Binghamton CS-220

University Spring 2019

|SA Instructions

Computer Systems: Section 4.1

Binghamton CS-220

University Spring 2019

ISA Contents

* The data types the instructions can work
on

* two’s complement binary, ascii character,
unsigned binary, etc.
* The instructions the hardware recognizes
* add, move, get, ...

* The data the instructions can work on
* Registers
* Memory

* The external interfaces supported by the
instructions
* File /0
* Exception Handling and Interrupts

https://en.wikipedia.org/wiki/Instruction_set

Binghamton CS-220

University Spring 2019

Arithmetic Logic Unit (ALU)

8 8
-3

Binghamton CS-220

University Spring 2019

Arithmetic Logic Unit (ALU)

BITWISE AND OPCODE \U

Binghamton CS-220

University Spring 2019

Instructions specify:

* Where to get the operand data

* What type of data are the operands

* What the ALU should do with those operands
 Where to put the results

Binghamton CS-220

University Spring 2019
X86 Instructions

* Smallest (Atomic) directive to x86 “hardware”

* Consist of Opcode and Operands

* Two Flavors
* Man-readable “Assembly”
* Machine Readable “Object Code” or “Machine Code” or “Binary”

 Translation...

ASSEMBLY CODE OBJECT CODE
push %ebp ASSEMBLER 0x55
mov%esp,%ebp 0x89e5
and $0xfffffff0,%esp 0x83e4f0
sub $0xa0,%esp 0x81eca0000000
mov0x8(%ebp),%eax - 0x8b4508
mov%eax,0x8(%esp) DISASSEMBLY 0x89442408

Binghamton CS-220

University Spring 2019

X86 Assembler Syntax

label: mnemonicargl,arg?Z...; comment

 label - optional - identifies start of this instruction
 mnemonic- See http://ref.x86asm.net/ for a complete list

* Up to 4 arguments
e Comment ends at the end of this line

and %ebx,%eax ; eax=eax & ebx

http://ref.x86asm.net/

Binghamton CS-220

University Spring 2019

How Instructions work

* Machine code consists of:
* an “op-code” - one+ byte indicating what operation to perform

* operand info - where / how to get operands and store the result - more in
next lecture

* Instructions are stored in memory

* Hardware performs the instruction processing cycle for each
instruction

Binghamton CS-220

University Spring 2019

X86 Instruction Cycle 030000 00F0

0x0000 O0F1
Fetch —
Instruction \ OxFFFF FFFF

RO: 0x0000 00F0 ot Decod
ore ecodae

R1: 0x0000 00F1 | < Rl Instruction

R2: OXFFFF FFFF

on

Fetch
Operands

R3:

Execute
Instructi

Evaluate
Address

Binghamton CS-220

University Spring 2019

and %ebx,%eax : in ALU

AND OPCODE

Q \\ ,«.'I
Tbk%u&

Sl

I el ¢

Binghamton CS-220

University Spring 2019

X386 Instruction Cycle Example 030000 00F¢

and %ebx,%eax 0x0000 00F1

— 0xFFFF FFFF

Fetch
/7 Instruction \
RO: 0x0000 00FO %eax St D d
ore ecode
R1: 0x0000 00F1 | < Rl Instruction
R2: OxFFFF FFFF
R3: ()

Execute

Instruction

%ebx,%eax \
5

Fetch /
Operands

Binghamton CS-220

University Spring 2019

X86 Instruction Cycle

Fetch

Always

increments
%rip

Instruction

/7 @ %rip \

May modify -
Instruction

Evaluate
Address

Store
Results

Execute
Instruction

%rip

Fetch
Operands

Binghamton CS-220

University Spring 2019

Instruction Results

* x86 convention - last argument is both operand and result
« add %eax,%ebx; means %ebx = %eax + %ebx

 Like the C statement: ebx+=eax;

* Warning: There are two dialects of x86 assembler, “AT&T" and
“Intel”... we will be using the AT&T dialect
* In AT&T dialect, the last argument is the target
* In Intel dialect, the first argument is the target

Binghamton CS-220

University Spring 2019

Assembler Argument Generalities

* Arguments may be:
e a constant value,
* aregister,
* a memory reference

* Only ONE argument may be a memory reference!
* Butifit's the last argument, memory can be both read and written

* Optional argument prefixes
* 0% - register e.g. “mov 5,%eax”
* § - constant value e.g. “mov $5,%eax”

Binghamton CS-220

University Spring 2019

Constant (literal) values

After optional $ prefix, similar to C Conventions....

 Numbers are decimal by default,
* octal if preceded by 0,
* hex if preceded by 0x

* Single characters are enclosed in single quotes,
* including special characters such as ‘\n’, ‘\t’

* Strings are arrays of characters enclosed in double quotes
* Labels may be used in place of addresses

Binghamton CS-220

University Spring 2019
X860 Integer Registers
L o4 - 32 ; -
‘4_ 16 — — Origin
%ah %al Accumulate
%dh %dl |G
%bh 74| Base

Source Index

Destination Index

Stack Pointer

base Pointer

Binghamton CS-220

University Spring 2019

x86 Data “Types”

No type checking - Instruction and/or context implies data type

* Arithmetic instructions treat operands as numbers
* Either signed or unsigned!

* Optional Opcode suffix used to identify width of arguments
* b - 1 byte (8 bits)
« w-word (2 bytes, 16 bits)
* | - long word (4 bytes, 32 bits)
* - quad word (8 bytes, 64 bits)

* With no suffix, register implies width of arguments

* %ah/%al -b - 8 bits
* Yax - W - 16 bits
 %eax -1 - 32 bits
* Yorax -q — 64 bits

* Floating point - 4, 8, or 10 bytes

Binghamton CS-220

University Spring 2019

The MOV Instruction

e Most often used instruction!
e More “copy” than “move”
 Copies 1,2,4, or 8 bytes from ARG1 to ARG2

mov $-12,%eax ; put -12 into 4 byte eax register
mov %eax,%ebx; copy value of %eax register into %ebx register

* Replaces target value

Binghamton CS-220

University Spring 2019
Memory Reference: indirection
OXFFFF FFFE
» Simple indirection : ($0x00000000000000000C04) OXFFFF FFFD
* Get the value at the literal address in parenthesis OXFFFF FFFC
OXFFFF FFFB
mov ($0x0C04),%ebx 050000 0C07

0x0000 0CO6

0x0000 0CO5
Value 0x0000 0C04

rax 777270007 7777 777

rbx ??7?77777 00180100 0x0000 0003

0x0000 0002
0x0000 0001
0x0000 0000

o | O o o
O - e <
= O Tl (@)
0| = *rq =

Binghamton CS-220

University Spring 2019
- indi j val

Memory Reference: indirection S
xFFFF FFFF
OXFFFF FFFE
* Use a Register: (%rax) OXFFFF FFFD
* The value of the register is the address in memory to use OxFFFF FFFC
OXFFFF FFFB
mov $0x0C04,%rax 0x0000 0C07
mov (%rax),%ebx 0x0000 0CO6

0x0000 0CO5
Value 0x0000 0C04

rax 0000 0000 0000 0CO4

rbx ??7777777 00180100 0x0000 0003
0x0000 0002
0x0000 0001
0x0000 0000

o | O o o
O - e <
= O Tl (@)
0| = *rq =

Binghamton CS-220

University Spring 2019
-
Memory Reference: base/offset —
0XFFFF FFFE
* Indirection w/ offset: 8(%rax) OXFFFF FFFD [0
* Get the value at the address in the %rax register + offset OxFFFF FFFC m
MoV $OXOBFC,%raX OxFEFFFFFB ROl
mov 8(%rax),%ebx 050000 0C07 m-
» Offset may be negative, and may be expressed in hex 0x0000 0C06

o
>
[
o 0]

0x0000 0CO5
Value 0x0000 0C04

rax 0000 0000 0000 OBFC

rbx ??7777777 00180100 0x0000 0003
0x0000 0002
0x0000 0001
0x0000 0000

Binghamton

University

CS-220
Spring 2019

X86 Instruction Cycle: mov 8@%rax),%ebx

Fetch
Instruction

RO: 0x0000 00FO

0x0018 0100

R1: 0x0000 00F1

Decode
' Instruction

R2: OXFFFF FFFF

R3:

0x0000 0000 0000 OBFC

|

o |

Execute Evaluate

Instruction

0x0C04 Address

e

0x0018 0100

Fetch

Operands

0x0000 O0FO

0x0000 O0F1

OxFFFF FFFF

Binghamton CS-220

University Spring 2019

Condition Code Registers

Carry Flag =1 if most significant bit overflows (unsigned)
Zero Flag = 1 if result bits are all zero
Sign Flag = 1 if leftmost result bit is 1 (signed negative)

* 1 0) 2| Overflow Flag = 1 if result sign bit is incorrect
(opl+, op2+ res- or opl-, op2-, res+)

Binghamton CS-220

University Spring 2019

Condition Codes (Implicit Setting)

 Implicitly set by arlthmetlc operations. e.g. sub b,a; a a-b

Carry out from hlgh order bit Unsigned arithmetic overflow
ZF a’ is all zeroes a==b
SF The sign bitis on in a’ a<b

The sign bit is incorrect

oL a>0, -b>0, a’<0 or a<0, -b<0, a’>0

Signed arithmetic overflow

* Not set by 1lea instruction

* Full documentation (nice summary) or
Wikibooks X86 Control Flow

http://www.jegerlehner.ch/intel/IntelCodeTable.pdf
https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow

Binghamton CS-220

University Spring 2019

Invocation Record ____ [Address [Vale

OxFFFF FFFC Q) 7:1):003
OxFFFF FFF8).\

In a C function
0XAAC4 0C18 M)z

O%rbp-> 0xAAC4 0C14 [0y D)
* %rbp -> end of the invocation record local-> 0xAAC4 0C10 NIl

e Local vars are at the end of the record 0xAAC4 0COC U CUUURIIILS
OxAAC4 0CO8 [0h0L0el0lore)0y

v N[0 000000001
%rsp-> v\ [0x00000000

Value OO OXFEFFEFES0

rsp FFFF FFFF AAC4 0C00 0x0000 000c | LI IIEEA 2!

rbp FFFF FFFF AAC4 0C14 0x0000 0004 [I05Ee
D0 [V 0x03000000

* Obrsp -> start of the invocation record

* In x86, reference locals as -4(%rbp)
or -0xc(%rpb)

Binghamton CS-220

University Spring 2019

Arithmetic Instructions

» Standard integer arithmetic: add sub

add $10,(%eax); (*eax)=(*eax)+10

sub $4,%esp ; esp=esp-4 (move stack pointer down)
 “Special” integer arithmetic: imul idiv

* imul cannot write to memory

* idiv divides register pair (EDX:EAX) and puts quotient/remainder back

* Single argument: inc dec
inc %eax; eax=eax+1 - same as add eax,1
dec (%esp) ; decrement the value at the top of the stack by 1

* Floating Point Instructions

Binghamton CS-220

University Spring 2019

Unsigned vs. Two's Complement Addition

Addition is Addition

UNS SGN
1 1 115 115
0 +242 +-14

1 101 101
OVFL

== O R
- = =
- = =
O B
-y o O
— 1o O »
O B

Overflow is Different!

Binghamton

CS-220

University

Overflow with Addition

Unsigned
 Carry out of the high order bit

e CF condition code

Two’s Complement

* Sign Bit Incorrect...
* POS + POS=NEGor
* NEG + NEG = POS

* Note... Opposite signs never

overflow!
POS + NEG = No Overflow

 OF Condition code

Spring 2019

Binghamton CS-220

University Spring 2019

C to X86 : Integer Arithmetic

int a=6; movl $0x6,-0x4(%rbp) int d=a*b; v -0x4(%rbp),%eax
intb=21; movl $0x15,-0x8(%rbp) 1mul -(SXS(%ngBL (Zjeéll)x
int nb=-b; mov -0x8(%rbp),%eax mov %eax,-0x14(%rbp)

inte=a-b; mov -0x4(%rbp),%eax
sub -0x8(%rbp),%eax
mov %eax,-0x18(%rbp)

neg %eax

mov %eax,-0xc(%rbp)
int c=a+b; mov -0x4(%rbp),%edx

mov -0x8(%rbp),%eax

add %edx,%eax a @ -0x4(%rbp)

mov %eax,-0x10(%rbp) b @ -0x8(%rbp)

nb @ -0xc(%rbp)
m Invocation Record ¢ @ -0x10(%rbp)
d @ -0x14(%rbp)

e | d | c b b o [JEEEELARSRCELD

Binghamton CS-220

University Spring 2019

Comparison: Avs B

5=
* Instead of a hardware compare... 5_@
. . N
» Requires ripple from MSB to LSB = §>i
* Takes lots of time and gates — D
=5
=D
* (Signed) Arithmetic Compare: A-B =D
* A-B>0 means A>B (SF=0, ZF=0, OF=0) OR (SF=1, ZF=0, OF=1

* A-B=0 means A==B (ZF=1)
* A-B<0 means A<B (SF=1, ZF=0, OF=0) OR (SF=0, ZF=0, OF=1)

Binghamton CS-220

University Spring 2019

C to X86 : Comparison

X86 Implementation

int a=6; movl $0x6,-0x4(%rbp)
int b=-3; movl $0xfffffffd,-0x8(%rbp)

intc=(a==b); mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
sete %al
movzbl %al,%eax
mov %eax,-0xc(%rbp)

intd=(a>b); mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
setg %oal
movzbl %al,%eax
mov %eax,-0x10(%rbp)

Binghamton CS-220

University Spring 2019
Bit Shifting
* Shift Left - Same as multiply by two o 0000...

sighed char x=53; / / / / / / / //

sighed char y=x<<1;

& U

» Shift Right - Same as divide by two (almost)

sighed char x=53; sign

signed char y=x>>1; 0,0 1 1 0 1 0 1
A R D

See xmp shift/shift.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2017/examples/xmp_shift/

CS-220
Spring 2019

Binghamton

University

Bit Shifting... Signed vs. Unsignhed

* Shift left... no difference - pad on right with 0

e Shift right...
 Signed (arithmetic)... pad on left with sign bit
* Unsigned (logical) ... pad on left with “sign” bit... always 0

* In lower level languages...
 “shift right logical” same as unsigned shift - pad on left with 0
 “shift right arithmetic” same as signed shift - pad on left with sign bit

Binghamton CS-220

University Spring 2019

C to X86 : Shifting

X86 Implementation

inta=21; movl $0x15,-0x4(%rbp)

int b=a<<2; mov -0x4(%rbp),%eax
shl $0x2,%eax
mov %eax,-0x8(%rbp)

unsigned int c=-30000; movl $0xffff8ad0,-0xc(%rbp)
unsigned int d=c>>10; mov -0xc(%rbp),%eax

shr $0xa,%eax
mov %eax,-0x10(%rbp)

inte=a>>2; mov -0x4(%rbp),%eax
sar $0x2,%eax
mov %eax,-0x14(%rbp)

Binghamton CS-220

University Spring 2019

C to X86 : Bitwise Operations

inta=12; movl $0xc,-0x4(%rbp)
int b=-42; movl $0xffffffd6,-0x8(%rbp)
intc=a&hb; mov -0x4(%rbp),%eax

and -0x8(%rbp),%eax
mov %eax,-0xc(%rbp)
intd =a ” b; mov -0x4(%rbp),%eax
xor -0x8(%rbp),%eax
mov %eax,-0x10(%rbp)

CS-220

Spring 2019

Table Addressing Mode

Binghamton CS-220

University Spring 2019

C Table Example

OxFFFF FFFC Q) 7:1):003
OxFFFF FFF8).\

int mat[3][2]={{0,1},{10,11}{20,21}};

inti=1: DIVXZN TN OXDEADBEEF
mat[2][1] OxAAC4 0C14 |hAlNINKES
mat[2][0] OxAAC4 0C10 | {N[iikE!
++matli][1]; mat[1][1] O0xAAC4 0COC [z
mat[1][0] OxAAC4 0CO8 b {lliIII[1):\
mat[0][1] OxAAC4 0C04 |5k
mat[0][0] OxAAC4 0CO0 | ({0

0x0000 0010 [opeagagel
NI)1/ 0x00001A04
0x0000 0004 [I05Ee
D0 [V 0x03000000

Binghamton
University

CS-220
Spring 2019

Table Addressing Mode

o Offset(Base, Row, Width) e.g. $4(%rbx,%rax,$8)
o Offset=4, Base=%rbx, Row=%rax, Width=8

* Address = (Base) + (Row X Width) + Of fset
* (%rbx)+(%rax*8)+4
 0xAAC40C00+ 1*8 + 4
 0xAAC40CO0C

l%

Binghamton CS-220

University Spring 2019

Table Addressing Mode Restrictions

* Offset must be a literal (or label)

* Base must be a 64 bit register

* Row must be a 64 bit register

e Width must be a literal: 1, 2, 4, or 8

 [f Offset, Base, or Row are blank, assume default of 0.

* Because of width restriction, not really used for C tables as much
as for C vectors (row major order) or structures

Binghamton CS-220

University Spring 2019

C Table Example

OxFFFF FFFC Q) 7:1):003
OxFFFF FFF8).\

int mat[3][2]={{0,1},{10,11}{20,21}};

inti=1: VX RNSEN 0xDEADBEEF
P mat[2][1] OXAAC40C14 [e

mat[2][0] 0xAAC40C10 [RRp T

++matli][1 mat[1][1] O0xAAC4 0COC |[:lii):
mat[1][0] 0xAAC4 0C08 o r

mat[0][1] 0xAAC4 004 IR s

mov $1,%r: mat[0][0] OxAAC4 0C00 PGl

movq $0xPAACA0C00 %rbx \-/
0x0000 0010 Flpdmas o]
addl $1,$406rbx,%rax,$8) - SO 0x00001A04

0x0000 0004 [I05Ee
D0 [V 0x03000000

Binghamton CS-220

University Spring 2019

Table Addressing Mode : Alternate view

» Also: Offset(Base, Row, Width)
* e.g. mat(%rbx,%rcx,8)

* Address = Base + Of fset + (Row X Width)

mov $1,%ecx ; row — “Base” —
mov $4 %ebx ; “base” -
addl $1,mat(%ebx,%ecx,8)

=

X Width >

Binghamton CS-220

University Spring 2019

Dealing with Pointers

e Load effective address: lea
* Used for implicit arrays/structures, etc.
 Calculates address from first argument, and writes that address to second

* Sometimes used as a cheap register to register “add” using addr/offset or
table address mode

lea $-0x1c(%rbp),%rax ; %rax = &counter
lea $3(,$rax,2),$rax ; $rax = ($rax*2) + 3

