
Binghamton

University

CS-220

Spring 2019

Data in C:
Floating Point

Binghamton

University

CS-220

Spring 2019

Variable Concept

2

Memory

0000 0000 0000 0000 0000 0000 0011 1100

Age

0101 0100

First_Initial

0100 0000 1000 0000 0000 0000 0000 0000

gpa

Binghamton

University

CS-220

Spring 2019

C Built-in Types

Numbers

Integer
Binary, 2’s complement

char
8 bit

short
16 bit

int
32 bit

long
64 bit

Real
IEEE 754

float
32 bit

double
64 bit

3

Binghamton

University

CS-220

Spring 2019

Abstraction

Anything that is not an integer can be thought of as
<int>.<decimal>

e.g. 391.8125

Or can be thought of as

<int> + <numerator>/<denominator>

e.g.

391 + 8125/10000

or 391 13/16

Chap 2.4

Binghamton

University

CS-220

Spring 2019

Leak 1: Floats are approximations!

Numbers may not be exactly precise!

1/3 != 0.33333333333333333333

6.02214129 x 1023 is not an exact Avogadro’s constant

3.14159265358979323846264338327950288419716939937510

is not exactly π

Binghamton

University

CS-220

Spring 2019

Concrete: Floats are Binary

On computers, fractional numbers must be represented by bits

Implies base 2

Implies “binary point”

22 21 20 . 2-1 2-2 2-3 2-4 …

4 2 1 . 1/2 1/4 1/8 1/16 …

… 1 0 1 . 1 0 0 1 …

Binghamton

University

CS-220

Spring 2019

Concrete: Floats are “Normalized”

Almost infinite number of ways to represent floating point numbers

• Implied binary point: 1101 1010 = 1101 10.10 = 54.5

• int numerator, int denominator: 0110 1101 / 0000 00010 = 109/2

• Scientific notation with int integer, int fraction, int exponent
0000 0101 / 0111 0011 / 0000 0001

= (5+1/4 +1/8 +1/16 +1/128 + 1/256) x 101 =54.4921875

• …

Binghamton

University

CS-220

Spring 2019

Scientific Notation (Base 10)

• Represent numbers as <Integer>.<Fraction> x 10<exp>

• For instance: c = 2.99792458 x 108 m/s; e=1.602 x 10-19 C

• Many different representations of the same number
• c = 299,792,458 x 100 m/s= 299.792458 x 106 m/s

• “Normalization” : <1-9>.<Fraction> x 10<exp>

• Special case for zero: 0.0 x 100

Binghamton

University

CS-220

Spring 2019

Scientific Notation Precision

• Numbers in scientific notation are often approximations

• Number of fractional digits indicates precision
• 1/3 = 3.333333 x 10-1 to within 7 digits (+/- 10-7)

• 1000/3 = 3.333333 x 102 to within 7 digits (+/- 10-5)

• “Precision” is not the same as “tolerance”
• Precision – relative accuracy - is independent of exponent

• Tolerance - absolute accuracy – depends on exponent

Binghamton

University

CS-220

Spring 2019

Scientific Notation (Base Two)

• Start with a base two rational number… <0/1>*.<0/1>*

• Express normalized as 1.<FRAC> x 2<exp>

• e.g. 1.0000011 x 24

• Special case for zero: 0.0 x 20

24 23 22 21 20 . 2-1 2-2 2-3

= 16 + 1/4 + 1/8 = 16.375
1 0 0 0 0 . 0 1 1

Binghamton

University

CS-220

Spring 2019

IEEE Standard (32 bit float)

• First convert the number to the form:

𝑣𝑎𝑙𝑢𝑒 = −1𝑆 × 𝐹𝑅𝐴𝐶 × 2𝑒𝑥𝑝

• S = 0 (positive) or 1 (negative)

• 1 ≤ 𝐹𝑅𝐴𝐶 < 2 (except for special cases like 0 or +/- ∞)

• −126 ≤ exp ≤ 126

-2128 +2128-2-127 +2-127
+∞-∞

0 +1038-1038 -1 +1

Binghamton

University

CS-220

Spring 2019

Standard: IEEE 754

• Value Representation:
• Decimal: [+/-]<digit>.<fraction> x 10<exponent> e.g. 6.022 x 1023

• Binary: [+/-]1.<fraction> x 2<exponent> e.g 1.11111110000101… x 278

• Special case for 0, +/- ∞ (INFINITY), “Not a Number” (NAN)

• Bit Representation (32 bit float)

S EXP FRAC

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

8 bits 23 bits

Binghamton

University

CS-220

Spring 2019

IEEE 754 Special Cases

• +/-0

• +/-∞ (INFINITY)

• Not a Number (NAN)

S EXP FRAC

S 0

S EXP FRAC

S 1 1 1 1 1 1 1 1 0

S EXP FRAC

S 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: math.h contains definitions of constants INFINITY and NAN, and also isnan(x) and isinf(x)

Binghamton

University

CS-220

Spring 2019

IEEE 754 Value vs. Bits

VALUE

• Decimal: -729.6

• Binary: 10 1101 1001.1001 1…

• B/Norm: 1.0110 1100 … x 29

• Exponent: 9

BITS

• Sign bit 0=+, 1=- : 1

• FRAC: 0110 1100 1100…

• Biased Exponent: 9+127=136
= 1000 1000

Binghamton

University

CS-220

Spring 2019

Biased Exponent

-127 0 127

Exponent Value

0
0b0000 0000

127
0b0111 1111

254
0b1111 1110

Exponent Bits (biased)

+127
-127

Binghamton

University

CS-220

Spring 2019

Bias Value

• Unsigned 8 bits holds values from 0 to 255 = 0b11111111 = 28-1

• 0b11111111 special case reserved for infinity and/or NAN

• Most useful bias is 127
• enables both negative and positive exponents with the highest values

• 127 = 0b01111111 = 27-1

• In general, if we have n bits for exponent, bias=2(n-1)-1
• For double, n=11, so bias=210-1 = 1023

Binghamton

University

CS-220

Spring 2019

implicit

valuevaluevalue

value
IEEE 754 Value vs. Bits

• Sign bit is 0 for positive, 1 for negative… mathematically (-1)S

• Except in special cases, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1. 𝐹𝑅𝐴𝐶

• Value must be normalized before it can be converted to bits
• Normalization: moving binary point right of first 1 and adjusting exponent
• E.g. 0b100110.1010 x 25 = 1.001101010 x 210

• E.g. 0b0.0001010110 [x 20] = 1.010110 x 2-4

• In bit form, exponent is >= 0
• Abstract exponent value is biased – add a constant
• 𝐸𝑋𝑃 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 127 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 27 − 1 = 0x80 + exponent - 1
• 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐸𝑋𝑃 − 127 where EXP is 8 bit unsigned binary

bits

bits

value bits

Binghamton

University

CS-220

Spring 2019

“Denormal” or “Subnormal” Numbers
• If EXP bits are zero,

• Do NOT assume fraction starts with 1.<FRAC>

• Assume it starts with 0.<FRAC> AND exponent is -126

• Allows numbers smaller than 2-126 to be represented

• Smallest Normal: 1.0 x 2-126=1.17549435x10-38

• Biggest Denormal: 0.11111…. x 2-126=1.1754942x10-38

• Smallest Denormal: 0.00… 01 x 2-126 = 1.40129x10-45

S EXP FRAC

0 1

S EXP FRAC

0 0 0 0 0 0 0 0 1 0

S EXP FRAC

0 0 0 0 0 0 0 0 0 1

Binghamton

University

CS-220

Spring 2019

Example: Value to Bits

• Value: 3.1416
• Convert to binary: 11.00100100001111….

• Normalize: 1.100100100001111… x 21

• Bits:
• S = 0 (positive)

• EXP = 1 + 127 = 128 = 0b1000 0000

• FRAC= 100100100001111….

• Bits=0x40490FF9

S EXP FRAC

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1

4 0 4 9 0 F F 9

See Also: xmp_float

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_float/

Binghamton

University

CS-220

Spring 2019

Example: Bits to Value

• Bits: 0x6703ece6

• S = 0, +

• EXP = 0xCE = 206, exponent = 206 – 127 = 79

• fraction= 1.0000011111011…

• Value: + 0b1.0000011111011.. x 279 = 6.23 x 1023

S EXP FRAC

0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0

6 7 0 3 E C E 6

Binghamton

University

CS-220

Spring 2019

What happens when types are mixed?

• Mixed Type Expressions
float x; double y; x=y*x;

• Assignment Statements
int x; float y; x=y*3.0;

• Argument Evaluation
int myfn(float x); int y=myfn(3);

• Explicit Casting
int x=7; float y = ((float)x)/3;

21

Binghamton

University

CS-220

Spring 2019

C Automatic type conversion rules

• In an expression (or part of an expression), C converts all
components in that expression to the most “general” type, and
then evaluates the expression using that general type

• In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

• C converts expressions with a valid explicit cast

22

Binghamton

University

CS-220

Spring 2019

Generality of Numeric Types

char

unsigned

char

short

unsigned

short

int

unsigned

int

long

unsigned

long

float

double

23

Most General

Least General

Binghamton

University

CS-220

Spring 2019

Changing Floating Point Size

• Truncate Fraction or Pad Fraction with 0 on right

• Re-bias exponent
• If exponent overflows, convert to infinity

• Special case for denormalized numbers!
• May be denormal in float, but not in double

• May be denormal in double, but 0 in float

float x = 234.34;
double y=x;

double w = 234.34;
float z=w;

x=z=0x436A570A y=0x406D4AE140000000 w=0x406D4AE147AE147B

Binghamton

University

CS-220

Spring 2019

Integer to Float

• Add .0 and convert to nearest floating point representation

int x = 1331254215;
float y=x;
printf("y=%f\n",y);
// prints y=1331254272.000000

Binghamton

University

CS-220

Spring 2019

Float to Integer

• Truncate at the decimal point (round towards zero)

float w=-374289.74112;
int z=w;
printf("z=%d\n",z);
// prints z=-374289

Binghamton

University

CS-220

Spring 2019

Conversion Errors

• When C truncates decimals

float x=2.7; int y=x; printf(“y = %d\n”,y); // 2

• When C approximates floating point

float x = 0.2; printf(“x=%.10f\n”,x); //0.2000000029

Binghamton

University

CS-220

Spring 2019

Integer Division Pitfall

int atBats = atoi(argv[1]);

int hits = atoi(argv[2]);

float battingAverage = (hits/ atBats) * 1000;

printf(“Everybody has a zero batting average?\n”);

Binghamton

University

CS-220

Spring 2019

Leak: Associativity

• Law of Associativity: 𝐴 + 𝐵 + 𝐶 = 𝐴 + 𝐵 + 𝐶

• Floating point approximations can violate associativity!

float a=6.022e23;

float b=-a;

float z=3.14;

float p1=(a+b)+c;

float p2=a+(b+c);

if (fabs(p1-p2)<0.5) printf(“Associativity holds!”);

Binghamton

University

CS-220

Spring 2019

Leak: Multiplication is Repeated Addition

• Abstract: 𝑥 × 𝑦 = σ𝑖=0
𝑦−1

𝑥 for integer y

• Leak: Rounding error compounds at each operation!

float onethird=1.0/3.0;

float sum = 0.0;

int mult=atoi(argv[1]);

for(int i=0;i<mult;i++) sum+=onethird;

float prod = mult * onethird;

printf("Sum is %f, product is %f\n",sum,prod);

Binghamton

University

CS-220

Spring 2019

Resources

• The C Programming Language, (K&R) Sections 2.2 and 2.7

• Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type_conversion

• C Tutorial – Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-
operator.html#The%20cast%20operator

• C-FaQ Floating Point Section: http://c-faq.com/fp/index.html

31

https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator
http://c-faq.com/fp/index.html

