Binghamton CS-211

University Fall 2019

Functions

The Basis of C

CS-211
Fall 2019

C Function Anatomy/m

"double[cent_to_far(double t)

return (t¥9.0)/5.0+32;
} Parameter(s)

Binghamton CS-211

University Fall 2019

Function Invocation

Invoke a function in a C expression by specifying:

function _name (argument_expression_list)

function_name : name of a previously declared function

argument _expression_list : comma separated list of expressions to be used as arguments

When a function is invoked, C will....
1. evaluate argument expressions,
2. Copy argument values into parameters
3. invoke the specified function (run it’s body)
4. conceptually replace the function invocation with the returned value

float warmer=cent_to_far(ctemp*1.10);

CS-211
Fall 2019

Binghamton

University

Functions for Abstraction

* Function Prototype: float cent_to_far(float t)
* Function Behavior: Convert Centigrade to Fahrenheit

 Function Embodiment: WHO CARES?

* As long as it works, we can ignore the embodiment!
* Code it once, test it, and then use it lots of times!

Binghamton CS-211

University Fall 2019

The “main” function

e Every C program must have a “main” function
* When C program is run, the OS invokes the main function
* When the main function returns, program ends

e Return value “int”
e Return value O indicates program worked OK
* Return value other than O indicates program failed

* main function arguments — stay tuned
* main function may invoke lower level functions
* For now: int main() { ... ; return O; }

Binghamton CS-211

University Fall 2019

Arguments to main

* When the operating system calls the “main” function, it:

e parses the command line, splitting at “white space” (blanks, tabs)
>|/convertTemp 21.3# E@

* Counts the number of blank delimited words: argc=4

* Creates an array of “words” or strings (really an array of arrays)

“/convertTemp” h
c S

CS-211

Binghamton
Fall 2019

University

Parameters of main

* Typically use argc and argv as the names of the parameters to main
int main(int argc, char **argv) { ...
e drgc argument count — the size of the argv array

* argv argument value (or vector) - a list of strings

* Each string is an array of characters
e So argv is an array of arrays of characters

« Almost (charl[])[] argv —argv is an array of (array of characters)
* (note: not char[][] argv — not a two dimensional array of characters!)

 Can reference each string as argv/[i]
 Can reference individual letters as argv(il[j] really (argv[i])[j]

Binghamton CS-211

University Fall 2019

Function Prototype Declare

* Function Prototype: float freezingPoint(char scale);
* Prototype consists of return type, function name, & parameter list
* We can declare a function by specifying the prototype;
* Followed by a semi-colon
e Still need full function definition somewhere else
* Enables “Right Side Up” coding
* Function Prototypes at the top of the file

* Function definition for top level function (main) next
* Then function definitions for lower level functions

Binghamton CS-211

University Fall 2019

Function Internals (abstractly)

Binghamton CS-211

University Fall 2019

Activation Record

* When a function is called, an “activation record” is created

* Activation records hold:
* Location in C code where function is invoked and will return
* Function being invoked
* Copies of the argument values for this invocation
» Space for function variable values
e Space for a return value

» After the function returns, the activation record is deleted

main.7 myfn x=7 a=3,b=4 °?

10

Binghamton CS-211

University Fall 2019

Activation Records are kept in a stack

* “Current” function on top of stack

* When a function is invoked,
e add its activation record to the top of the stack

* After a function returns,
* remove it’s activation record from the top of the stack -

11

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);
m=) 2. int main() {

3. int a=addem(3,4);
a=addem(a,4);
return O;

Inv__Fn__Jargs Jvars
OS

main a=

4
5.

6.}
7. int addem(int x, inty) { return x+v;}

12

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {

m=) 3. int a=addem(3,4); PE%ME
4. a=addem(a,4); N N P S
5. return O; main
6.}

7. int addem(int x, inty) { return x+v;}

13

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);
2. Int main{) { | CRNCE T
3. int a=addem(3,4); 10 addem x=3,y=4
4. a=addem(a,4); N S S N T
5. return O; main
6.}

m=) 7. int addem(int x, inty) { return x+vy:;}

14

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {

m=) 3. int a=addem(3,4);
4., a=addem(a,4); v |Fn |args |vars
5. return O; 0s main a=7
6.}

7. int addem(int x, inty) { return x+v;}

15

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() { m_mmm
3 int a=addem(3,4); addem x=7,y=4

"=»4. a-addem@,4), N 7R PR T
5. return O, main
6.}
7. int addem(int x, inty) { return x+v;}

16

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);
2. |nt.ma|n(){ | m_mmm
3. int a=addem(3,4); addem x=7.y=4
4. a=addem(a,4); mmmmm
5. return O; aal
6.}

m=) 7. int addem(int x, inty) { return x+vy:;}

17

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {
int a=addem(3,4);
"> 4. a-addem(@,4) RGN
0S main a=11

§

3.
4.
5. return O;
6.
7. int addem(int x, inty) { return x+v;}

18

Binghamton CS-211

University Fall 2019

Example Call Stack

1. int addem(int x, inty);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);
)5 return O:

6.}

7. int addem(int x, inty) { return x+v;}

Inv__Fn__largs _Jvars
OS

main a=11 0

19

CS-211
Fall 2019

Binghamton

University

Notes on Call Stacks

* Arguments are passed by value
e Can’t update callers value!

 GDB “where” command prints call stack

* Function variable management is useful
* Don’t need to worry about caller’s environment!
* Don’t need to worry about previous invocations
* Enables “recursion”

20

Binghamton CS-211

University Fall 2019

Recursive Function

A “recursive” function is a function which calls itself
* For example, “factorial”

» fact(1)=1

e fact(n)=n * fact(n-1) for n>1

* For example:
e fact(2)=2xfact(1)=2*1=2
e fact(3)=3 xfact(2)=3*2=6
e fact(4) =4 xfact(3)=4*6=24

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);
=) 2. int main() {

3. int a = fact(4);
return O;
.}
. int fact(int x) {
if (x==1) return 1;
return x*fact(x-1);

} v Fn___largs [vars

main a

© 0 N O v A

22

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);
2. int main() {

m=) 3. inta = fact(4);

4. return O;

5.}

6. int fact(int x) {

7. if (x==1) return 1 mmmmm
8. return x*fact(x-1): ————

9. } mmmmm

main

23

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3 int a = fact(4);

4, return O;

>} N N PN S

6. int fact(int x) { 13 fact x=

7 if (x==1) return 1: mmmmm
m=) 8. return x*fact(x-1); 12t x

9. } lmmmmm-

main

24

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. inta = fact(4), O R T

4, return O; 13 fact x=

5.} m-mmmm

6. int fact(int x) { 13 fact x=

7 if (x==1) return 1: mmmmm
m=) 8. return x*fact(x-1); 12t x

9. } mmmmm

main

25

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x); mmmmm

2. int main() { 813 fact x=

3. inta = fact(4); N N S S

4, return O; 13 fact x=

5.} mmmmm

6. int fact(int x) { A3 fact x=

7 if (x==1) return 1: mmmmm
m=) 8. return x*fact(x-1): e

9. } mmmmm

main

26

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x); mmmmm
2. int main() { 813 fact x=
3. inta = fact(4); N N S S
4, return O; 13 fact x=
5.} mmmmm
6. int fact(int x) { A3 fact x=

) 7 if (x==1) return 1: mmmmm
8. return x*fact(x-1): ————
9. } mmmmm

main

27

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. inta = fact(4), [R

4, return O; 13 fact x=

>. | m-mmmm

6. int fact(int x) { 13 fact x=

7. if (x==1) retupr’1; mmmmm
) 8. return x*fact(x-1); i L S

9. } mmmmm

main

28

Binghamton CS-211

University Fall 2019

Factorials in C

. int fact(int x);

. int main() {
int a = fact(4);
return O;

1

2

3

4.

> | N N PN S
6. int fact(int x) { 13 fact x=

7. if (x== >reuw/ m-mmmm
3

9

—

return x*fact(x-1); SR N

) m-mmmm

main

29

Binghamton CS-211

University Fall 2019

Factorials in C

int fact(int x);

int main() {

int a = fact(4);
return O:

1.
2.
3
4.
5.}
6. int fact(int x) {
V4
8
Q.

if (x==1) retupr'1; v Fn Jargs |vars |Ret
==) 8. return x*fact(x-1); —— >
} v P args lvars JRet

30

Binghamton CS-211

University Fall 2019

Factorials in C

1. int fact(int x);
2. int main() {

=) 3. int a = fact(4):

4. return O: \m
.}

5

6. int fact(int x) {

/. if (x==1) return 1;

8. return x*fact(x-1);

9. } v [Fn_ jargs [vars |
0OS main a=24

31

Binghamton CS-211

University Fall 2019

Notes on Recursion

e Recursive functions always recurse to a simpler case
* |In “fact” — we always decrease argument by 1

e Recursive functions always have a “base” — a simplest case
* Must be non-recursive to stop the recursion!
* A condition that stops the recursion
* In “fact” — base is the “1” case

e Recursive functions are very similar to inductive proofs in math

* |f the recursion works for 1, and if you assume the recursion works for n-1 and
show it works for n, then the recursion works for any integer

e fact(1)=1, and If fact(3)=3 x 2 x 1, then fact(4) =4 x fact(3) =4 x3x2x1

Binghamton CS-211

University Fall 2019

Recursion can be replaced by loops

. int fact(int x);

. int main() {

int a = fact(4);

return O;

.}

. int fact(int x) {

int f=1; int j; for(j=2;j<x;j++) f*=j;
return f;

© 0NV A WN =

A e

CS-211
Fall 2019

Binghamton

University

Recursion vs. Loops

e Recursion is often conceptually very simple, loops can be more
complicated to understand

* Loops often seem to be significantly more efficient
* Don’t have the overhead of function invocation, creating call stacks, etc.

* However, recursion is so common, the compiler optimizes recursion,
often turning it into a loop

Bottom line: Use whatever makes the most sense to you, and let the
compiler take care of efficiency

Binghamton CS-211

University Fall 2019

Resources

* Programming in C, Chapter 7

* YouTube: Meat-a-Morphis — Introduction to Functions
https://www.youtube.com/watch?v=VUTXsPFx-qQ

o WikiPedia: Subroutine https://en.wikipedia.org/wiki/Subroutine

* WikiPedia: C Standard Library:
https://en.wikipedia.org/wiki/C standard library

* Wikipedia: Recursion (computer science)
https://en.wikipedia.org/wiki/Recursion (computer science)

e C-FAQ Library Functions: http://c-fag.com/lib/index.htm]

* Linux MAN pages online (library functions): http://man7.org/linux/man-
pages/dir _all alphabetic.html

35

https://www.youtube.com/watch?v=VUTXsPFx-qQ
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/Recursion_(computer_science)
http://c-faq.com/lib/index.html
http://man7.org/linux/man-pages/dir_all_alphabetic.html

