
Binghamton

University

CS-211

Fall 2019

Functions
The Basis of C

1

Binghamton

University

CS-211

Fall 2019

C Function Anatomy

double cent_to_far(double t) {

return (t*9.0)/5.0+32;

}

2

Name

Body

Parameter(s)

Return Type

Binghamton

University

CS-211

Fall 2019

Function Invocation
• Invoke a function in a C expression by specifying:

function_name (argument_expression_list)
• function_name : name of a previously declared function

• argument_expression_list : comma separated list of expressions to be used as arguments

• When a function is invoked, C will….

1. evaluate argument expressions,

2. Copy argument values into parameters

3. invoke the specified function (run it’s body)

4. conceptually replace the function invocation with the returned value

float warmer=cent_to_far(ctemp*1.10);

3

Binghamton

University

CS-211

Fall 2019

Functions for Abstraction

• Function Prototype: float cent_to_far(float t)

• Function Behavior: Convert Centigrade to Fahrenheit

• Function Embodiment: WHO CARES?
• As long as it works, we can ignore the embodiment!

• Code it once, test it, and then use it lots of times!

4

Binghamton

University

CS-211

Fall 2019

The “main” function

• Every C program must have a “main” function

• When C program is run, the OS invokes the main function

• When the main function returns, program ends

• Return value “int”
• Return value 0 indicates program worked OK

• Return value other than 0 indicates program failed

• main function arguments – stay tuned

• main function may invoke lower level functions

• For now: int main() { … ; return 0; }

5

Binghamton

University

CS-211

Fall 2019

Arguments to main

• When the operating system calls the “main” function, it:

• parses the command line, splitting at “white space” (blanks, tabs)
>./convertTemp 21.3 F C

• Counts the number of blank delimited words: argc=4

• Creates an array of “words” or strings (really an array of arrays)

argv[0] “./convertTemp”

argv[1] “21.3”

argv[2] “F”

argv[3] “C”

Size=4

Binghamton

University

CS-211

Fall 2019

Parameters of main

• Typically use argc and argv as the names of the parameters to main

int main(int argc, char **argv) { …

• argc argument count – the size of the argv array

• argv argument value (or vector) - a list of strings
• Each string is an array of characters

• So argv is an array of arrays of characters

• Almost (char[])[] argv – argv is an array of (array of characters)
• (note: not char[][] argv – not a two dimensional array of characters!)

• Can reference each string as argv[i]

• Can reference individual letters as argv[i][j] really (argv[i])[j]

Binghamton

University

CS-211

Fall 2019

Function Prototype Declare

• Function Prototype: float freezingPoint(char scale);

• Prototype consists of return type, function name, & parameter list

• We can declare a function by specifying the prototype;
• Followed by a semi-colon

• Still need full function definition somewhere else

• Enables “Right Side Up” coding
• Function Prototypes at the top of the file

• Function definition for top level function (main) next

• Then function definitions for lower level functions

8

Binghamton

University

CS-211

Fall 2019

Function Internals (abstractly)

9

Binghamton

University

CS-211

Fall 2019

Activation Record

• When a function is called, an “activation record” is created

• Activation records hold:
• Location in C code where function is invoked and will return

• Function being invoked

• Copies of the argument values for this invocation

• Space for function variable values

• Space for a return value

• After the function returns, the activation record is deleted

10

Inv Fn args vars Ret

main.7 myfn x=7 a=3,b=4 ?

Binghamton

University

CS-211

Fall 2019

Activation Records are kept in a stack

• “Current” function on top of stack

• When a function is invoked,
• add its activation record to the top of the stack

• After a function returns,
• remove it’s activation record from the top of the stack

11

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

12

Inv Fn args vars Ret

OS main a=

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

13

Inv Fn args vars Ret

OS main a=

Inv Fn args vars Ret

3.10 addem x=3,y=4

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

14

Inv Fn args vars Ret

OS main a=

Inv Fn args vars Ret

3.10 addem x=3,y=4 7

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

15

Inv Fn args vars Ret

OS main a=7

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

16

Inv Fn args vars Ret

OS main a=7

Inv Fn args vars Ret

4.7 addem x=7,y=4

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

17

Inv Fn args vars Ret

OS main a=7

Inv Fn args vars Ret

4.7 addem x=7,y=4 11

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

18

Inv Fn args vars Ret

OS main a=11

Binghamton

University

CS-211

Fall 2019

Example Call Stack

1. int addem(int x, int y);

2. int main() {

3. int a=addem(3,4);

4. a=addem(a,4);

5. return 0;

6. }

7. int addem(int x, int y) { return x+y;}

19

Inv Fn args vars Ret

OS main a=11 0

Binghamton

University

CS-211

Fall 2019

Notes on Call Stacks

• Arguments are passed by value
• Can’t update callers value!

• GDB “where” command prints call stack

• Function variable management is useful
• Don’t need to worry about caller’s environment!

• Don’t need to worry about previous invocations

• Enables “recursion”

20

Binghamton

University

CS-211

Fall 2019

Recursive Function

• A “recursive” function is a function which calls itself

• For example, “factorial”
• fact(1)=1

• fact(n)=n * fact(n-1) for n>1

• For example:
• fact(2) = 2 x fact(1) = 2 * 1 = 2

• fact(3) = 3 x fact(2) = 3 * 2 = 6

• fact(4) = 4 x fact(3) = 4 * 6 = 24

• …

21

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

22

Inv Fn args vars Ret

OS main a

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

23

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

24

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

25

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3

Inv Fn args vars Ret

8.13 fact x=2

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

26

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3

Inv Fn args vars Ret

8.13 fact x=2

Inv Fn args vars Ret

8.13 fact x=1

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

27

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3

Inv Fn args vars Ret

8.13 fact x=2

Inv Fn args vars Ret

8.13 fact x=1 1

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

28

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3

Inv Fn args vars Ret

8.13 fact x=2 2

1

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

29

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.12 fact x=4

Inv Fn args vars Ret

8.13 fact x=3 6

2

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

30

Inv Fn args vars Ret

OS main a

Inv Fn args vars Ret

3.8 fact x=4 24

6

Binghamton

University

CS-211

Fall 2019

Factorials in C

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. if (x==1) return 1;

8. return x*fact(x-1);

9. }

31

Inv Fn args vars Ret

OS main a=24

24

Binghamton

University

CS-211

Fall 2019

Notes on Recursion

• Recursive functions always recurse to a simpler case
• In “fact” – we always decrease argument by 1

• Recursive functions always have a “base” – a simplest case
• Must be non-recursive to stop the recursion!

• A condition that stops the recursion

• In “fact” – base is the “1” case

• Recursive functions are very similar to inductive proofs in math
• If the recursion works for 1, and if you assume the recursion works for n-1 and

show it works for n, then the recursion works for any integer

• fact(1)=1, and If fact(3)=3 x 2 x 1, then fact(4) = 4 x fact(3) = 4 x 3 x 2 x 1

Binghamton

University

CS-211

Fall 2019

Recursion can be replaced by loops

1. int fact(int x);

2. int main() {

3. int a = fact(4);

4. return 0;

5. }

6. int fact(int x) {

7. int f=1; int j; for(j=2;j<x;j++) f*=j;

8. return f;

9. }

Binghamton

University

CS-211

Fall 2019

Recursion vs. Loops

• Recursion is often conceptually very simple, loops can be more
complicated to understand

• Loops often seem to be significantly more efficient
• Don’t have the overhead of function invocation, creating call stacks, etc.

• However, recursion is so common, the compiler optimizes recursion,
often turning it into a loop

Bottom line: Use whatever makes the most sense to you, and let the
compiler take care of efficiency

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 7

• YouTube: Meat-a-Morphis – Introduction to Functions
https://www.youtube.com/watch?v=VUTXsPFx-qQ

• WikiPedia: Subroutine https://en.wikipedia.org/wiki/Subroutine

• WikiPedia: C Standard Library:
https://en.wikipedia.org/wiki/C_standard_library

• Wikipedia: Recursion (computer science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

• C-FAQ Library Functions: http://c-faq.com/lib/index.html

• Linux MAN pages online (library functions): http://man7.org/linux/man-
pages/dir_all_alphabetic.html

35

https://www.youtube.com/watch?v=VUTXsPFx-qQ
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/Recursion_(computer_science)
http://c-faq.com/lib/index.html
http://man7.org/linux/man-pages/dir_all_alphabetic.html

