
Binghamton

University

CS-220

Spring 2019

Memory and Pointers

1

Binghamton

University

CS-220

Spring 2019

Memory

• Keeping track of something over time

• A memory is stored at one point in time

• A memory is retrieved at a later time

• Computers remember information by
writing bits (1/0) to “memory”

• We retrieve information by reading bits from memory

Binghamton

University

CS-220

Spring 2019

Edge Triggered “Flip/Flop”

D Clk Qn

X 0 Q0

X 1 Q0

X 0→1 Q0

D 1→0 D

Binghamton

University

CS-220

Spring 2019

Registers – A series of Flip-Flops

Binghamton

University

CS-220

Spring 2019

Random Access Memory (RAM)

ADDR DATA

00 0 0 0

01 0 0 1

10 0 1 0

11 1 1 1

Binghamton

University

CS-220

Spring 2019

Abstract view of “Main” Memory (RAM)

ADDRESS DATA

0xffff ffff 0 0 0 1 1 0 0 0

…

0x0000 0002 0 0 0 1 0 1 0 0

0x0000 0001 0 0 1 1 0 1 1 0

0x0000 0000 1 1 1 0 1 1 1 1

Binghamton

University

CS-220

Spring 2019

Computer Memory Organization

• Computers read and write memory in 1 byte (8 bit) chunks

• Think of memory as a big C vector of chars:

char MEMORY[2_142_240_768];

• Like a vector, if we know the index of a byte of memory, we can either
read or write to that byte:

MEMORY[1_684_501_289] = ‘A’;
printf(“We stored %c\n”,MEMORY[1_684_501_289];

Binghamton

University

CS-220

Spring 2019

Modeling “Memory”

• In computers, memory is like a RAM with 8 bit words
• A byte is 8 bits, two hex digits, one ASCII character
• Each byte of memory has a specific ADDRESS… the index of the

byte from the beginning of memory
• Each byte can be read or written independently

• We model this as a column with address 0 at the bottom

• For this class, we will use 64 bit addresses
• 8 bytes, 16 hex digits, values 0-18,446,744,073,709,551,615
• Most modern machines use 64 bit addresses
• Slides will use 32 bit addresses so things fit

• Initial value of memory is unknown

Address Value

0xFFFF FFFF 0xDE

0xFFFF FFFE 0xAD

0xFFFF FFFD 0xBE

0xFFFF FFFC 0xEF

0xFFFF FFFB 0xDE

…

0x0000 0C07 0x00

0x0000 0C06 0x00

0x0000 0C05 0x01

0x0000 0C04 0x18

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Chap 2.1.3

Binghamton

University

CS-220

Spring 2019

Cheap Memory

• Between Moore’s Law and brilliant OS parlor tricks, “Virtual Memory”
is VERY cheap!

• Memory size depends on the size of the address

Address Size Number of Bytes addressable

2 bytes (16 bits) 216 = 64K = 65,376

4 bytes (32 bits) 232 = 4G = 4,284,481,536

8 bytes (64 bits) 264 = 16EiB >1.8 x 1019

Binghamton

University

CS-220

Spring 2019

Displaying Words of Memory

• Often we want to show multiple bytes of
memory right next to each other

• For instance, an integer is 4 bytes long, and is
hard to read if those bytes are not on one line

• Choose a “word size” (often 4 bytes), and
show memory in words

Address Value

0xFFFF FFFC 0xDEAD BEEF

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x1122 3344

0x03

0x020x01

0x00

0x04

Binghamton

University

CS-220

Spring 2019

C Values

• Every “C” value resides in memory

• The “address” of a value is the location of the
beginning of that value in memory

• The type of the value tells us how long to read

• Displaying 4 byte “words” in memory

• Integer @ 0x0000 0004 = 0x0000 0006 = 610

• Integer @ 0x0000 0C04 = 0x0000 0118 =28010

• Display big-endian (abstractly)

Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

0x0000 0C0C 0x0000 011A

0x0000 0C08 0x0000 0119

0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2019

Variable Concept

12

Memory

???? ???? ???? ???? ???? ???? ???? ????

Age

???? ????

First_Initial

???? ???? ???? ???? ???? ???? ???? ????

gpa

Binghamton

University

CS-220

Spring 2019

C Variables

• The compiler reserves space in memory for
each variable.

• The “address” of a value is the location of
the beginning (first byte) of the value of that
variable in memory

int height=280;

• We can think of the variable name as a label
at a specific memory location*

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

0x0000 0C0C 0x0000 011A

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2019

Pointers in C

• Pointers are a special class of data types
• A variable may be declared as a pointer

• The size of a pointer is the size of an address

• The VALUE of a pointer is an address

• The TYPE of a pointer includes the type of value it is pointing to!
• pointer to character
• pointer to integer
• pointer to float
• pointer to struct date
• …

14

Chap 2.1.2

Binghamton

University

CS-220

Spring 2019

Declaring Pointers

• An asterisk (*) after a data type in a declare
statement means “is a pointer to”

int *numPtr=0x00000C04;

• Type: Type of data being pointed to

• Name: Name of the pointer itself

• Value: An address

• Note: Pointers are often variables too!

Type Name Initial Value

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2019

“Address Of” operator

• An ampersand (&) in front of a variable means
“address of” the value of that variable.

int *numPtr=&height;

• “Variable” can be any reference to memory
• Variable name

• Function name

• …

Variable

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 0118

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Binghamton

University

CS-220

Spring 2019

“Value At” (dereference)

• An asterisk (*) in front of an expression means
“value at” that expression.

• Think of *x as if it were MEMORY[x]

• Value At operator takes an address as an
argument

Label Address Value

0xFFFF FFFC 0xDEAD BEEF

0xFFFF FFF8 0xDEAD BEEF

0xFFFF FFF4 0xDEAD BEEF

0xFFFF FFF0 0xDEAD BEEF

0xFFFF FFEC 0xDEAD BEEF

…

0x0000 0C10 0x0000 011B

numPtr 0x0000 0C0C 0x0000 0C04

0x0000 0C08 0x0000 0119

height 0x0000 0C04 0x0000 000A

….

0x0000 000C 0x0000 000C

0x0000 0008 0x0000 0009

0x0000 0004 0x0000 0006

0x0000 0000 0x0000 0003

Pointer To

Value At

int *numPtr=&height;
(*numPtr)=10;

Binghamton

University

CS-220

Spring 2019

Aliases in C

• Most languages allow only one reference to a specific piece of data

• C allows “aliasing”… multiple ways to reference a specific value

int x=10;

int *y=&x; // (*y) is now an alias for x

(*y)=11;

printf(“The value of x is %d\n”,x);

Binghamton

University

CS-220

Spring 2019

Using NULL

• “NULL” is a special address whose value is 0x0000 0000 0000 0000.

• Beginning of Memory “belongs” to the operating system
• General programs can read at 0, but cannot write at 0

• Therefore, we use NULL to indicate “pointer to nothing”
• Or “pointer that we haven’t set yet”

int *p=NULL; // p is a pointer to nothing (for now)

…

p=&age; // Now p is a pointer to an integer

19

Binghamton

University

CS-220

Spring 2019

C Pitfall: “Dereferencing a Null Pointer”

int *p=NULL; // P is a pointer to nothing

…

if (x>0) { p=&x; }

(*p) = 5;

Segmentation Violation when x<=0

Binghamton

University

CS-220

Spring 2019

Void Pointers

void * myptr; // myptr is a pointer to void

• void * used as a “universal pointer” – a pointer to any type of data

• myptr is a pointer, but I’m not going to tell you what it points at

• Before you use (dereference) myptr, you must cast it as a pointer to
something

printf(“myptr points to %c\n”,*(char *)myptr);

• Programmer must know what type of data it’s pointing at to cast correctly

21

Binghamton

University

CS-220

Spring 2019

Using Pointers to Pass by Reference

int counter=0;

void incr(int x) {

x = x + 1;

}

incr(counter);

printf(“counter=%d\n”,counter);

counter=0

int counter=0;

void incrp(int *x) {

(*x) = (*x) + 1;

}

incrp(&counter);

printf(“counter=%d\n”,counter);

counter=1

Binghamton

University

CS-220

Spring 2019

Compile vs. Dynamic (Run-Time) Memory

Compile Time Memory

• Declared in the program

• Compiler figures out how to
manage this memory

• Where it resides
• When it is available to the

program

Dynamic Memory

• Program requests chunks of
memory from the “heap”, a
memory pool managed by the
OS

• Program manages the use of this
memory

• Program must return the right to
use this memory to the OS when
done

Binghamton

University

CS-220

Spring 2019

Dynamic Memory

• Standard library function call to request new memory

#include <stdlib.h>

void * malloc(int size);

24

Number of Bytes requested

Address of space returned
NULL if no space is available
Type is pointer to nothing.

Chap 9.9

Binghamton

University

CS-220

Spring 2018

The malloc “contract”

• You are guaranteed sole use of malloc’ed memory

• Nothing outside of your program will read or write that memory

• When you are finished using that memory, you must give it back to the
operating system!

char * buffer=(char *)malloc(300); // get 300 bytes from heap

// use buffer here

free(buffer); // return buffer 300 bytes to the heap

25

cast to correct pointer type
to avoid compiler warnings

Binghamton

University

CS-220

Spring 2018

What happens when I run out of heap?

int * numbers=(int *)malloc(sizeof(int)*2000000);

if (numbers==NULL) {

printf(“Ran out of heap memory!”);

exit(-1);

}

numbers[12]=16;

Binghamton

University

CS-220

Spring 2018

Initializing Heap Memory

• What is in malloc’ed memory?
• Whatever was there before (Unknown values)
• It is assumed you will write to dynamic memory before you read it
• If this assumption is not true, use “calloc” instead of “malloc”

(void *) calloc(int count,int size);

• Allocates “count” contiguous items that are “size” bytes large

• Initializes all memory to zero (0x00)

float * floatVec=(float *)calloc(100,sizeof(float));

Binghamton

University

CS-220

Spring 2018

Managing Growing Data Structures
struct m * new() {

struct m* this=(struct m*)malloc(sizeof(struct m));

this->max=16; this->used=0;

this->data=(int *)malloc(sizeof(int)*this->max);

return this

}

bool add(struct m*this,int new) {

if (this->used==this->max) {

this->max*=2;

this->data=(int *)realloc(this->data,sizeof(int)*this->max);

if (this->data == NULL) return false;

}

this->data[this->used++]=new;

return true;

}

struct m {
int max;
int used;
int * data;

}

Binghamton

University

CS-220

Spring 2018

C Pitfall – Orphaned Pointers

int *nums = (int *)malloc(count * sizeof(int));
for(int i=0;i<count;i++) { nums[i]=foo(i); }
…
free(nums);

if (nums[1]>0) {
printf(“Wow… foo(2) was positive!\n”);
nums[12]=17;
…

nums is still a valid address, but you no
longer own what nums points to!

You just wrote into someone else’s
memory!

Binghamton

University

CS-220

Spring 2018

Core Hog Hunting

• Lazy programmers forget to free all the memory they malloc

• Eventually, you run out of heap memory
• Especially if your program runs for days or weeks

• Kill your program and dump heap memory

• Search through the memory and try to figure out:
• What values are in that memory

• What code wrote those values

• Are they still being used?

Binghamton

University

CS-220

Spring 2018

Memory Debug - valgrind

• Tracks each malloc/free and memory reference (read or write)
• Reports on mallocs never freed

• Reports on freed mallocs still referenced

• Reports on references past the end of malloc’ed chunks

• Run using: valgrind cmd parameters

• Takes significant extra time/memory!

• Not available everywhere (not available under Cygwin)

• Free (Expensive GUI driven memory debuggers available)

Binghamton

University

CS-220

Spring 2019

Resources

• The C Programming Language, Sections 5.1, 5.2

• Computer Systems, Section 2.1

• C-FAQ: http://c-faq.com/ptrs/index.html,
http://c-faq.com/null/index.html

• Wikepedia Pointers :
https://en.wikipedia.org/wiki/Pointer_(computer_programming)

• C Pointer Tutorial :
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

32

http://c-faq.com/ptrs/index.html
http://c-faq.com/null/index.html
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

Binghamton

University

CS-220

Spring 2019

Structures and Pointers

• Example structure:
struct date {

int year; // Like 2017

int month; // Like 10 for October

int dom; // Like 23 for October 23

} today;

• Example of compile time memory
• Reference fields with “today.year”, etc.

33

Type

Fields

Instance

Binghamton

University

CS-220

Spring 2019

Structure Pointers

• Example structure pointer:
struct date *dptr=&today;

• We could access fields with : (*dptr).year

• But C provides a shorthand notation: dptr->year

• Typical run-time structure memory allocation:
struct date *newDate=(struct date*)malloc(sizeof(struct date));

newDate->year=2019;

…

Binghamton

University

CS-220

Spring 2019

Structure Pointers & Call by Reference

• Structures as arguments are call by value – entire structure is copied!

• Typically, structures are passed by reference so we can modify them

void tomorrow(struct date *now) {
now->day++;

if (now->day > daysInMonth(now->month, now->year)) …

