Binghamton CS-220

University Spring 2019

Introduction to
Computer Architecture

Von Neumann Architecture

Memo
Input I ry | Output
Devices [/] | Programs and Data] —1/| Devices
oy b Data Register ey
] Address Register
[Data & Address Bu>
Control Bus |::>

Clock

Central Processi ng Unit

Operand AVﬂpemnd B Registers
Arithmetic Logic Unit Temporary

Result Memory

Program Counter | Control Unit | instruction Register

Binghamton CS-220

University Spring 2019

Suppose you built a computer...

What Building Blocks would you use?

Binghamton CS-220

University Spring 2019

Arithmetic Logic Unit (ALU)

8 8
-3

Binghamton CS-220

University Spring 2019

Full Adder

Carry_In|@® SUM = ADB®C
B CarryOut =A-B+ A-Carryln+ B - Carryln

Binghamton CS-220

University Spring 2019

Eight Bit Adder

SO I e N S I SO A s I s N e I S
=+ 1 B EF] IEFT B B+ B+ B+

Binghamton CS-220

University Spring 2019

Big Endian vs. Little Endian Adder

A 2 A 2
E E
4
| | |] -
= Cl ci
b B B g I”? “iﬂz I”: B
B 2 B 2
E E
R a2 |z TN 32 |2

{DovrL —{Dovr

CS-220
Spring 2019

e
a

o
(]

=)

Do |®
D1|©
D2|®
D3|©

%
 —
Q
=
I
V)

=
S
£ o
S -
- T)
an 7
omom
-]

CS-220

Spring 2019

Hardware (Gate) Implementation

8 bit bitwise AND

— I
e |11
— Il
— Il
— [l

=l |11}
et 1111

Binghamton CS-220

University Spring 2019

Arithmetic Logic Unit (ALU)

BITWISE AND OPCODE \U

Binghamton CS-220

University Spring 2019

ALU Summary

* Reads 1 or 2 operands and produces a result

* Control to specify operation
 Arithmetic (+.-,%,/)
* Logic (bitwise or logical and/or/not/xor)
* Shifting

* But where does the data come from?

Binghamton CS-220

University Spring 2019

Integer Registers

G
blololololololy lolololololols

* Several 64 bit Registers built into the CPU
* Fast Read/Write (CPU Speed)

* No explicit data type!

 Values undefined (X) until set
* Use as operands for and result from ALU

Binghamton

CS-220

University

AlLU + Registers

Spring 2019

R0O: 0x0000 00FO

<

R1: 0x0000 00F1

4

— R2: OxFFFF FFFF
< R3:
N <
N 5

Binghamton CS-220

University Spring 2019

ALU + RegiSterS + Memory 0x0000 00F0

0x0000 00F1

R0O: 0x0000 00FO OxFFFF FFFF
R1: 0x0000 00F1
R2: OxFFFF FFFF
R3:

Binghamton CS-220

University Spring 2019

Computer vs. Adding Machine

What is the difference?

Binghamton CS-220

University Spring 2019

ALU+Registers+Memory+Instructionsexecooro

0x0000 00F1

R0O: 0x0000 00FO OxFFFF FFFF
R1: 0x0000 00F1
R2: OxFFFF FFFF
R3:

Binghamton CS-220

University Spring 2019

Hardware/Software Interface

int main(int argc, char **argv) {
long n=atol(argv([1]);
int i; printf("%ld = 0x",n);
unsigned long mask=(1<<4)-1; // Four ones in the rightmost byte
char * xd="0123456789ABCDEF";
for(i=2*sizeof(n)-1;i>=0;i--) {
int v=(n&(mask<<(i*4)))>>(i*4);
printf("%c",xd[v]);
if (0==i%4) printf(" ");
}
printf("\n"); return 0;

Instruction Set Architecture

Binghamton CS-220

University Spring 2019

Computer Architecture

* Wikipedia “a set of rules and methods that describe the
functionality, organization, and implementation of computer
systems... the capabilities and programming model of a computer
but not a particular implementation..”

* We will study the x86 architecture.

 Part of the architecture defines what type of data the hardware can
operate on.

Binghamton CS-220

University Spring 2019

ISA Contents

* The data types the instructions can work on
* two's complement binary, ascii character, unsigned binary;, etc.

* The instructions the hardware recognizes
* add, move, get, ...

* The data the instructions can work on
* Registers
* Memory

* The external interfaces supported by the instructions
* File /0
* Exception Handling and Interrupts

https://en.wikipedia.org/wiki/Instruction_set

Binghamton

CS-220

University

X86 Data Types

* Byte - 8 bit binary or ASCII character (char)

* Word - 16 bit binary (short)

* Double Word - 32 bit binary (int)
* Quad Word - 64 bit binary (long)
* 32, 64, or 128 bit floating point

Spring 2019

High Bit

nibble

'
08016111 0001

g111

bit

Pﬂﬂ1ﬂ11é]ﬁﬂﬂ1ﬂ111”

Low Bit

!

|—I double word)|

byte

Binghamton CS-220

University Spring 2019
X860 Integer Registers
L o4 - 32 ; -
‘4_ 16 — — Origin
%ah %al Accumulate
%dh %dl |G
%bh 74| Base

Source Index

Destination Index

Stack Pointer

base Pointer

