
Binghamton

University

CS-220

Spring 2019

ISA Instructions
Computer Systems: Section 4.1

Binghamton

University

CS-220

Spring 2019

ISA Contents
• The data types the instructions can work

on
• two’s complement binary, ascii character,

unsigned binary, etc.

• The instructions the hardware recognizes
• add, move, get, …

• The data the instructions can work on
• Registers
• Memory

• The external interfaces supported by the
instructions

• File I/O
• Exception Handling and Interrupts

ISA

Software

https://en.wikipedia.org/wiki/Instruction_set

Binghamton

University

CS-220

Spring 2019

Arithmetic Logic Unit (ALU)

ALU

OP1 OP2

RES

OPERATION

Binghamton

University

CS-220

Spring 2019

Arithmetic Logic Unit (ALU)

ALU

OP1

OP2

RES

BITWISE AND OPCODE

Binghamton

University

CS-220

Spring 2019

Instructions specify:

• Where to get the operand data

• What type of data are the operands

• What the ALU should do with those operands

• Where to put the results

ALU

op1

OP2

RES

BITWISE
AND

OPCODE

Binghamton

University

CS-220

Spring 2019

X86 Instructions
• Smallest (Atomic) directive to x86 “hardware”

• Consist of Opcode and Operands

• Two Flavors
• Man-readable “Assembly”

• Machine Readable “Object Code” or “Machine Code” or “Binary”

• Translation…
ASSEMBLY CODE

push %ebp
mov%esp,%ebp
and $0xfffffff0,%esp
sub $0xa0,%esp
mov0x8(%ebp),%eax
mov%eax,0x8(%esp)

ASSEMBLER
OBJECT CODE

0x55
0x89e5
0x83e4f0
0x81eca0000000
0x8b4508
0x89442408 DISASSEMBLY

Binghamton

University

CS-220

Spring 2019

x86 Assembler Syntax

label: mnemonic arg1,arg2… ; comment

• label - optional – identifies start of this instruction

• mnemonic – See http://ref.x86asm.net/ for a complete list

• Up to 4 arguments

• Comment ends at the end of this line

and %ebx,%eax ; eax=eax & ebx

http://ref.x86asm.net/

Binghamton

University

CS-220

Spring 2019

How instructions work

• Machine code consists of:
• an “op-code” – one+ byte indicating what operation to perform

• operand info – where / how to get operands and store the result – more in
next lecture

• Instructions are stored in memory

• Hardware performs the instruction processing cycle for each
instruction

Binghamton

University

CS-220

Spring 2019

Fetch
Instruction

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

X86 Instruction Cycle 0x0000 00F0

0x0000 00F1

0xFFFF FFFF

ALU

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

Binghamton

University

CS-220

Spring 2019

and %ebx,%eax ; in ALU

ALU
AND OPCODE

%eax

%ebx

1

1

2

Binghamton

University

CS-220

Spring 2019

Fetch
Instruction

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

X86 Instruction Cycle Example 0x0000 00F0

0x0000 00F1

0xFFFF FFFF

ALU
R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

and %ebx,%eax

%ebx,%eax

%eax

Binghamton

University

CS-220

Spring 2019

X86 Instruction Cycle
Fetch

Instruction
@ %rip

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

Always
increments

%rip

May modify
%rip

Binghamton

University

CS-220

Spring 2019

Instruction Results

• x86 convention – last argument is both operand and result
• add %eax,%ebx; means %ebx = %eax + %ebx

• Like the C statement: ebx+=eax;

• Warning: There are two dialects of x86 assembler, “AT&T” and
“Intel”… we will be using the AT&T dialect

• In AT&T dialect, the last argument is the target

• In Intel dialect, the first argument is the target

Binghamton

University

CS-220

Spring 2019

Assembler Argument Generalities

• Arguments may be:
• a constant value,

• a register,

• a memory reference

• Only ONE argument may be a memory reference!
• But if it’s the last argument, memory can be both read and written

• Optional argument prefixes
• % - register e.g. “mov 5,%eax”

• $ - constant value e.g. “mov $5,%eax”

Binghamton

University

CS-220

Spring 2019

Constant (literal) values

After optional $ prefix, similar to C Conventions….

• Numbers are decimal by default,
• octal if preceded by 0,

• hex if preceded by 0x

• Single characters are enclosed in single quotes,
• including special characters such as ‘\n’, ‘\t’

• Strings are arrays of characters enclosed in double quotes

• Labels may be used in place of addresses

Binghamton

University

CS-220

Spring 2019

Origin

Accumulate

Counter

Data

Base

Source Index

Destination Index

Stack Pointer

base Pointer

x86 Integer Registers

%rdi

%rax

%rcx

%rdx

%rsi

%rbx

%rbp

%rsp

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah %al

%ch %cl

%dh %dl

%bh %bl

8
16

32
64

Binghamton

University

CS-220

Spring 2019

x86 Data “Types”

No type checking - Instruction and/or context implies data type
• Arithmetic instructions treat operands as numbers

• Either signed or unsigned!

• Optional Opcode suffix used to identify width of arguments
• b – 1 byte (8 bits)
• w – word (2 bytes, 16 bits)
• l – long word (4 bytes, 32 bits)
• q – quad word (8 bytes, 64 bits)

• With no suffix, register implies width of arguments
• %ah/%al – b – 8 bits
• %ax – w – 16 bits
• %eax – l – 32 bits
• %rax – q – 64 bits

• Floating point – 4, 8, or 10 bytes

Binghamton

University

CS-220

Spring 2019

The MOV instruction

• Most often used instruction!

• More “copy” than “move”

• Copies 1,2,4, or 8 bytes from ARG1 to ARG2

mov $-12,%eax ; put -12 into 4 byte eax register

mov %eax,%ebx; copy value of %eax register into %ebx register

• Replaces target value

Binghamton

University

CS-220

Spring 2019

Memory Reference: indirection

• Simple indirection : ($0x00000000000000000C04)
• Get the value at the literal address in parenthesis

mov ($0x0C04),%ebx

Address Value

0xFFFF FFFF

0xFFFF FFFE 0xDA

0xFFFF FFFD 0xED

0xFFFF FFFC 0xBE

0xFFFF FFFB 0xEF

…

0x0000 0C07 0x00

0x0000 0C06 0x01

0x0000 0C05 0x18

0x0000 0C04 0x00

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Reg Value

rax ???? ???? ???? ????

rbx ???? ???? 0018 0100

Binghamton

University

CS-220

Spring 2019

Memory Reference: indirection

• Use a Register: (%rax)
• The value of the register is the address in memory to use

mov $0x0C04,%rax

mov (%rax),%ebx

Address Value

0xFFFF FFFF

0xFFFF FFFE 0xDA

0xFFFF FFFD 0xED

0xFFFF FFFC 0xBE

0xFFFF FFFB 0xEF

…

0x0000 0C07 0x00

0x0000 0C06 0x01

0x0000 0C05 0x18

0x0000 0C04 0x00

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Reg Value

rax 0000 0000 0000 0C04

rbx ???? ???? 0018 0100

Binghamton

University

CS-220

Spring 2019

Memory Reference: base/offset

• Indirection w/ offset: 8(%rax)
• Get the value at the address in the %rax register + offset

mov $0x0BFC,%rax

mov 8(%rax),%ebx
• Offset may be negative, and may be expressed in hex

Address Value

0xFFFF FFFF

0xFFFF FFFE 0xDA

0xFFFF FFFD 0xED

0xFFFF FFFC 0xBE

0xFFFF FFFB 0xEF

…

0x0000 0C07 0x00

0x0000 0C06 0x01

0x0000 0C05 0x18

0x0000 0C04 0x00

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Reg Value

rax 0000 0000 0000 0BFC

rbx ???? ???? 0018 0100

Binghamton

University

CS-220

Spring 2019

Fetch
Instruction

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

X86 Instruction Cycle: mov 8(%rax),%ebx 0x0000 00F0

0x0000 00F1

0xFFFF FFFF

ALU

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

8

%rax

0x0C04

0x0018 0100

0x0018 0100

0x??????

0x0000 0000 0000 0BFC

Binghamton

University

CS-220

Spring 2019

Condition Code Registers

• Carry Flag =1 if most significant bit overflows (unsigned)

• Zero Flag = 1 if result bits are all zero

• Sign Flag = 1 if leftmost result bit is 1 (signed negative)

• Overflow Flag = 1 if result sign bit is incorrect
(op1+, op2+ res- or op1-, op2-, res+)

CF

ZF

SF

OF

ALU

Binghamton

University

CS-220

Spring 2019

Condition Codes (Implicit Setting)

• Implicitly set by arithmetic operations. e.g. sub b,a ; a’=a-b

• Not set by lea instruction

• Full documentation (nice summary) or
Wikibooks X86 Control Flow

Flag Set to 1 if… Interpretation

CF Carry out from high order bit Unsigned arithmetic overflow

ZF a’ is all zeroes a==b

SF The sign bit is on in a’ a<b

OF
The sign bit is incorrect

a>0, -b>0, a’<0 or a<0, -b<0, a’>0
Signed arithmetic overflow

http://www.jegerlehner.ch/intel/IntelCodeTable.pdf
https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow

Binghamton

University

CS-220

Spring 2019

Invocation Record

In a C function

• %rsp -> start of the invocation record

• %rbp -> end of the invocation record

• Local vars are at the end of the record

• In x86, reference locals as -4(%rbp)
or -0xc(%rpb)

Address Value

0xFFFF FFFC 0xDEADBEEF

0xFFFF FFF8 0xDEADBEEF

…

0xAAC4 0C18 0xDEADBEEF

%rbp-> 0xAAC4 0C14 0x0000000D

local-> 0xAAC4 0C10 0x0000000B

0xAAC4 0C0C 0x0000000A

0xAAC4 0C08 0x00000002

0xAAC4 0C04 0x00000001

%rsp-> 0xAAC4 0C00 0x00000000

….

0x0000 0010 0xFFFFFE80

0x0000 000c 0x00001A04

0x0000 0004 0x0000001C

0x0000 0000 0x03000000

Reg Value

rsp FFFF FFFF AAC4 0C00

rbp FFFF FFFF AAC4 0C14

Binghamton

University

CS-220

Spring 2019

Arithmetic Instructions

• Standard integer arithmetic: add sub
add $10,(%eax); (*eax)=(*eax)+10

sub $4,%esp ; esp=esp-4 (move stack pointer down)

• “Special” integer arithmetic: imul idiv
• imul cannot write to memory

• idiv divides register pair (EDX:EAX) and puts quotient/remainder back

• Single argument: inc dec
inc %eax; eax=eax+1 – same as add eax,1

dec (%esp) ; decrement the value at the top of the stack by 1

• Floating Point Instructions

Binghamton

University

CS-220

Spring 2019

Unsigned vs. Two’s Complement Addition

Addition is Addition

Overflow is Different!

1 1 1 1 1 UNS SGN

0 1 1 1 0 0 1 1 115 115

+ 1 1 1 1 0 0 1 0 +242 + -14

0 1 1 0 0 1 0 1 101
OVFL

101

Binghamton

University

CS-220

Spring 2019

Overflow with Addition

Unsigned

• Carry out of the high order bit

• CF condition code

Two’s Complement

• Sign Bit Incorrect…
• POS + POS = NEG or

• NEG + NEG = POS

• Note… Opposite signs never
overflow!
POS + NEG = No Overflow

• OF Condition code

Binghamton

University

CS-220

Spring 2019

C to X86 : Integer Arithmetic

C Code X86 Implementation

int a=6; movl $0x6,-0x4(%rbp)

int b=21; movl $0x15,-0x8(%rbp)

int nb=-b; mov -0x8(%rbp),%eax
neg %eax
mov %eax,-0xc(%rbp)

int c=a+b; mov -0x4(%rbp),%edx
mov -0x8(%rbp),%eax
add %edx,%eax
mov %eax,-0x10(%rbp)

C Code X86 Implmentation

int d=a*b; mov -0x4(%rbp),%eax
imul -0x8(%rbp),%eax
mov %eax,-0x14(%rbp)

int e=a-b; mov -0x4(%rbp),%eax
sub -0x8(%rbp),%eax
mov %eax,-0x18(%rbp)

a @ -0x4(%rbp)
b @ -0x8(%rbp)
nb @ -0xc(%rbp)
c @ -0x10(%rbp)
d @ -0x14(%rbp)
e @ -0x18(%rbp)e d c nb b a

%rbp%rsp
Invocation Record

Binghamton

University

CS-220

Spring 2019

Comparison: A vs B

• Instead of a hardware compare…
• Requires ripple from MSB to LSB

• Takes lots of time and gates

• (Signed) Arithmetic Compare: A-B
• A-B>0 means A>B (SF=0, ZF=0, OF=0) OR (SF=1, ZF=0, OF=1)

• A-B=0 means A==B (ZF=1)

• A-B<0 means A<B (SF=1, ZF=0, OF=0) OR (SF=0, ZF=0, OF=1)

Binghamton

University

CS-220

Spring 2019

C to X86 : Comparison

C Code X86 Implementation

int a=6;
int b=-3;

movl $0x6,-0x4(%rbp)
movl $0xfffffffd,-0x8(%rbp)

int c=(a==b); mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
sete %al
movzbl %al,%eax
mov %eax,-0xc(%rbp)

int d=(a>b); mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
setg %al
movzbl %al,%eax
mov %eax,-0x10(%rbp)

Binghamton

University

CS-220

Spring 2019

Bit Shifting

• Shift Left – Same as multiply by two

signed char x=53;

signed char y=x<<1;

• Shift Right – Same as divide by two (almost)

signed char x=53;

signed char y=x>>1;

0 0 1 1 0 1 0 1

0 1 1 0 1 0 1 0

0000….

0 0 1 1 0 1 0 1

0 0 0 1 1 0 1 0

sign

See xmp_shift/shift.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2017/examples/xmp_shift/

Binghamton

University

CS-220

Spring 2019

Bit Shifting… Signed vs. Unsigned

• Shift left… no difference – pad on right with 0

• Shift right…
• Signed (arithmetic)… pad on left with sign bit

• Unsigned (logical) … pad on left with “sign” bit… always 0

• In lower level languages…
• “shift right logical” same as unsigned shift – pad on left with 0

• “shift right arithmetic” same as signed shift – pad on left with sign bit

Binghamton

University

CS-220

Spring 2019

C to X86 : Shifting

C Code X86 Implementation

int a=21; movl $0x15,-0x4(%rbp)

int b=a<<2; mov -0x4(%rbp),%eax
shl $0x2,%eax
mov %eax,-0x8(%rbp)

unsigned int c=-30000;
unsigned int d=c>>10;

movl $0xffff8ad0,-0xc(%rbp)
mov -0xc(%rbp),%eax
shr $0xa,%eax
mov %eax,-0x10(%rbp)

int e=a>>2; mov -0x4(%rbp),%eax
sar $0x2,%eax
mov %eax,-0x14(%rbp)

Binghamton

University

CS-220

Spring 2019

C to X86 : Bitwise Operations

C Code X86 Implementation

int a=12;
int b=-42;

movl $0xc,-0x4(%rbp)
movl $0xffffffd6,-0x8(%rbp)

int c = a & b; mov -0x4(%rbp),%eax
and -0x8(%rbp),%eax
mov %eax,-0xc(%rbp)

int d = a ^ b; mov -0x4(%rbp),%eax
xor -0x8(%rbp),%eax
mov %eax,-0x10(%rbp)

Binghamton

University

CS-220

Spring 2019

Table Addressing Mode

Binghamton

University

CS-220

Spring 2019

C Table Example

int mat[3][2]={{0,1},{10,11},{20,21}};

int i=1;

…

++mat[i][1];

Label Address Value

0xFFFF FFFC 0xDEADBEEF

0xFFFF FFF8 0xDEADBEEF

…

0xAAC4 0C18 0xDEADBEEF

mat[2][1] 0xAAC4 0C14 0x00000015

mat[2][0] 0xAAC4 0C10 0x00000014

mat[1][1] 0xAAC4 0C0C 0x0000000B

mat[1][0] 0xAAC4 0C08 0x0000000A

mat[0][1] 0xAAC4 0C04 0x00000001

mat[0][0] 0xAAC4 0C00 0x00000000

….

0x0000 0010 0xFFFFFE80

0x0000 000c 0x00001A04

0x0000 0004 0x0000001C

0x0000 0000 0x03000000

Binghamton

University

CS-220

Spring 2019

Table Addressing Mode

• Offset (Base, Row, Width) e.g. $4(%rbx,%rax,$8)
• Offset=4, Base=%rbx, Row=%rax, Width=8

• 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝐵𝑎𝑠𝑒 + 𝑅𝑜𝑤 × 𝑊𝑖𝑑𝑡ℎ + 𝑂𝑓𝑓𝑠𝑒𝑡
• (%rbx)+(%rax*8)+4

• 0xAAC40C00 + 1*8 + 4

• 0xAAC40C0C

(%rbx)

8

%
rax

4

%eax*8 bytes

Binghamton

University

CS-220

Spring 2019

Table Addressing Mode Restrictions

• Offset must be a literal (or label)

• Base must be a 64 bit register

• Row must be a 64 bit register

• Width must be a literal: 1, 2, 4, or 8

• If Offset, Base, or Row are blank, assume default of 0.

• Because of width restriction, not really used for C tables as much
as for C vectors (row major order) or structures

Binghamton

University

CS-220

Spring 2019

C Table Example

int mat[3][2]={{0,1},{10,11},{20,21}};

int i=1;

…

++mat[i][1];

mov $1,%rax

movq $0x0AAC40C00,%rbx

addl $1,$4(%rbx,%rax,$8)

Label Address Value

0xFFFF FFFC 0xDEADBEEF

0xFFFF FFF8 0xDEADBEEF

…

0xAAC4 0C18 0xDEADBEEF

mat[2][1] 0xAAC4 0C14 0x00000015

mat[2][0] 0xAAC4 0C10 0x00000014

mat[1][1] 0xAAC4 0C0C 0x0000000B

mat[1][0] 0xAAC4 0C08 0x0000000A

mat[0][1] 0xAAC4 0C04 0x00000001

mat[0][0] 0xAAC4 0C00 0x00000000

….

0x0000 0010 0xFFFFFE80

0x0000 000c 0x00001A04

0x0000 0004 0x0000001C

0x0000 0000 0x03000000

Offset = 1*4

Width=2*4

Row

Base

Row

Base

Offset = 1*4

Binghamton

University

CS-220

Spring 2019

Table Addressing Mode : Alternate view

• Also: Offset(Base,Row,Width)
• e.g. mat(%rbx,%rcx,8)

• 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝐵𝑎𝑠𝑒 + 𝑂𝑓𝑓𝑠𝑒𝑡 + (𝑅𝑜𝑤 × 𝑊𝑖𝑑𝑡ℎ)

mov $1,%ecx ; row

mov $4,%ebx ; “base”

addl $1,mat(%ebx,%ecx,8)

”Offset”

Width

R
ow

“Base”

Binghamton

University

CS-220

Spring 2019

Dealing with Pointers

• Load effective address: lea
• Used for implicit arrays/structures, etc.

• Calculates address from first argument, and writes that address to second

• Sometimes used as a cheap register to register “add” using addr/offset or
table address mode

lea $-0x1c(%rbp),%rax ; %rax = &counter

lea $3(,$rax,2),$rax ; $rax = ($rax*2) + 3

