
Binghamton

University

CS-220

Spring 2019

x86 Flow Control
Computer Systems Sections 3.3 - 3.6

Binghamton

University

CS-220

Spring 2019

Unconditional Jumps

jmp target

• If we were allowed to modify %rip, this would be like:
mov target,%rip

• Updates %rip register with the value of the target operand

• Next instruction fetched will be at target

• Alters “execute next sequential instruction”

Binghamton

University

CS-220

Spring 2019

X86 Instruction Cycle
Fetch

Instruction
@ RIP

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

Always
increments

RIP

jmp
modifies

%rip

Binghamton

University

CS-220

Spring 2019

Conditional Jumps

• If you always jumped, you would always execute the “then” block
or would always jump back to the start of a loop

• We need some way to tell x86 to jump under some conditions, but
not in others

• Conditional jump
• Sometimes updates %rip

• Sometimes leaves %rip untouched

Binghamton

University

CS-220

Spring 2019

Condition Code Registers

• Carry Flag =1 if most significant bit overflows (unsigned)

• Zero Flag = 1 if result bits are all zero

• Sign Flag = 1 if leftmost result bit is 1 (signed negative)

• Overflow Flag = 1 if result sign bit is incorrect
(op1+, op2+ res- or op1-, op2-, res+)

CF

ZF

SF

OF

ALU

Binghamton

University

CS-220

Spring 2019

Unsigned Conditional Jump Mnemonics

OpCode Description Interpretation

je jump if == True if ZF=1

jne jump if != True if ZF=0

ja jump if a> True if ZF=0 and CF=0

jae jump if a >= True if ZF=1 or CF=0

jb jump if b> True if ZF=0 and CF=1

jbe jump if b>= True if ZF=1 or CF=1

cmp b,a ; a’=a-b without setting destination

Warning: mnemonics assume cmp b,a, but other instructions may occur

Binghamton

University

CS-220

Spring 2019

Signed Conditional Jump Mnemonics

OpCode Description Interpretation

je jump a==b True if ZF=1

jne jump a!=b True if ZF=0

jg jump a>b True if ZF=0 and SF=0 and OF=0
or if ZF=0 and SF=1 and OF=1

jge jump a>=b True if SF=0 and OF=0
or if SF=1 and OF=1

jl jump a<b True if ZF=0 and SF=1 and OF=0
or if ZF=0 and SF=0 and OF=1

jle jump a<=b True if SF=1 and OF=0
or if SF=0 and OF=1

cmp b,a ; a’=a-b without setting destination

Binghamton

University

CS-220

Spring 2019

If/Then/Else

int xmpif(int a,int b) {

int c;

if (a>b)

c = a;

else

c = b;

return c;

}

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %eax

cmpl -24(%rbp), %eax

jle .L2

movl -20(%rbp), %eax

movl %eax, -4(%rbp)

jmp .L3

.L2: movl -24(%rbp), %eax

movl %eax, -4(%rbp)

.L3: movl -4(%rbp), %eax

popq %rbp

ret

See progIf.c in xmp_x86

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton

University

CS-220

Spring 2019

If/Then/Else

int xmpif(int a,int b) {

int c;

if (a>b)

c = a;

else

c = b;

return c;

}

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl -20(%rbp), %eax

cmpl -24(%rbp), %eax

jle .L2

movl -20(%rbp), %eax

movl %eax, -4(%rbp)

jmp .L3

.L2: movl -24(%rbp), %eax

movl %eax, -4(%rbp)

.L3: movl -4(%rbp), %eax

popq %rbp

ret

v

v

v

v

Memory

%rbp xFFFF E4C0

c xFFFF E4BC x0000 0004

xFFFF E4B8

xFFFF E4B4

xFFFF E4B0

a xFFFF E4AC x0000 0003

b xFFFF E4A8 x0000 0004

…

Reg Value

rbp x7FFF FFFFF FFFF E4C0

rdi x???? ???? 0000 0003

rsi x???? ???? 0000 0004

rax x???? ???? 0000 0003 -> 4

v

Binghamton

University

CS-220

Spring 2019

Translating C to x86: If/then/else

if (cond) { then-block }
else { else-block }

j!cond

then-block

set CC

…

cmpl …

jxx .L4

… ; then block

jmp .L5

.L4:

… ; else block

.L5:end

else-block

truefalse

Binghamton

University

CS-220

Spring 2019

Condition Codes (Explicit Set: Test)

Condition code can be set explicitly by the “test” instruction…
•test a,b like computing a’=a&b without setting destination

Flag Set to 1 if… Interpretation

CF Carry out or borrow from high order bit Always 0 after test

ZF a’ is all zeroes every 1 bit in a is 0 in b

SF The sign bit is on in a’ a<0 and b<0

OF The sign bit is incorrect Always 0 after test

Binghamton

University

CS-220

Spring 2019

x86 idiom – “jump if false”

test a,a

je falseLabel

; a must have been true to get here

• Zero is “false”, non-zero is “true”

• test a,a ; compute a&a
• If a==0, then a&a==0 and ZF is 1

• If a!= 0, then a&a!=0 and ZF is 0

• je branches only if ZF is 1

Binghamton

University

CS-220

Spring 2019

While loop

int xmpWhile(int a,int b) {

int c=0;

while(a<10) {

c+=b;

a++;

}

return c;

}

pushq %rbp

movq %rsp, %rbp

movl %edi, -20(%rbp)

movl %esi, -24(%rbp)

movl $0, -4(%rbp)

jmp .L4

.L5: movl -24(%rbp), %eax

addl %eax, -4(%rbp)

addl $1, -20(%rbp)

.L4: cmpl $9, -20(%rbp)

jle .L5

popq %rbp

ret

Memory

%rbp xFFFF E840

c xFFFF E83C x0000 0000

xFFFF E838

xFFFF E834

xFFFF E830

a xFFFF E82C x0000 0003

b xFFFF E828 x0000 0004

…

Reg Value

rbp x7FFF FFFFF FFFF E840

rdi x???? ???? 0000 0003

rsi x???? ???? 0000 0004

rax x???? ???? temp

See progWhile.c in xmp_x86

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton

University

CS-220

Spring 2019

Translating C to x86: while

while (cond) {
loop-block

}

cond

loop-block

start
…

jmp L4

.L5:

… ; loop block

.L4:

cmpl …; condition

jxx .L5

…

end

true false

Binghamton

University

CS-220

Spring 2019

Translating C to x86: for loops

for(init;cond;incr) {
loop-block

}

cond

loop-block

start
…

... ; init

jmp L4

.L5:

… ; loop block

… ; incr

.L4:

cmpl …; condition

jxx .L5

…

end

true false

init

incr

Binghamton

University

CS-220

Spring 2019

Translating C to x86: do-while

do {
loop-block

} while(condition);

cond

loop-block

start
.L5:

… ; loop block

.L4:

cmpl …; condition

jxx .L5

…

end

true false

Binghamton

University

CS-220

Spring 2019

Example Switch Statement….

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

See progSwitch.c in xmp_x86

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton

University

CS-220

Spring 2019

C Switch Statement

• Specify a variable in the switch statement – the value to switch on

• Each case statement specifies a literal value
• switch jumps to first matching case

• Code is executed from the case statement to a “break”

• Subsequent case statements before a “break” are ignored (skipped), but
statements after the case statement are executed

• “break” jumps to the end of the switch statement

• If no case statement is satisfied, jump to the “default” statement

Binghamton

University

CS-220

Spring 2019

Convert cases to labeled x86 code

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

.L5: movl -20(%rbp), %eax

movl %eax, -4(%rbp)

jmp .L11

.L7: addl $1, -24(%rbp)

.L8: movl -20(%rbp), %edx

movl -24(%rbp), %eax

addl %edx, %eax

movl %eax, -4(%rbp)

jmp .L11

.L9: movl -20(%rbp), %eax

imull -24(%rbp), %eax

movl %eax, -4(%rbp)

jmp .L11

.L10: movl -20(%rbp), %eax

addl $2, %eax

movl %eax, -4(%rbp)

jmp .L11

.L4: movl $0, -4(%rbp)

.L11

C X86

a -20(%rbp)

b -24(%rbp)

c -4(%rbp)

Binghamton

University

CS-220

Spring 2019

gcc Compilation of Switch statement

• Is there a way to map each case to a table index?

• If so, is the table densely populated?

• If so, make a jump table (after next slide)

• If not, compiler implements…..
if (case 10) goto 10 block
else if (case 11) goto case 11 block
else if (case 12) goto case 12 block
…
else if (case 15) goto case 15 block
else default block

Binghamton

University

CS-220

Spring 2019

switch(a) w/o jump table
movl -20(%rbp), %eax ; put “a” in %eax register

cmpl $10,%eax ; set cc using %eax-10

je .L5 ; ->L5 if a==10

cmpl $11,%eax ; set cc using %eax-11

je .L7 ; -> L7 if a==11

cmpl $12, %eax ; set cc using %eax-12

je .L8 ; -> L8 if a==12

cmpl $13,%eax ; set cc using %eax-13

je .L8 ; -> L8 if a==13

cmpl $14,%eax ; set cc using %eax-14

je .L9 ; -> L9 if a==14

cmpl $15,%eax ; set cc using %eax-15

je .L10 ; -> L10 if a==15

.L4 movl $0, -4(%rbp) ; default, set c=0

switch(a) {
case 10 : c=a; break;
case 11: b++;
case 12:
case 13: c=a+b; break;
case 14: c=a*b; break;
case 15: c=a+2; break;
default: c=0;

}

Binghamton

University

CS-220

Spring 2019

Indirect Jump

jmp *reference

• reference : A register that contains an address
• The value is the branch target

• May also see *memory_reference
• For example, table addressing notation: jmp *.L4(,%rax,8)

• Use %rax as index into a table starting at L4

• Each entry in the table is 8 bytes wide (one address)

• Use the %raxth entry as the target for the jump

Binghamton

University

CS-220

Spring 2019

C compiler creates a “Jump Table”

Case index Label Address

10 0 L5 4004fd

11 1 L7 400505

12 2 L8 400509

13 3 L8 400509

14 4 L9 400516

15 5 L10 400522

Memory

Address Value

…

0000 0000 0040 05f0 0000 0000 0040 0522

0000 0000 0040 05e8 0000 0000 0040 0516

0000 0000 0040 05e0 0000 0000 0040 0509

0000 0000 0040 05d8 0000 0000 0040 0509

0000 0000 0040 05d0 0000 0000 0040 0505

0000 0000 0040 05c8 0000 0000 0040 04fd

…
a-10

Binghamton

University

CS-220

Spring 2019

Implementation of switch(a)

movl -20(%rbp), %eax ; put “a” in %eax register

subl $10, %eax ; %eax-=10… index in jump table

cmpl $5, %eax ; Set condition based on %eax-5

ja .L4 ; -> default if %eax>5 OR %eax < 0

movl %eax, %eax ; ??? %rax=%eax (zero high bits)

movq .L6(,%rax,8), %rax ; %rax=jumptable[%eax]

jmp *%rax ; Indirect jump to jumptable[%eax]

