
Binghamton

University

CS-220

Spring 2019

Introduction to 
Computer Architecture

Chap 4.1



Binghamton

University

CS-220

Spring 2019

Suppose you built a computer…

What Building Blocks would you use?



Binghamton

University

CS-220

Spring 2019

Arithmetic Logic Unit (ALU)

ALU

OP1 OP2

RES

OPERATION



Binghamton

University

CS-220

Spring 2019

Full Adder

𝑆𝑈𝑀 = 𝐴⨁𝐵⨁𝐶
𝐶𝑎𝑟𝑟𝑦𝑂𝑢𝑡 = 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝐵 ⋅ 𝐶𝑎𝑟𝑟𝑦𝐼𝑛

Chap 4.2



Binghamton

University

CS-220

Spring 2019

Eight Bit Adder

OP1

OP2

RESULT

CI

CO



Binghamton

University

CS-220

Spring 2019

Big Endian vs. Little Endian Adder



Binghamton

University

CS-220

Spring 2019

Shifters



Binghamton

University

CS-220

Spring 2019

Hardware (Gate) Implementation

8 bit bitwise AND



Binghamton

University

CS-220

Spring 2019

Arithmetic Logic Unit (ALU)

ALU

OP1

OP2

RES

BITWISE AND OPCODE



Binghamton

University

CS-220

Spring 2019

ALU Summary

• Reads 1 or 2 operands and produces a result

• Control to specify operation
• Arithmetic (+.-,*,/)

• Logic (bitwise or logical and/or/not/xor)

• Shifting

• But where does the data come from?



Binghamton

University

CS-220

Spring 2019

Integer Registers

• Several 64 bit Registers built into the CPU

• Fast Read/Write (CPU Speed)

• No explicit data type! 

• Values undefined (X) until set

• Use as operands for and result from ALU



Binghamton

University

CS-220

Spring 2019

ALU + Registers

Op

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

ALU



Binghamton

University

CS-220

Spring 2019

ALU + Registers + Memory

ALUOP

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

0x0000 00F0

0x0000 00F1

0xFFFF FFFF



Binghamton

University

CS-220

Spring 2019

Computer vs. Adding Machine

What is the difference?



Binghamton

University

CS-220

Spring 2019

ALU+Registers+Memory+Instructions

ALU

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

0x0000 00F0

0x0000 00F1

0xFFFF FFFF

CONTROL UNIT



Binghamton

University

CS-220

Spring 2019

Hardware/Software Interface

Instruction Set Architecture

ALU
O
P

int main(int argc, char **argv) {
long n=atol(argv[1]);
int i; printf("%ld = 0x",n);
unsigned long mask=(1<<4)-1; // Four ones in the rightmost byte
char * xd="0123456789ABCDEF";
for(i=2*sizeof(n)-1;i>=0;i--) {

int v=(n&(mask<<(i*4)))>>(i*4);
printf("%c",xd[v]);
if (0==i%4) printf(" ");

}
printf("\n"); return 0;

}



Binghamton

University

CS-220

Spring 2019

Computer Architecture

• Wikipedia “a set of rules and methods that describe the 
functionality, organization, and implementation of computer 
systems… the capabilities and programming model of a computer 
but not a particular implementation…”

• We will study the x86 architecture.

• Part of the architecture defines what type of data the hardware can 
operate on.



Binghamton

University

CS-220

Spring 2019

ISA Contents
• The data types the instructions can work on

• two’s complement binary, ascii character, unsigned binary, etc.

• The instructions the hardware recognizes
• add, move, get, …

• The data the instructions can work on
• Registers

• Memory

• The external interfaces supported by the instructions
• File I/O

• Exception Handling and Interrupts

https://en.wikipedia.org/wiki/Instruction_set


Binghamton

University

CS-220

Spring 2019

X86 Data Types

• Byte - 8 bit binary or ASCII character (char)

• Word - 16 bit binary  (short)

• Double Word - 32 bit binary (int)

• Quad Word - 64 bit binary (long)

• 32, 64, or 128 bit floating point



Binghamton

University

CS-220

Spring 2019

Origin

Accumulate

Counter

Data

Base

Source Index

Destination Index

Stack Pointer

base Pointer

x86 Integer Registers

%rdi

%rax

%rcx

%rdx

%rsi

%rbx

%rbp

%rsp

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah %al

%ch %cl

%dh %dl

%bh %bl

8
16

32
64


