 6

movl -12(%rbp), Y%eax
popq %rbp
.cfi_def cfa7,8
ret
.cfi_endproc
.LFES3:
.Size add, .-add

Binghamton CS-220

University Spring 2019

gcc —O0 -g -Wall -fverbose-asm
-Wa,-adhln=x86Math.s x86Math.c

x86Math.c x86Math.s
INnt add(l nt X, Int Y) { 2 " globl add

32:x86Math.c **** int add(int x, inty) {

I — " 136 loc1320
| nt O p] =X) 137 .cfi_startproc
. 2 138 00db 55 pushq %rbp #
—\" 139 .cfi_def cfa_offset 16
I nt O p y’ 140 .cfi_offset 6, -16
. _ 141 00dc 4889E5 mov(q %rsp, %rbp #,
int res=opl+op2; .
36:x86Math.c **** return res;
. 156 doc1360
return res : 157 00fc 8B45F4 movl -12(%rbp), Y%eax
#res, D.2781
37:x86Math.c **** 1}
} 158 dloc1370
159 00ff 5D popq %rbp #
160 .cfi_def cfa7,8
161 0100 C3 ret

162 .cfi_endproc

Binghamton

CS-220

University

add x86 view

int add(int x, int y)

int opl=x;

—

Spring 2019

Memory

pushq
mov(q
movl
movl

%rbp

%rsp, %rbp
%edi, —20(%rbp)
%esi, —24(%rbp)

xFFFF E860

opl

xFFFF E85C

x0000 0000

op2

xFFFF E858

x0000 0004

movl

movl

]

-20%rbp), %eax
%eax, —4(%rbp)

res

xFFFF E854

x0000 0004

xFFFF E850

/ movl

int op2=y;

intre&=op1+op2;<:i::
return res;\~\§§§t::::::::

} \

movl

-24(%rbp), %eax
%eax, —8(%rbp)

XFFFF E84C

x0000 0000

xFFFF E848

x0000 0004

movl

movl
addl

-4(%rbp), %edx
-8(%rbp), %eax
%edx, %eax

@d\%eax, -12%rbp)

movl -12%rbp), %eax
popg %rbp
ret

‘iiiilIiiHHIIIIIIIIIIIIIII

rbp
rdi
rsi
rax

rdx

x7FFF FFFFF FFFF E860

x0000 0000 0000 0000

x0000 0000 0000 0004

temp->

temp

x0000 0004

Binghamton CS-220
University Spring 2019
Instruction iIn Memory Memory
xFFFF E860
opl | xFFFF E85C | x0000 0004
400621: |55, push %rbp op2 | xFFFF E858 | x0000 0003
400622: |4889e5. mov %rsp,%rbp —
400625: |89 7d ee: ov %edi,-0x14(%rbp) e ——
400628: 89 75¢e Ooesi,-OX18(%rbp) x | xFFFF E84C ' x0000 0000
40062b: 8b45ec %rbp),%eax y | xFFFF E848 | x0000 0004
40062e: 89 45 fc mov % %rbp)
400631: 8b 45 e8 mov -0x18(% ax 35| 0040 0638 | x55fc 8b45
400634: 89 45 {8 mov %eax,-0x8(%r 0040 0634 | x8945 f88b
400637: 8b 55 fc mov -0x4(%rbp),%edx 34 | 0040 0630 | xfc8b 458
40063a: 8b 45 {8 mov -0x8(%rbp),%eax 40 062C | x45ec 8945
40063d: 01dO0 add %edx,%eax 33 0 x8975 e88b
0040 mmfa 7dec
32| 0040 0620 | x?755 4889

Binghamton CS-220

University Spring 2019

Displaying x86 Instructions

(gdb) disas[semble| [/m]|

* prints object and x86 assembler version of current function
* /m - include C symbols/instructions when available

Binghamton
University

CS-220
Spring 2019

Example of disassemble with debug

C line number

Next instruction
waiting to execute

Address of
x86 Instruction

(gdb) disassemble /m

Dump of assembler code for function add:

32 int add(intx, inty) {
0x0000000000400621 <+0>:
0x0000000000400622 <+1>:
0x0000000000400625 <+4>:
0x0000000000400628 <+7>:

33 int opl=x;

push
mov
mov
mov

%rbp

%rsp,%rbp
%edi,-0x14(%rbp)
%esi,-0x18(%rbp)

=> 0x000000000040062b <+10>: mov -0x14(%rbp),%eax

0x000000000040062e <+13>:

34 int op2=y;

0x0000000000400631 <+16>:
0x0000000000400634 <+19>:

35 int res=opl-+op2;

0x0000000000400637 <+22>:
0x000000000040063a <+25>:
0x000000000040063d <+28>:

0x000000000040063f <+30>:
36 return res;

0x0000000000400642 <+33>:

37)

0x0000000000400645 <+36>:
0x0000000000400646 <+37>:

End of assembler dump.

mov

mov
mov

mov

mov
add
mov

mov

pop
retq

%eax,-0x4 (%rbp)

-0x18(%rbp),%eax
%eax,-0x8(%rbp)

-0x4(%rbp),%edx
-0x8(%rbp),%eax
%edx,%eax
%eax,-0xc(%rbp)
-0xc(%rbp),%eax

%rbp

C Instruction

xX86 instruction

Offset from start
of function

Binghamton
University

Notice... break in add
AFTER function entry!

CS-220
Spring 2019

(gdb) b add

Breakpoint 1 at 0x400625

(gdb) run 4

Starting program: /import/linux/home/tbartens/CS220/lab07_sol/x86Math 4

Breakpoint 1, 0x0000000000400625 in add ()

(gdb) disassemble /m

Dump of assembler code for function add:
0x0000000000400621 <+0>: push %rbp
0x0000000000400622 <+1>: mov %rsp,%rbp

=> (0x0000000000400625 <+4>: mov %edi,-0x14(%rbp)
0x0000000000400628 <+7>: mov %esi,-0x18(%rbp)
0x000000000040062b <+10>: mov -0x14(%rbp),%eax
0x000000000040062e <+13>: mov %eax,-0x4(%rbp)
0x0000000000400631 <+16>: mov -0x18(%rbp),%eax
0x0000000000400634 <+19>: mov %eax,-0x8(%rbp)
0x0000000000400637 <+22>: mov -0x4(%rbp),%edx
0x000000000040063a <+25>: mov -0x8(%rbp),%eax
0x000000000040063d <+28>: add %edx,%eax
0x000000000040063f <+30>: mov %eax,-0xc(%rbp)
0x0000000000400642 <+33>: mov -0xc(%rbp),%eax
0x0000000000400645 <+36>: pop %rbp
0x0000000000400646 <+37>: retq

End of assembler dump.

Binghamton CS-220

University Spring 2019

GDB at the Assembly Level

* To step through C code, use “step” or “next”

* To step through code at the X86 Assembly level use “stepi” or
“nexti”
* Executes a single x86 instruction

e [f that instruction is a function call (mnemonic “call”)

* nexti stops when that function returns
* stepi stops at the first instruction in the function

Binghamton CS-220

University Spring 2019

Continuous x86 Assembler Print

* When I debug at the C level, gdb prints out the C instruction it is
about to execute

 When I do “stepi” or “nexti’, all [get is an address...

e Until I execute:

(gdb) set disassemble-next-line on

Binghamton CS-220

University Spring 2019

Stepping through C/x86 code

* With debug, step executes to next (debugged) C instruction
* If you invoke a function that was compiled without debug, skips that
function!
* Without debug, step moves to next (debugged) C instruction
* If code compiled without -g, executes until main ends
* Practically Useless!

 Alternatives : nexti and stepi
* Executes to the next x86 instruction
* nexti skips function calls
* stepi steps into functions [but might be protected (invisible) code!]

Binghamton CS-220

University Spring 2019

Avold Stepping Into Protected/Lib Code

* If you do, stepi continues to work...
* But you can’t see where you are
* You can't see the instructions you are executing

* You may use the “finish” command to continue this function until it
returns to its caller

Binghamton CS-220
University Spring 2019

stepl with disassemble-next-line

library function
xX86 instructions

(gdb) set disassemble-next-line on
=> (0x0000000000400615 <main+207>: e8f6 fd ff ff callg 0x400410 <printf@p!*
(gdb) stepi
0x0000000000400410 in printf@plt ()
=> 0x0000000000400410 <printf@plt+0>: {f255207 2000 jmpq *0x?”u752(%rip) # 0x600b68 <printf@got.plt>
(gdb)
0x0000000000400416 in printf@plt ()
=> 0x0000000000400416 <printf@plt+6>: 68 00 00 00 00 pushq $0x0
(gdb) finish
Run till exit from #0 printf@plt ()
at../sysdeps/x86_64/dl-trampoline.S:41
x=4, x squared - 4x + 4 =4 divided by x-2=2
0x000000000040061a in main ()
=> 0x000000000040061a <main+212>: b8 0000 00 00 mov $0x0,%eax

(gdb)

Binghamton CS-220

University Spring 2019

Breakpoints in X86

* Its no fun to step through an entire program.

* | want to set a breakpoint... but there is no line number
 Especially if there is no debug turned on!

* (gdb) break *<address>

* Sets a breakpoint at a specific instruction address
* To specify a hexadecimal address, use “0x” prefix!

Binghamton CS-220
University Spring 2019

break at addr

(gdb) disassemble

Dump of assembler code for function add:
0x0000000000400621 <+0>: push %rbp
0x0000000000400622 <+1>: mov %rsp,%rbp

=> 0x0000000000400625 <+4>: mov %edi,-0x14(%rbp)
0x0000000000400628 <+7>: mov %esi,-0x18(%rbp)

End of assembler dump.

(gdb) break *0x400621

Breakpoint 3 at 0x400621

(gdb) run 4

The program being debugged has been started already.

Start it from the beginning? (yorn) y

Starting program: /import/linux/home/tbartens/CS220/lab07_sol/x86Math 4

Breakpoint 3, 0x0000000000400621 in add ()
=> 0x0000000000400621 <add+0>: 55 push %rbp

(gdb)

Binghamton
University

Register Information

* (gdb) info reg
* Displays x86 regs and values

* Individual registers can be
used like variables
 Use “$” prefix
* e.g. print $eax
* or print *((int *)$rbp-4)

(gdb) info reg

rax
1g0);¢
rex
rdx
rsi
rdi
rbp
rsp
r8
ro
r10
ri1

ri2
r13
ri4
rls

rip
eflags

0x0 O

0x0 O

0x0 O

0x10 16

0x4 4

0x0 O

Ox7fftttffe860 O0x7ffftfffe860
Ox7ffttfffe838 O0x7ffftfffe838
Ox7fftf7dd6f20 140737351872288
Ox7ffttfffebf0 140737488350192
0x0 O

0x4 4

0x400450 4195408
Ox7fffffffe940 140737488349504
0x0 O

0x0 O

0x400621 0x400621 <add>
0x246 [PFZFIF]

0x33 51

0x2b 43

0x0 O

(0):(0]

0
0x0 O
0

0x0

CS-220

Spring 2019

Binghamton CS-220

University Spring 2019

Memory

* (gdb) x /nfu address_expression
» eXamines memory starting at address_expression using format nfu

e n- Number of values to print

e f- Format:

X hexadecimal
* u - Unitsize (width) Pl pr—
' u unsigned dec n
* address_expression can be f floating point b1 8
* Constant, e.g. (gdb) x /4i 0x1004011b5 1 address h 2 16
* Register; e.g. (gdb) x /4i $eip ¢ character w 4 32

* Pointer variable, e.g. (gdb) x /8cb argv|[0] — q 8 64
 Expression, e.g. (gdb) x /d $rbp-0x20

n

1 instruction

Binghamton
University

CS-220
Spring 2019

Examine Examples

10 decimal 4 byte numbers
starting at %rbp-32

same, but in hex

null terminated string
starting at 0x400760

next 4 x86 instructions

(gdb) p $rbp
$2 = (void *) Ox7fffffffe860

(gdb) x /10dw $rbp-32
Ox7fffffffe840: -5816 32767 4195408 2
Ox7fffffffe850: -5824 16 0 4
Ox7ftftftfe860: 0 0
(gdb) x /10xw $rbp-32
Ox7ftftftfe840: 0xffffe948 0x00007fff 0x00400450 0x00000002
Ox7ftftftfe850: 0xffffe940 0x00000010 0x00000000 0x00000004
0x7ftftfffe860: 0x00000000 0x00000000
(gdb) x /s 0x400760
0x400760: "x=%d, x squared - 4x + 4 =%d divided by x-2=%d\n"
(gdb) x /4i $rip
=> 0x400621 <add>: push %rbp
0x400622 <add+1>: mov %rsp,%rbp
0x400625 <add+4>: mov %edi,-0x14(%rbp)
0x400628 <add+7>: mov %esi,-0x18(%rbp)

Binghamton CS-220

University Spring 2019

Don’t Forget Other Cool GDB stuff

(gdb)break *0x080483c3 if $eax > 13
(gdb) commands

X /4dw $rsp

stepi

end

(gdb)

Binghamton CS-220

University Spring 2019

Parameter Passing Conventions

* Parameters are put into the following registers by the caller:
* (Parameters which don’t fit are pushed on the stack)

%rdi Oprsi Oprdx 0prex %r8 %r9

* Arguments are read from these registers by the callee
* (Parameters which don’t fit are read from caller’s stack frame)

Binghamton CS-220

University Spring 2019

Return Value Convention

* Callee will put return value in %rax before return

e Caller can read return value from %rax after return

Binghamton CS-220

University Spring 2019

Working on the Bomb Project

* Use gdb (at X86 level)

* Abstract as much as possible

* If you invoke a function called “compare_two_strings”, don’t step into that
function.... you can guess what it does

* Look up X86 assembler you don't understand

* e.g. “test %eax,%eax” - bitwise and’s %eax with itself to set condition
codes

* e.g. “bne <label>" - branch not equal... branches if ZF is off

* The two together are an idiom for “branch if %eax is not zero” (and %eax
is the 32 bit return value from a called function)

