CS-220
Spring 2019

in C

Arrays

(—
S
g
S -
- T)
eh =
g =
m 2

Binghamton CS-220

University Spring 2019

Abstract Vector

* One dimensional array

* Ordered list of values, all of the same type
* Individual elements accessible by “index”
* \Vector has a Size (Number of elements)

17.3 14.5 3.2 12.0 5.65 14.5

Binghamton CS-220

University Spring 2019

C Array Implementation

OXFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF
* List of contiguous values in memory W I 0xDEAD BEEF

* Array Declaration: Y33V OXDEAD BEEF

. P Em

int vec[5];

Ox0000 0C14 [op &k kb B
Ox0000 OC10 o) & B b B B B B
O0x0000 OCOC o) B b i B i B B
Ox0000 OCO8 [0 & ek b f i i
O0x0000 OCO4 o) & B i b b b B e B

* Type: Type of each element

* Name: Identifier for the entire array
Ox0000 000C [loh(elofefoe]o]o]@

e Count: Number of elements in the list 0x0000 0008 TG

Ox0000 0004 [opeJoleloiolo[o]<
0)qeo/o[oNolo[o]ommm OX0000 0003

CS-220
Spring 2019

Binghamton

University

Inverted Arrays

int vec[5]={365,366,367,368,369};

Usually, we show arrays top to bottom.

vec[0]=365

vec[1]=366

vec[2]=367
vec[3]=368
vec[4]=369

Arrays in memory read bottom to top

OXFFFF FFFC
OXFFFF FFF8

OXFFFF FFF4
OXFFFF FFFO

0x0000 0C14
0x0000 0C10
0x0000 0COC
0x0000 0CO08
0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF

0x0000 011C
0x0000 011B
0x0000 011A
0x0000 0119
0x0000 0118

0x0000 000C
0x0000 0009
0x0000 0006
0x0000 0003

Binghamton CS-220

University Spring 2019

Initializing a Vector

int x=7; // Initializing a scalar variable
int gpc[12]={4,4,6,4,3,3,2,2,3,1,4,4}; // Initializing vector

0o 1]2/3 /4|5 67 8]09 0] u
4 4 6 4 3 3 2 2 3 1 4 4

* Or, let the compiler count the number of elements
int gpc[1= {4,4,6,4,3,3,2,2,3,1,4,4};

* IF ARRAY IS NOT INITIALIZED IT’S INITIAL VALUE IS UNKNOWN!

Binghamton CS-220

University Spring 2019

C Idiom: Zeroing out an Array

* Initialization “rule”... if you specify an initializer that does not contain
enough values, C will “pad” your initializer to the right with 0x00.

* Thus, to initialize an entire array to zero, just specify a single 0 value.

int countOranges[37] ={0}; // All 37 orange boxes are empty

Binghamton CS-220

University Spring 2019

C Pitfall: Array Bounds Checking

vec[0] vec[1] vec[2] vec[3] vec[4]
4 4 4 4 4 4

int vec[5]; int i;
for(i=0:i<=5:i++) vec|i]=4;

* Trust the programmer, and save the run-time!
* Programmer must be trustworthy!

* Writing past the end of an array can cause many problems

* May write over other variables
* May cause a segmentation violation

CS-220
Spring 2019

INters

C Arrays and Po

‘Lv

(—
S
g
S -
=
eh >
g =
m D

Binghamton CS-220

University Spring 2019

Arrays vs. Pointers...

“In C, there is a strong relationship
between pointers and arrays,
strong enough that pointers and
arrays should be discussed
simultaneously. Any operation that
can be achieved by array
subscripting can also be done by
pointers. The pointer version will
in general be faster but, at least to
the uninitiated, somewhat harder
to understand”.

K&R p. 97

Dennis Ritchie

Binghamton CS-220

University Spring 2019

Array Name

e C convention: array name is the address of the first element!

vec==&(vec[0])

* Therefore, the following holds:

&(vec[i]) == (char *)vec + sizeof(vec[0]) * i
&(vecli]) = vec+i

Binghamton CS-220

University Spring 2019

A Pointer points to one or more
elements of a specific type

(Actually, zero or more, but who’s counting)

Binghamton CS-220

University Spring 2019

Pointer Arithmetic

In C, if we add “1” to a pointer, that means, point to the next element

 If char * ptr points to a character,
then ptr+ 1 points to the next character (address+1)

 If Int ™ Iptr points to an integer,
then iptr+ 1 points to the next integer (address+4)

o If float *aptr[4] points to an array of 4 floats,
then aptr+1 points to the next array of 4 floats. (address+16)

12

Binghamton CS-220

University Spring 2019

Pointer Arithmetic Example

OxFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF

* A “unit” in pointer arithmetic is the size of

the data type pointed to by the pointer oI 0x0000 0C18

0)(o[o[e[oNe[ox am OX0000 0003
Ox0000 OC10 oy ololelololo]o]
Ox0000 OCOC oy ololelolo[o]0 k]
0)(e[e[e[oNelelo}: 3 OX0000 0003
0)(ee[e[oNe[clo7m OX0000 0003

int *x; int vec[5];
for (x=vec; x<&vec[5]; x++) (*x)=3;

)0o/o[oNoo[o[opm Ox0000 000C
Ox0000 0008 [op(olelelolofo]o)]
Ox0000 0004 [opeJoleloiolo[o]<
0)qeo/o[oNolo[o]ommm OX0000 0003

Binghamton CS-220

University Spring 2019

Arrays as Arguments

* C treats array arguments to pointers!
 Call by reference means caller can see changes to arrays!!!

* For example, using string functions...
char name[100];
strcpy(name,”Tom Bartenstein’);
int n=strlen(hame);
scanf(“%s “,name);

* If parameter dimensions are specified, compiler checks to make sure
argument dimensions are correct

Binghamton CS-220

University Spring 2019

Can functions return Arrays?

e No!

* Functions can return arithmetic values, structures, or pointers, but
NOT arrays!

* However, it CAN return a pointer to an array..

* Problem: Where is the memory associated with a returned array?
* If returned array passed in as an argument... that works
* Local arrays — no longer valid after function call!
* malloc’ed arrays — Fine as long as they eventually get freed
e Static arrays — OK, but caller can’t assume these are stable

Binghamton

CS-220

University

Pointer / Array Ambiguity

* In C, we can treat pointers like arrays, and arrays like pointers

Using array notation

int suma(int numsl)) {
int s=0: int i=0;
while(hnumsli]!=0) {

S+=numsli];
I+ +

}

return s;

Using pointer notation

Spring 2019

int sump(int *nums) {
int s=0;
while((*nums)!=0) {
S+=(*nums);
nums-++;

§

return s;

Binghamton CS-220

University Spring 2019

Pointer/Array Ambiguity

* We may invoke functions which expect arrays by passing in pointers
* We may invoke functions which expect pointers by passing in arrays

int suma(int numsl]);

int sump(int *nums);

int numal[4]={1,2,3,0};
printf("sum=>%d\n",suma(&numal0]));
printf("“sum=%d\n”,sump(numa);

Binghamton CS-220

University Spring 2019

Array Dimensions

Matrix: int matrix[2][3]={{10,11,12},{20,21,22}}

Vector: int vec[4]={10,20,30,40};
matrix[0][0] matrix[0][1] matrix[0][2]

10 11 12
1
vec[0] |vec[1] |vec[2] |vec3] matri(1][0] matrbqll[l] matrix(1][2]
10 20 30 40 20 21 22

Cube: char cube[3][2][3] = {“abcdefghijklmnopqr”}; Erzrg’[O][O] !i’][O][l] Es’][O][Z]

[1][0][0] [1][0][1] [1][O][2] [2][1][0] [2][1][1] ([2][1][2]
‘g’ ‘h’ T ‘P’ ‘q’ r’

[0][0][0] [O][0][1] [O][O][2] [1][1]1[0] [2][1l[1] [1][1][2]
‘@’ ‘b’ ot ik 1% v

[0l[1]{o] [o]{1]{1] [O][1][2]
‘d’ ‘e’ ‘7

18

Binghamton CS-220

University Spring 2019

Multi-Dimensional Arrays

OXFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF

int xyz[2][3]; // 2 rows/3 cols WazaA33 IS 0xDEAD BEEF

0)(o[o[e[oNeloxk: N OX0000 011D
0x0000 0C14 Ll fikiie
0x0000 OC10 oy olololo okt
Ox0000 OCOC [lop(oJololofojE.s
0x0000 OCO8 oy (olololoRokii:)
0x0000 0CO4 o) ololo o HokisE:]

xyz[0][O] xyz[O][1]
xyz[1][1] xyz[1][2]

* Row Major order

* like odometer, right digit changes fastest
0x0000 000C o) (elofefoe[o]o]@

0x0000 0008 oy Colelelololo]o)]
0)(eo[o[oNo]o[o7 3 OX0000 0006
)qeo/o]o)olo/o]ommm OXx0000 0003

Binghamton CS-220

University Spring 2019

Matrix Pointer Arithmetic

int mat[3][4].int r; int c:

&(mat[r][c]) == mat + (r*4)+c
Or

elementSize=sizeof(mat[0][0]); rowSize=4*elementSize;
&(mat[r][c]) == (char *)mat + (r*rowSize) + ¢ * elementSize

CS-220
Spring 2019

Binghamton

University

Higher Dimension Addresses

e With one dimension, “array” == “&array[0]”

* With two dimensions, “matrix” == “&matrix[0][0]”

* Notice, &array[0] (or &matrix[0][0]) are not physically in memory!
e Also “matrix[i]” == “&matrix[i][0]”

« matrix+i*sizeof(matrix[0])/sizeof(matrix[0][O])

* Allows us to THINK of rows as sub-arrays

* Again, there is no “matrix][i]” physically in memory!

* In 3d: “cubel[i]” == “&cubeli][0][0]” and “cubeli][j]”"== “&cubeli][j][0]”

Binghamton CS-220

University Spring 2019

Arrays of Pointers

int (*xyz)[2]; //Array of two pointers xyzi] 0x0000 CAOC |0 i[0 [0} er/it:;
xyz:(): =(int "“)mal|0c(3"“sizeof(int)); xyz[0] [0/ Xo.Yo}: I 0X0000 CO00

xyz[1]=(int *)malloc(2*sizeof(int)); xyz[1][1] 00000 C70C [ty (elole[ohe[ofe):
xyz[1][0]=3; xyz[1][0] = 0x0000 C708 L0 LoliiNi[1[iE:

xyz[0][2] Ox0000 CO08 [0y (olele]oxlo[or.
xyz[O][1] Ox0000 CO04 Flo)(elolofofo[o]05F

(*xyz[0])[1] xyz[0][0] Ox0000 CO00 [Loyelolo[eoe[o]s]
(*xyz[0])[2]

(*xyz[1])[1]

Binghamton

CS-220

University

Difference between Arrays and Pointers

Array (unsubscripted)
* Fixed, pre-defined dimension(s)

e Space reserved by compiler
* In row major order

* All 2D rows equal length

* Not a variable... can’t be re-
assigned

Spring 2019

Pointers to List

* No pre-defined length
* No space reserved

* 2D rows may be varying length
 Variable... can be re-assigned

Binghamton CS-220

University Spring 2019

Arrays with Undetermined Lengths

*InC, int nums|]; is exactly the same as int *nums;
* In both cases, numMs is a pointer to an undetermined number of ints

* In either case, we can use the notation nums|[3] or *(nums+ 3) to retrieve
the third element (if there is one)

* We must have some external way of knowing how many there are

* Note: For multi-dimensional arrays, only works for LEFTMOST index

« e.g. grades|[][13] is a pointer to a matrix that has 13 columns, but an
unknown number of rows

« grades[20][] is invalid! Why?

Binghamton CS-220

University Spring 2019

Dealing with Undefined lengths
 mplicit | Explit | Guad

int perimTri(int sides|[]) { int perimn(int n, int sides|]) { int perimg(int sides|]) {
return side[0] + side[1] + int j; int sum=0; int j; int sum=0;
side[2]; for(j=0;j<n;j++) for(j=0;sides[j]>0;j++)
} sum+=sides[j]; sum+=sides[j];
return sum; return sum;
} }
 Agreement: sides is an Agreement: Caller specifies * Agreement: Caller puts a
array with three elements how many elements are in guard value after last
* Probably better to use sides with an extra significant element of sides
“sides[3]” in argument argument e Guard value is an “invalid”

definition value

Binghamton CS-220

University Spring 2019

Initialized Pointers

* In some cases, it looks like pointers ARE reserving memory
char * name = “Tom Bartenstein’;

* In this case, the compiler is creating a LITERAL value in memory
e Possibly “read only” memory
* Possibly shared with other instances of “Tom Bartenstein” literal in this code

* The “name” variable points to the LITERAL value
* May get segmentation violation if written to
* May get bizarre future errors if compiler re-used this literal

CS-220
Spring 2019

o
S
g
S -
= L
an 7
g '8
m D

28

Binghamton CS-220

University Spring 2019

What is a “string™?

* A “string” is just a vector of ASCII characters
* Followed by a “null terminator” — a byte with the value 0x00

char str[14]="This a string’;

i)) 2) 2.0) (L P_)) (L P_) 2y 2) 2°)) _ 7)__)
{‘T,’h’,’1",’s’, 7 5 7a), 7 4 s 't e it /n’ Jg’, x00}

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Binghamton CS-220

University Spring 2019

Pointers and Memory

* When you declare an int or array of ints, the compiler reserves
memory for that int or array of ints

* When you declare a pointer to an int or array of ints, the compiler
reserves memory for the POINTER, but does NOT reserve memory for
the actual data being pointed to!

* Typical C bug:
char* name; // similar to char name[100] but...
strcpy(name, Tom Bartenstein’);

Segmentation Violation

Binghamton CS-220

University Spring 2019

Empty String

char str[14]="This a string’;
str[0]=x00;
printf(“Variable str contains <%s> and no more\n”,str);

Variable str contains <> and no more

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x00 X68 xX69 x73 x20 x61 x20 x73 x74 xX72 X69 x6e X67 x00

31

Binghamton CS-220

University Spring 2019

Standard library String Functions

 #include <string.h>

e strlen(string) — counts the number of characters in the string (up to null
terminator?

* strcpy(from,to) — copies all characters in from string to to string
* Assumes “to” is large enough to hold from string
* If not sure, use strncpy(from,to,n)

e strcat(start,tail) — adds tail in place of null terminator to start
e Assumes “start” is large enough to hold combined result
 If not sure, use strncat(start,tail,n)

e strcmp(a,b) — compares a to b, returns -1 if a<b, 0 if a==b, 1 if a>b

e ASCIl order
e Use strncmp(a,b,n) to compare prefixes

Binghamton

CS-220

University

Pointer / Array Ambiguity

Spring 2019

* In C, we can treat pointers like arrays, and arrays like pointers

Using array notation

int strlen(char str[]) {
int i=0;
while(str[i]'=0x00) {
1+
}
return i;
5

Using pointer notation

int strlen(char *str) {

int i=0;

while((*str)!=0x00) {
I++; str++;

}

return I;

CS-220
Spring 2019

Binghamton

University

Resources

* The C Programming Language, (K&R) Section 1.6 (Arrays), 1.9 (strings)

* Wikipedia C String Handling
https://en.wikipedia.org/wiki/C_string_handling

e C String Tutorial :
http://www.tutorialspoint.com/cprogramming/c_strings.htm

34

https://en.wikipedia.org/wiki/C_string_handling
http://www.tutorialspoint.com/cprogramming/c_strings.htm

