CS-220

Spring 2019

Data in C:
Floating Point

-4 -3 -2 -t 0 1 2 3 4

Binghamton CS-220
University Spring 2019

Variable Concept

Memory
0000 0000 0000 0000 000000000011 1100
0101 0100

0100 0000 1000 0000 0000 0000 0000 0000

First Initial

Binghamton CS-220
University Spring 2019

C Bullt-in Types

[Integer Real
Binary, 2°s complement [EFE 754

Binghamton CS-220

University Spring 2019

Anything that is not an integer can be thought of as
<int>.<decimal>

e.g. 391.8125
Or can be thought of as
<int> 4+ <numerator>/<denominator>
e.g.
391 4+ 8125/10000
or 391 13/16

Binghamton CS-220

University Spring 2019

Leak 1: Floats are approximations!

Numbers may not be exactly precise!
1/31=0.33333333333333333333
6.02214129 x 1043 is not an exact Avogadro’s constant

3.14159265358979323846264338327950288419716939937510
is not exactly Tt

Binghamton CS-220

University Spring 2019

Concrete: Floats are Binary

On computers, fractional numbers must be represented by bits

Implies base 2
Implies “binary point”

-nn-_
1/2 1/4 1/8 1/16 ..
1 0 1 . 1 0 0 1

Binghamton CS-220

University Spring 2019

Concrete: Floats are “Normalized”

Almost infinite number of ways to represent floating point numbers

* Implied binary point: 1101 1010 =1101 10.10 = 54.5
* int numerator, int denominator: 0110 1101 /0000 00010 = 109/2

* Scientific notation with int integer, int fraction, int exponent
00000101 /01110011 /00000001

=(5+1/4+1/8+1/16 +1/128 + 1/256) x 101 =54.4921875

Binghamton CS-220

University Spring 2019

Scientific Notation (Base 10)

* Represent numbers as <Integer>.<Fraction> x 10<¢xP~
 For instance: c = 2.99792458x 10%m/s; e=1.602x 101° C

* Many different representations of the same number
¢ ¢=299,792,458 x 10° m/s= 299.792458 x 10° m/s

* “Normalization” : <1-9>.<Fraction> x 10<¢xp~
* Special case for zero: 0.0 x 10°

Binghamton CS-220

University Spring 2019

Scientific Notation Precision

* Numbers in scientific notation are often approximations
* Number of fractional digits indicates precision

« 1/3 =3.333333 x 10! to within 7 digits (+/- 10-7)

- 1000/3 = 3.333333 x 102 to within 7 digits (+/- 105)

IS not the same as
* Precision - relative accuracy - is independent of exponent
» Tolerance - absolute accuracy - depends on exponent

Binghamton CS-220

University Spring 2019

Scientific Notation (Base Two)

e Start with a base two rational number... <0/1>".<0/1>"

20 22 222 2020 22 20
1 0 0 O O . O 1 1
Uw

* Express normalized as 1.<FRAC> x 2<¢xp~
* e.£.1.0000011 x 24
* Special case for zero: 0.0 x 20

Binghamton CS-220

University Spring 2019

IEEE Standard (32 bit float)

e First convert the number to the form:
value = —1° X FRAC X 26€xP

* S =0 (positive) or 1 (negative)
* 1 < FRAC < 2 (except for special cases like 0 or 4+ /-)
e —126 < exp < 126

0128 _2-127 4-127 42128

Binghamton CS-220

University Spring 2019

Standard: IEEE 754

* Value Representation:
* Decimal: [+/-]<digit>.<fraction> x 10<exponent> e g 6,022 x 1023
 Binary: [+/-]1.<fraction> x 2<exponent> e 5 1.11111110000101...x 278
 Special case for 0, +/- co (INFINITY), “Not a Number” (NAN)

* Bit Representation (32 bit float)

s EXP_____ _ ___ |FRAC __ ____ _ ______

b3y b3y byg byg byy byg bys by, byz byy byy byg byg byg byy byg bys byy byz by, byy by by bg b, by bs b, bs b, by by
\ A y,
Y Y
8 bits 23 bits

Binghamton CS-220

University Spring 2019

IEEE 754 Special Cases

o +/-0
S |EXP |FRAC

s 0 o 00 00 OOOOOOOOTOTOOTGOTOTOTOOTGOOTOTOUOOO0OOQ OO

» +/-c0 (INFINITY)
S [EXP |FRAC

s 1111111100 OOOOTOOTUOTGOT OO ODT OOT OU OU OU OU OU OOG OO OOGOSFUO
* Not a Number (NAN)
S [EXP___|FRAC

s 1111111 10O0TO0UOOTO0OSO00®O0OOT1TGO0OTGO0OZ O0OT O0OOOO0OO0OGO0OOO0OO0OTG O0OTPQO

Note: math.h contains definitions of constants INFINITY and NAN, and also isnan(x) and isinf(x)

Binghamton CS-220

University Spring 2019

IEEE 754 Value vs. Bits

VALUE BITS
* Decimal: -729.6 * Sign bit 0=+, 1=-:1
* Binary: 10 1101 1001.10011... + FRAC:[0110 1100 1100...

* B/Norm: 1/0110 1100 ... x 29 * Biased Exponent:9+127=136
* Exponent:|9 =[1000 1000

Binghamton CS-220

University Spring 2019

Biased Exponent

Exponent Value

-127 127

*

0 127 254
0b0000 0000 0b0111 1111 0b1111 1110

Exponent Bits (biased)

Binghamton CS-220

University

Bias Value

Spring 2019

 Unsigned 8 bits holds values from 0 to 255 =0b11111111 = 28-1
* 0b11111111 special case reserved for infinity and/or NAN

* Most useful bias is 127
* enables both negative and positive exponents with the highest values

¢« 127 =0b01111111 =27-1

* In general, if we have n bits for exponent, bias=2(*1-1
e For double, n=11, so bias=219-1 = 1023

Binghamton CS-220

University Spring 2019

IEEE 754 Value vs. Bits

» Sign bit is 0 for positive, 1 for negative...mathematically (-1)°

* Except in special cases, fraction = RAC

e Value must be normalized before it can be converte

* Normalization: moving binary point right of first 1 and adjusting expon
* E.g.0b100110.1010x 2°=1.001101010 x 210
« E.g. 0b0.0001010110 [x 2°] =1.010110 x 24

* In bit form, exponentis >=10
m\'Abstract exponent 1ased/# add a cons
« EXP = exponent + 127 = exponent + 27 — 1 = 0x80 + exponent- 1
. exponent = E)%here EXPis 8 bit unsigned binary

Binghamton CS-220

University Spring 2019

“Denormal” or “Subnormal” Numbers

o [f EXP bits are zero,
* Do NOT assume fraction starts with 1.<FRAC>
* Assume it starts with 0.<FRAC> AND exponentis -126

 Allows numbers smaller than 2-1%° to be represented

« Smallest Normal: 1.0 x 2-146=1.17549435x10-3%
BE

o o 06000 OO0O1TCO0O0OO0OOTO0OTOUOTOUOTOOTOTOOTOUOTOUOTOT® OO OTU® OO

 Biggest Denormal: 0.11111....x 2-126=1,1754942x10-38
S|EXP JFRAC__

o o6o0o0o0O0O00011711117171711111111111111111

« Smallest Denormal: 0.00... 01 x 2126 = 1.40129x10%°
S|EXP ____|FRAC____________________________

o o 06000 OO0 OOOOOOUOTOTGOUOTGOOTOUOTGOTOUOTGOUOTGOUOOT& O0O1

Binghamton CS-220

University Spring 2019

Example: Value to Bits

* Value: 3.1416
* Convertto binary: 11.00100100001111....
* Normalize: 1.100100100001111...x 21

* Bits:
* $=0 (positive)
« EXP=1+4+127 =128 =0b1000 0000
« FRAC=100100100001111....

s EXP ___________|FRAC__

o100 00 00 01 0O0O010O01O0O0OO0O0O0I111T1111111001
4 0 4 9 0 F F 9

* Bits=0x40490FF9

See Also: xmp float

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_float/

Binghamton CS-220

University Spring 2019

Example: Bits to Value

e Bits: 0x6703eceb
S|EXP |FRAC__

co11001110O0O0O0OO0O00 1111101100111 100110O0
6 7 0 3 E C E 6

c5=0,+
* EXP= 0xCE = 206, exponent= 206 -127 =79
 fraction=1.0000011111011...

e Value: + 0b1.0000011111011..x27° = 6.23 x 1023

Binghamton CS-220

University Spring 2019

What happens when types are mixed?

* Mixed Type Expressions
float x; double y; x=y*x;

* Assignment Statements
int x; float y; x=y*3.0;

* Argument Evaluation
int myfn(float x); int y=myfn(3);

* Explicit Casting
int x=7; float y = ((float)x)/3;

21

Binghamton CS-220

University Spring 2019

C Automatic type conversion rules

* In an expression (or part of an expression), C converts all
components in that expression to the most “general” type, and
then evaluates the expression using that general type

* In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

* C converts expressions with a valid explicit cast

22

Binghamton CS-220

University Spring 2019

Generality of Numeric Types

A A, \!|double
A] Mfloat
A] Munsigned
4] 7 mlong Iong
Y] Munsigned
A] Mint int
A] \!|unsigned

A - J[short short
- [unsigned
\!|char U
Least General

23

char

Binghamton CS-220

University Spring 2019

Changing Floating Point Size

* Truncate Fraction or Pad Fraction with 0 on right

* Re-bias exponent
* If exponent overflows, convert to infinity

* Special case for denormalized numbers!
* May be denormal in float, but not in double
* May be denormal in double, but 0 in float

float x = 234.34; double w = 234.34;
double y=x; float z=w;

X=z=0x436A570A y=0x406D4AE140000000 w=0x406D4AET147AET47B

Binghamton CS-220

University Spring 2019

Integer to Float

* Add .0 and convert to nearest floating point representation

int x = 1331254215;

float y=x;

printf("y=%f\n",y);

/] prints y=1331254272.000000

Binghamton CS-220

Spring 2019

University

Float to Integer

* Truncate at the decimal point (round towards zero)

float w=-374289.74112;
Nt ZzZ=w;
printf("z=%d\n",z);

/] prints z=-374289

Binghamton CS-220

University Spring 2019

Conversion Errors

* When C truncates decimals
float x=2.7; int y=x; printf("y = %d\n”",y); // 2

 When C approximates floating point

float x = 0.2; printf(“x=%.10f\n",x); //0.2000000029

Binghamton CS-220

University Spring 2019

Integer Division Pitfall

int atBats = atoi(argv[1]);
int hits = atoi(argv[2]);

float battingAverage = (hits/ atBats) * 1000;

printf("Everybody has a zero batting average?\n”);

Binghamton CS-220

University Spring 2019

Leak: Associativity

* Law of Associativity: A+ B)+C=A+ (B+ ()

* Floating point approximations can violate associativity!
float a=6.022e23;

float b=-a;

float z=3.14;

float p1=(a+b)+c;

float p2=a+(b+0);

if (fabs(p1-p2)<0.5) printf(“Associativity holds!”);

Binghamton CS-220

University Spring 2019

Leak: Multiplication is Repeated Addition

* Abstract: x X y = Z%:Ol x for integery

* Leak: Rounding error compounds at each operation!
float onethird=1.0/3.0;

float sum = 0.0;

int mult=atoi(argv[1]);

for(int i=0;i<mult;i++) sum+=onethird;

float prod = mult * onethird;

printf("Sum is %f, product is %f\n",sum,prod);

Binghamton CS-220

University

Resources

Spring 2019

* The C Programming Language, (K&R) Sections 2.2 and 2.7

* Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type conversion

* C Tutorial - Cast operator:
http://www.crasseux.com/books/ctutorial /The-cast-

operatorhtml#The%20cast%200perator
* C-FaQ Floating Point Section: http://c-fag.com/fp/index.html

31

https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator
http://c-faq.com/fp/index.html

