Binghamton CS-220

University Spring 2019

Xx86 Flow Control

Computer Systems Sections 3.3 - 3.6

Binghamton CS-220

University Spring 2019

Unconditional Jumps

jmp target

* If we were allowed to modify %rip, this would be like:
mov target,%rip

* Updates %rip register with the value of the targetoperand
* Next instruction fetched will be at target

* Alters “execute next sequential instruction”

Binghamton CS-220

University Spring 2019

X86 Instruction Cycle

Fetch

Always

increments
RIP

Instruction

/7 @ RIP \

jmp

modifies Store Decode

Instruction

Evaluate
Address

%rip Results

Execute
Instruction

Fetch
Operands

Binghamton CS-220

University Spring 2019

Conditional Jumps

* If you always jumped, you would always execute the “then” block
or would always jump back to the start of a loop

* We need some way to tell x86 to jump under some conditions, but
not in others

* Conditional jump
* Sometimes updates %rip
* Sometimes leaves %rip untouched

Binghamton CS-220

University Spring 2019

Condition Code Registers

Carry Flag =1 if most significant bit overflows (unsigned)
Zero Flag = 1 if result bits are all zero
Sign Flag = 1 if leftmost result bit is 1 (signed negative)

. . Overflow Flag = 1 if result sign bit is incorrect
(opl+, op2+ res- or opl-, op2-, res+)

Binghamton CS-220

University Spring 2019

Unsigned Conditional Jump Mnemonics

cmp b,a ; & =a-b without setting destination

OpCode

je jump if == True if ZF=1

jne jump if I= True if ZF=0

ja jump if a> True if ZF=0 and CF=0
jae jumpifa>= Trueif ZF=1 or CF=0
jb jump if b> True if ZF=0 and CF=1

jbe jump if b>= Trueif ZF=1 or CF=1

Warning: mnemonics assume cmp b,a, but other instructions may occur

Binghamton CS-220

University Spring 2019

Signed Conditional Jump Mnemonics

cmp b,a ; & =a-b without setting destination

OpCode

je jump a==b Trueif ZF=1

jne jump al=b True if ZF=0

jg jump a>b True if ZF=0 and SF=0 and OF=0
or if ZF=0 and SF=1 and OF=1

jge jump a>=b True if SF=0 and OF=0
or if SF=1 and OF=1

jl jump a<b True if ZF=0 and SF=1 and OF=0
or if ZF=0 and SF=0 and OF=1

jle jump a<=b True if SF=1 and OF=0

or if SF=0 and OF=1

Binghamton CS-220

University Spring 2019
pushg %rbp
I f/T h e n/ E I Se mov(q O/Zl‘sp, %rbp See proglf.c in xmp x86

movl %edi, -20(%rbp)
movl %esi, -24(%rbp)

int xmpif(int a,int b) { movl -20(%rbp), %eax
int c; cmpl -24(%rbp), Y%eax
if (a>b) jle L2
C=a; movl -20(%rbp), Y%oeax
else movl %eax, -4(%rbp)
c = b; jmp L3
return C; L2: movl -24(%rbp), Y%oeax
} movl %eax, -4(%rbp)

L3: movl -4(%rbp), %eax

popg %rbp
ret

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton CS-220

University Spring 2019

0
If/Then/Else PUShY - orop Memory
movq - %%rsp, Yerbp %rbp | xFFFF E4CO
movl %edi, -20(%rbp) s I
" 1 movl_%esi. -24(%rbp) c | xFFFF E4BC | x0000 0004
int xmpif(int a,int b) { movl -20(%rbp), %oeax RN 55K
nte; | cmpl -24(%rbp), %eax ZILLE
if (a>Db) Jle L2 xFFFF E4B0
C = a,<§J2mov1’ -20(%rbp), %eax a | xFFFF E4AC | x0000 0003
else / movl %eax, -4(%rbp) b | xFFFF E4A8 | x0000 0004
return ¢; TommpmeviiSed(Getp) voeaxs |
} movl %eax, -4(%rbp)
\% movl -4(%rbp), Y%eax rbp x7FFF FFFFF FFFF E4CO
popq %orbp rdi x????2722220000 0003
ret rsi x??2? 7222 0000 0004

rax x?77? 77770000 0003 -> 4

Binghamton

CS-220

University

Translating C to x86: If/fthen/else

if (cond) { then-block }

Spring 2019

else { else-block} cmpl
Jxx .L4
. ; then block
then-block jmp .L5

.L4:
else-block ; else block

Binghamton CS-220

University Spring 2019

Condition Codes (Explicit Set: Test)

Condition code can be set explicitly by the “test” instruction...
‘test a,blike computing a = a&b without setting destination

m

Carry out or borrow from hlgh order bit Always 0 after test
ZF a’ is all zeroes every 1 bitinaisOinb
SF The sign bitis on in a’ a<0 and b<0

OF The sign bit is incorrect Always 0 after test

Binghamton CS-220

University Spring 2019

X86 Idiom — “jump If false”

test a,a
je falselabel

a2 must have been true to get here

e Zero is “false” non-zero is “true”

* test a,a; compute a&a
e [fa==0, then a&a==0and ZF is 1
e [fa!=0, then a&a!=0 and ZF is 0
* je branches only if ZF is 1

Binghamton CS-220

University Spring 2019
Wh |Ie IOOp pushq %rbp Memory
movl %edi, -20(%rbp) ¢ | xFFFF E83C | x0000 0000
S s Ofmci A0 xFFFF E838
int xmpWhiIe(int a,int b) {’ngV: ${_0()€SZ((§4(/Orbp) xFFFF E834
int c=0: — =4(%rbp) xFFFF E830
while(a<10) { mp LG a xFFFF E82C x0000 0003
cﬁ& pRORSon] - ~2Alfelnolp)l YuEE b | xFFFF E828 | 0000 0004
A addl %eax, -4(%rbp)

| =
L4) " r
return C; s orop rbp x7FFF FFFFF FFFF E840

lle L5
} \ J rdi x?22? 2222 0000 0003

\popq %rbp

rsi x??7?77 7727770000 0004

rax X277 7777 temp

See progWhile.c in xmp x86

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton

University

CS-220
Spring 2019

Translating C to x86: while

while (cond) {
loop-block

5

-

loop-block

jmp L4

.L5:

.L4:

cmpl
Jxx

; loop block

..., condition
.L5

Binghamton CS-220

University Spring 2019

Translating C to x86: for loops

for(init,cond,incp { ¢
foop-block m
}

.. ; init
jmp L4
loop-block ; loop block
; incr
cmpl .., condition

Jxx .L5

Binghamton CS-220

University Spring 2019

Translating C to x86: do-while

do { ¢
loop-block

} while(condition);

.L5:

; loop block

.L4:
cmpl .., condition

loop-block Jxx LS

Binghamton CS-220

University Spring 2019

Example Switch Statement....

switch(a) { See progSwitch.c in xmp x86
case 10 : c=a; break;
case 11: b++;
case 12:
case 13: c=a+b; break;
case 14: c=a*b; break;
case 15: c=a+2; break;

default: c=0;

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_x86/

Binghamton CS-220

University Spring 2019

C Switch Statement

* Specify a variable in the switch statement - the value to switch on

* Each case statement specifies a literal value
» switch jumps to first matching case
* Code is executed from the case statement to a “break”

* Subsequent case statements before a “break” are ignored (skipped), but
statements after the case statement are executed

* “break” jumps to the end of the switch statement

* I[f no case statement is satisfied, jump to the “default” statement

Binghamton CS-220

University Spring 2019

Convert cases to Iabeled X86 code

movl -20(%rbp), %eax
movl %eax, -4(%rbp)
switch(a) { / imp L11 o T
. - % - 0
case -I O : C:a, bl’eak, L7: addl $1, -24(%rbp)
—LE8— movl -20(%rbp), Yedx b -24(%rb
case]] : b + + , movl -24(%rbp), %eax (o p)
‘I 2 : addl %edx, %eax A(O
cdse movl %eax, -4(%rbp) ¢ 4(/()I‘bp)
case 13: c=a+b; break;< imp 111
case 'I 4 C:a*b’ break’ L9: movl 20(%rbp), Yoeax
]]] imull -24(%rbp), %eax
case 15: c=a+2; break; e
default: c=0; jmp L11
} .L10: movl -20(%rbp), %eax
addl $2, %eax
movl %eax, -4(%rbp)
jmp L11
L4: movl $0, -4(%rbp)
LIT
=

Binghamton CS-220

University Spring 2019

gcc Compilation of Switch statement

* [s there a way to map each case to a table index?
* If so, is the table densely populated?
* If so, make a jump table (after next slide)

* If not, compiler implements.....
if (case 10) goto 10 block

else if (case 11) goto case 11 block
else if (case 12) goto case 12 block

else if (case 15) goto case 15 block
else default block

Binghamton CS-220

University Spring 2019
movl -20(%rbp), %eax; put “a” in %eax register switch(a) {
cmpl $10,%eax; set cc using %eax-10 case 10 : c=a; break;
je L5; ->L5 ifa==10 case 11: b++;
cmpl $11,%eax; set cc using %eax-11 case 12:
je L7 >L7ifa==11 case 13: c:ajb; break;
cmpl $12, %eax; set cc using %eax-12 case 14: c=a*b; break;
. . case 15: c=a+2; break;
je L8 ; -> L8 ifa==12 _ _
_ default: c=0;
cmpl $13,%eax; set cc using %eax-13 }
je L8 ; -> L8 ifa==13
cmpl $14,%eax; set cc using %eax-14
je L9 ; -> L9 ifa==14
cmpl $15,%eax; set cc using %eax-15
je .L10; -> L10 ifa==15

L4 movl $0, -4(%rbp) ; default, set c=0

Binghamton CS-220

University Spring 2019

Indirect Jump

jmp *reference

* reference: A register that contains an address
* The value is the branch target

* May also see *memory _reference
* For example, table addressing notation: jmp *.L4(,%rax,8)
* Use %rax as index into a table starting at L4
* Each entry in the table is 8 bytes wide (one address)
 Use the %rax™ entry as the target for the jump

Binghamton CS-220

University Spring 2019

C compiler creates a "Jump Table”

Case index Label Address

11 1 L7 400505

12 2 L8 400509 0000 0000 0040 O5f0 0000 00000040 0522
13 3 L8 400509 0000 0000 0040 05e8 00000000 00400516
14 4 L9 400516 0000 0000 0040 05e0 000000000040 0509
15 y, 5 L10 400522 0000 0000 0040 05d8 0000 0000 0040 0509

0000 0000 0040 05d0 0000 0000 0040 0505
0000 0000 0040 05¢8 0000 0000 0040 041d

Binghamton CS-220

University Spring 2019

Implementation of switch(a)

movl -20(%rbp), Y%eax; put “a” in %eax register

subl $10, %eax; %eax-=10...index in jump table
cmpl $5, %eax; Set condition based on %eax-5

ja L4: -> default if %eax>5 OR %eax < 0
movl %eax, %eax ; 77?7 %rax=%eax (zero high bits)

movq .L6(,%rax,8), %rax ; %rax=jumptable|%eax]
jmp *%rax; Indirect jump to jumptable[%eax]

