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Suppose you built a computer...

What Building Blocks would you use?
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Arithmetic Logic Unit (ALU)
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Full Adder
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Eight Bit Adder
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Big Endian vs. Little Endian Adder
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Hardware (Gate) Implementation

8 bit bitwise AND
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Arithmetic Logic Unit (ALU)

BITWISE AND OPCODE \U
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ALU Summary

* Reads 1 or 2 operands and produces a result

* Control to specify operation
 Arithmetic (+.-,%,/)
* Logic (bitwise or logical and/or/not/xor)
* Shifting

* But where does the data come from?
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Integer Registers
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* Several 64 bit Registers built into the CPU
* Fast Read/Write (CPU Speed)

* No explicit data type!

 Values undefined (X) until set
* Use as operands for and result from ALU
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ALU + RegiSterS + Memory 0x0000 00F0

0x0000 00F1

R0O: 0x0000 00FO OxFFFF FFFF
R1: 0x0000 00F1
R2: OxFFFF FFFF
R3:




Binghamton CS-220

University Spring 2019

Computer vs. Adding Machine

What is the difference?
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ALU+Registers+Memory+Instructionsexecooro

0x0000 00F1

R0O: 0x0000 00FO OxFFFF FFFF
R1: 0x0000 00F1
R2: OxFFFF FFFF
R3:
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Hardware/Software Interface

int main(int argc, char **argv) {
long n=atol(argv([1]);
int i; printf("%ld = 0x",n);
unsigned long mask=(1<<4)-1; // Four ones in the rightmost byte
char * xd="0123456789ABCDEF";
for(i=2*sizeof(n)-1;i>=0;i--) {
int v=(n&(mask<<(i*4)))>>(i*4);
printf("%c",xd[v]);
if (0==i%4) printf(" ");
}
printf("\n"); return 0;

Instruction Set Architecture
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Computer Architecture

* Wikipedia “a set of rules and methods that describe the
functionality, organization, and implementation of computer
systems... the capabilities and programming model of a computer
but not a particular implementation..”

* We will study the x86 architecture.

 Part of the architecture defines what type of data the hardware can
operate on.
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ISA Contents

* The data types the instructions can work on
* two's complement binary, ascii character, unsigned binary;, etc.

* The instructions the hardware recognizes
* add, move, get, ...

* The data the instructions can work on
* Registers
* Memory

* The external interfaces supported by the instructions
* File /0
* Exception Handling and Interrupts


https://en.wikipedia.org/wiki/Instruction_set
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X86 Data Types

* Byte - 8 bit binary or ASCII character (char)

* Word - 16 bit binary (short)

* Double Word - 32 bit binary (int)
* Quad Word - 64 bit binary (long)
* 32, 64, or 128 bit floating point

Spring 2019
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%ah %al Accumulate
%dh %dl |G
%bh 74| Base

Source Index

Destination Index

Stack Pointer

base Pointer



