Binghamton CS-220

University Spring 2019

Memory and Pointers

Binghamton CS-220

University Spring 2019

Memory

* Keeping track of something over time
* A memory is stored at one point in time

* A memory is retrieved at a later time

* Computers remember information by
writing bits (1/0) to “memory”

* We retrieve information by reading bits from memory

Binghamton CS-220

University Spring 2019

Edge Triggered “Flip/Flop”

Cik|®

Binghamton CS-220

University Spring 2019

Registers — A series of Flip-Flops

D7 Do D5 D4 D3 D2 D1 DO

© © © © L1 © ©
oo
©
© © © - © =@

@ @

Clk

Binghamton CS-220

University Spring 2019

Random Access Memory (RAM)

D1 p2[@}— pa[@}
e, L e ADDR DATA
0 0 0

/ﬁ A > |
ck[@] ,\Dmx — R1D1 R1DZ R1D3
] L o - 1= U 1= -
£ L]
R2D1 R2D2 R2D3
L o V 1= V — 1= V —
I 3 ; 0 0 1
RaD1 RaD2 R3D3
a L7 a o | n L7 -
: : | 0 1 0
ol ol et
ML ML ML

01 »
o —{@o @2 @as

Binghamton CS-220

University Spring 2019

Abstract view of "Main®™ Memory (RAM)

ADDRESS DATA

Oxffff ffff o 0 01 1 O O O

woebpoipbP2s 0 0 0 1 0 1 0 O

vonbpobils 0 0 1 1 0 1 1 O

O ehpeiow 1 1 1 0 1 1 1 1

Binghamton CS-220

University Spring 2019

Computer Memory Organization

* Computers read and write memory in 1 byte (8 bit) chunks
* Think of memory as a big C vector of chars:

char MEMORY[2_142_240_768];

* Like a vector, if we know the index of a byte of memory, we can either
read or write to that byte:

MEMORY[1_684_501_289] = ‘A’;
printf(“We stored %c\n”,MEMORY[1_684_501_289];

Binghamton

CS-220

University

Modeling "Memory”

* In computers, memory is like a RAM with 8 bit words
* A byte is 8 bits, two hex digits, one ASCII character

* Each byte of memory has a specific ADDRESS... the index of the
byte from the beginning of memory

* Each byte can be read or written independently
* We model this as a column with address O at the bottom

* For this class, we will use 64 bit addresses
* 8 bytes, 16 hex digits, values 0-18,446,744,073,709,551,615
* Most modern machines use 64 bit addresses
e Slides will use 32 bit addresses so things fit

* |nitial value of memory is unknown -

Spring 2019

Address
OxFFFF FFFF
OxXFFFF FFFE

OXFFFF FFFD
OXFFFF FFFC
OXFFFF FFFB

0x0000 0CO7
0x0000 0CO06
0x0000 0CO5
0x0000 0CO4

0x0000 0003
0x0000 0002
0x0000 0001
0x0000 0000

Value

Binghamton CS-220

University Spring 2019

Cheap Memory

* Between Moore’s Law and brilliant OS parlor tricks, “Virtual Memory”
is VERY cheap!

* Memory size depends on the size of the address

Address Size Number of Bytes addressable

2 bytes (16 bits) 216 = 64K = 65,376
4 bytes (32 bits) 232=4G=4,284,481,536
8 bytes (64 bits) 264 = 16EiB >1.8 x 101°

Binghamton CS-220

University Spring 2019

Displaying Words of Memory

e Often we want to show multiple bytes of a3 :32008 OxDEAD BEEF

memory right next to each other _

e For instance, an integer is 4 bytes long, and is
: : 0)(0[ele]oN0]0[o[omm Ox0000 000C
hard to read if those bytes are not on one line

" .) e[oJoloNole[o}: 3 OX0000 0009
* Choose a “word size” (often 4 bytes), and
show memory in words 0x0000 0004 |G ii]=

SR e N0 il Ox1122 3344

Binghamton CS-220

University Spring 2019

C Values

OXFFFF FFFC

OXFFFF FFF8

* Every “C” value resides in memory OXFFFF FFF4

* The “address” of a value is the location of the OXFFFF FFFO

beginning of that value in memory OxFFFF FFEC

* The type of the value tells us how long to read 0X0000 0C10

* Displaying 4 byte “words” in memory 0x0000 0COC
* Integer @ 0x0000 0004 = 0x0000 0006 = 6,, " .

0x0000 0C04

* Integer @ 0x0000 0C04 = 0x0000 0118 =280,, -

* Display big-endian (abstractly) 0x0000 000¢

0x0000 0008

0x0000 0004

0x0000 0000

Binghamton CS-220
University Spring 2019

Variable Concept

Memory

PPPP PPPP PP PPP? PP PP PP PP

22722 2272°? PPPP PPPP PP PPP? PP PP PP PP

First_Initial

Binghamton CS-220

University

C Variables

Spring 2019

* The compiler reserves space in memory for
each variable.

* The “address” of a value is the location of
the beginning (first byte) of the value of that
variable in memory

int height=280;

* We can think of the variable name as a label
at a specific memory location”

OXFFFF FFFC
OXFFFF FFF8

OXFFFF FFF4
OXFFFF FFFO
OXFFFF FFEC

0x0000 0C10
0x0000 0COC
0x0000 0CO08

- 0x0000 0C04

0x0000 000C
0x0000 0008
0x0000 0004
0x0000 0000

OxDEAD BEEF
OxDEAD BEEF

OxDEAD BEEF
OxDEAD BEEF
OxDEAD BEEF

0x0000 011B
0x0000 011A
0x0000 0119
0x0000 0118

0x0000 000C
0x0000 0009
0x0000 0006
0x0000 0003

Binghamton CS-220

University

Spring 2019

Pointers in C

. p

T
T
T

ointers are a special class of data types
* Avariable may be declared as a pointer

ne size of a pointer is the size of an address
ne VALUE of a pointer is an address

ne TYPE of a pointer includes the type of value it is pointing to!
 pointer to character
* pointer to integer

e pointer to float -
e pointer to struct date

14

Binghamton CS-220

University Spring 2019

Declaring Pointers

OxFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF

* An asterisk (*) after a data type in a declare Wa33333 7 0xDEAD BEEF
statement means “is a pointer to” WS Ml 0xDEAD BEEF
a2l 0xDEAD BEEF

o e
int *numPtr=0x00000C04: o fe T 0x0000 0118

)eo/o[oNoee}:mm OX0000 0119
0)(o[e[e[oNe[clo7mm OX0000 0118

- %0010 /00 ol 0x0000 0C04

* Type: Type of data being pointed to

* Name: Name of the pointer itself
0x0000 000C fleyafolelafo]ofo]@

0Ox0000 0008 0x0000 0009
* Note: Pointers are often variables too! 000010100 "B 0x0000 0006
0Ox0000 0000 0x0000 0003

e Value: An address

Binghamton CS-220

University Spring 2019

“Address Of” operator

OxFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF

* An ampersand (&) in front of a variable means Wa33333 7 0xDEAD BEEF
“address of” the value of that variable. Wiaaa =3Ol 0xDEAD BEEF

OXFFFF FFEC OxDEAD BEEF

int *“numPtr=&height; e eI 0x0000 0118

- %0010 /00 ol 0x0000 0C04

0Ox0000 0C08 0x0000 0119
e “Variable” can be any reference to memory e I 0x0000 0118

e Variable name
* Function name)%00[o[oJo[o/s [l 0X0000 000C
. ... oo JoJo[o [3N 0%0000 0009
)%00o[oJo[0/s“ BN 0X0000 0006
Y [o[o[oLe[o[o B 0X0000 0003

Binghamton CS-220

University Spring 2019

“Value At” (dereference)

OxFFFF FFFC OxDEAD BEEF
OxFFFF FFF8 OxDEAD BEEF

* An asterisk (*) in front of an expression means Wa33333 7 0xDEAD BEEF
“value at” that expression. WS Ml 0xDEAD BEEF

e Think of *x as if it were MEMORY|[x] MALLLRAL I OXDEAD BEEF

0Ox0000 0C10 0x0000 011B

1INt "numPtrz&hEIght; ‘numPtr | 0x0000 0coc (LIS
height

*numPt I’) =10 : QR Jo[eo: I 0x0000 0119
0x0000 0C04 JGUILNIY

0)(oo]oloNe[0/o[cnmm OX0000 000C
* Value At operator takes an address as an o] o3 0X0000 0009

dargume nt Ox0000 0004 [op(eJololo R0]o]<
0)ee[e[oFe[olo /o OX0000 0003

Binghamton CS-220

University Spring 2019

Allases In C

* Most languages allow only one reference to a specific piece of data

e C allows “aliasing”... multiple ways to reference a specific value

int x=10;

int *y=&x; // (*y) is now an alias for x
“y)=11;

printf(“The value of x is %d\n”,x);

Binghamton CS-220

University Spring 2019

Using NULL

* “NULL” is a special address whose value is 0x0000 0000 0000 0000.

* Beginning of Memory “belongs” to the operating system
* General programs can read at O, but cannot write at 0

* Therefore, we use NULL to indicate “pointer to nothing”
e Or “pointer that we haven’t set yet”

int *p=NULL; // p is a pointer to nothing (for now)

p=&age; // Now p is a pointer to an integer

19

Binghamton CS-220

University Spring 2019

C Pitfall: “Dereferencing a Null Pointer”

int *p=NULL; // P is a pointer to nothing

|f (x>0) { p=&xX; }
(*p) = 5;

Segmentation Violation when x<=0

Binghamton CS-220

University Spring 2019

Void Pointers

void * myptr; // myptr is a pointer to void

 void * used as a “universal pointer” —a pointer to any type of data
* myptr is a pointer, but I’'m not going to tell you what it points at

* Before you use (dereference) myptr, you must cast it as a pointer to
something

printf(“myptr points to %c\n",*(char *)myptr);

* Programmer must know what type of data it’s pointing at to cast correctly

21

Binghamton CS-220

University Spring 2019

Using Pointers to Pass by Reference

int counter=0; int counter=0;
void incr(int x) { void incrp(int *x) {
X=X+ 1; (*x) = (*x) + 1;
} }
incr(counter); incrp(&counter);
printf(“counter=%d\n”,counter); printf(“counter=%d\n”,counter);

counter=0 counter=1

Binghamton CS-220

University Spring 2019

Compile vs. Dynamic (Run-Time) Memory

Compile Time Memory Dynamic Memory
* Declared in the program * Program requests chunks of

« Compiler figures out how to memory from the “heap”, a
manage this memory memory pool managed by the

 Where it resides 05
e When it is available to the * Program manages the use of this
program memory

* Program must return the right to
use this memory to the OS when
done

Binghamton CS-220

University Spring 2019

Dynamic Memory -

 Standard library function call to request new memory

#include <stdlib.h>

Number of Bytes requested

_ void *|malloc(int size);

Address of space returned

NULL if no space is available
Type is pointer to nothing.

24

Binghamton CS-220

University Spring 2018

The malloc “contract”

* You are guaranteed sole use of malloc’ed memory
* Nothing outside of your program will read or write that memory

* When you are finished using that memory, you must give it back to the
operating system!

char * buffer=(char *)malloc(300); // get 300 bytes from heap

/] use buffer here cast to correct pointer 8748]<

to avoid compiler warnings

free(buffer); // return buffer 300 bytes to the heap

25

Binghamton CS-220

University Spring 2018

What happens when | run out of heap?

int * numbers=(int *)malloc(sizeof(int)*2000000);
if (numbers==NULL) {
printf("Ran out of heap memory!’);
exit(-1);
§
numbers[12]=16;

Binghamton CS-220

University Spring 2018

Initializing Heap Memory

 What is in malloc’ed memory?
* Whatever was there before (Unknown values)
* Itis assumed you will write to dynamic memory before you read it
* If this assumption is not true, use “calloc” instead of “malloc”

(void *) calloc(int count,int size);

* Allocates “count” contiguous items that are “size” bytes large
* Initializes all memory to zero (0x00)

float * floatVec=(float *)calloc(100,sizeof(float));

CS-220

Binghamton
University Spring 2018
Managing Growing Data Structures
struct m * new() { struct m {
struct m* this=(struct m*)malloc(sizeof(struct m)); int max;
this->max=16: this—>used=0;: ?ntgsed;
this->data=(int *)malloc(sizeof(int)*this->max); } int * data;
return this
}

bool add(struct m*this,int new) {

if (this—>used==this—->max) {
this—>max*=2;
this—->data=(int *)realloc(this->data,sizeof(int)*this—->max);
if (this->data == NULL) return false;

}

this—>data[this->used++]=new;

return true;

Binghamton CS-220

University

C Pitfall = Orphaned Pointers

Spring 2018

int *nums = (int *)malloc(count * sizeof(int));
for(int i=0;i<count;i++) { nums[i]=foo(i); }

nums is still a valid address, but you no

free(nums):
() longer own what nums points to!

if (nums[1]>0) {
printf(“Wow... foo(2) was positive!\n”);
nums[12]=17;

You just wrote into someone else’s

memory!

Binghamton CS-220

University Spring 2018

Core Hog Hunting

* Lazy programmers forget to free all the memory they malloc

* Eventually, you run out of heap memory
* Especially if your program runs for days or weeks

* Kill your program and dump heap memory

* Search through the memory and try to figure out:
 What values are in that memory
* What code wrote those values
* Are they still being used?

Binghamton CS-220

University Spring 2018

Memory Debug - valgrind

* Tracks each malloc/free and memory reference (read or write)
* Reports on mallocs never freed
* Reports on freed mallocs still referenced
* Reports on references past the end of malloc’ed chunks

* Run using: valgrind cmd parameters

* Takes significant extra time/memory!

* Not available everywhere (not available under Cygwin)

* Free (Expensive GUI driven memory debuggers available)

Binghamton CS-220

University Spring 2019

Resources

 The C Programming Language, Sections 5.1, 5.2

e Computer Systems, Section 2.1

* C-FAQ: http://c-fag.com/ptrs/index.html,
http://c-fag.com/null/index.html

* Wikepedia Pointers :
https://en.wikipedia.org/wiki/Pointer (computer_programming)

* C Pointer Tutorial :
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

32

http://c-faq.com/ptrs/index.html
http://c-faq.com/null/index.html
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

Binghamton CS-220

University Spring 2019

Structures and Pointers

* Example structure:
struct date

int year; // Like 2017
int month; // Like 10 for October

int dom; // Like 23 for October 23

} today; ———w
* Example of compile time memory

» Reference fields with “today.year”, etc.

33

Binghamton CS-220

University Spring 2019

Structure Pointers

* Example structure pointer:
struct date *dptr=&today;

* We could access fields with : (*dptr).year
* But C provides a shorthand notation: dptr—->year

* Typical run-time structure memory allocation:
struct date *newDate=(struct date*)malloc(sizeof(struct date));
newDate->year=20109;

Binghamton CS-220

University Spring 2019

Structure Pointers & Call by Reference

 Structures as arguments are call by value — entire structure is copied!
* Typically, structures are passed by reference so we can modify them

void tomorrow(struct date *now) {
now->day++;
if (now->day > daysInMonth(now->month, now->year)) ...

