
Binghamton

University

CS-220

Spring 2019

Data in C:
Integers

1

Binghamton

University

CS-220

Spring 2019

Variable Concept

2

Memory

0000 0000 0000 0000 0000 0000 0011 1100

Age

0101 0100

First_Initial

0100 0000 1000 0000 0000 0000 0000 0000

gpa

Chap 2.1

Binghamton

University

CS-220

Spring 2019

Data Types

• Tag each piece of data / location in memory with a “type”

• Type tells compiler how many bits to use

• Type tells compiler how to interpret those bits

• Enables automatic conversion from one type to another

• Enables compiler to check to make sure data is used correctly

3

Binghamton

University

CS-220

Spring 2019

C Built-in Types

Numbers

Integer
Binary 2’s complement

char
8 bit

short
16 bit

int
32 bit

long
64 bit

Real
IEEE 754

float
32 bit

double
64 bit

Text

char
ASCII

void

4

Binghamton

University

CS-220

Spring 2019

Two’s Complement Binary

• Number represented by a vector of n binary digits (1’s or 0’s)

• If leftmost bit is a zero, number is positive, simple binary

𝑣𝑎𝑙𝑢𝑒 = ෍

𝑖=0

𝑛−1

𝑏𝑖 × 2𝑖

• If leftmost bit is a one, number is negative

𝑣𝑎𝑙𝑢𝑒 = ෍

𝑖=0

𝑛−1

𝑏𝑖 × 2𝑖 − 2𝑛

Chap 2.2

27 26 25 24 23 22 21 20

1 1 1 1 1 0 1 0

27 26 25 24 23 22 21 20

0 0 0 0 1 0 1 0

Binghamton

University

CS-220

Spring 2019

C Idiom: (Using Leaks) 2x

• In binary representation, 2x is just a single 1 in the xth bit
• e.g. 23 = 0b0000 1000 = 8

• Use the “shift” operator, <<, to calculate 2x

int x=3;

int y=1<<x;

printf(“y is %d\n”,y); // prints y is 8

Binghamton

University

CS-220

Spring 2019

C idiom: (using Leaks) Strings of x 1 bits

• Use the fact that 2x – 1 is a string of x 1 bits
• e.g. 23 = 8 = 0b000 1000

-1 = 0b000 0001

• 23 – 1 = 7 = 0b000 0111

• Combine 2x idiom with -1

int x=3;

int y=(1<<x)-1; // y is 0b0000 … 0000 0111

Binghamton

University

CS-220

Spring 2019

Two’s Complement Leaky Shortcut

• To multiply by -1, flip the bits and add 1
• “Flip this bits” is the same as 0b111… 1111 – u_value

• 1-0=1, flip a zero to a one
• 1-1=0, flip a one to a zero
• Never carry

• 0b111…. 1111 is 2n-1, so “flip the bits” is (2n-1)-u_value
• 𝑢_𝑣𝑎𝑙𝑢𝑒 = σ𝑖=0

𝑛−1 𝑏𝑖 × 2𝑖

• flip the bits and add 1 is:
(2n-1)-u_value+1=2n-u_value

=-(u_value-2n)
= -value

Binghamton

University

CS-220

Spring 2019

C idiom: Bitwise AND to select bits

• Create a “mask” that has 1 bits for every interesting bit, and 0 for
every bit you want to ignore

• Bitwise AND the mask with the original value

• Result has the original bit in the interesting positions
• 0&1=0, 1&1=1

• Result has 0 in the ignorable positions
• 0&0 = 0, 1&0=0

• Evaluate “truth” of result – “True” means at least one interesting bit
was on (1), “False” means all interesting bits were off (0).

Binghamton

University

CS-220

Spring 2019

Example: Print Binary…

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {

int n=atoi(argv[1]); int i; printf("%d = 0b",n);
for(i=31;i>=0;i--) {

printf("%c",(n&1<<i)?'1':'0');
if (0==i%4) printf(" ");

}
printf("\n"); return 0;

}

Binghamton

University

CS-220

Spring 2019

Using Hexadecimal Numbers

• Shorthand for writing bits

• Each hexadecimal digit represents 4 bits

• Much easier to read/write/remember

Dec Hex Bin

0 0x0 0b0000

1 0x1 0b0001

2 0x2 0b0010

3 0x3 0b0011

4 0x4 0b0100

5 0x5 0b0101

6 0x6 0b0110

7 0x7 0b0111

8 0x8 0b1000

9 0x9 0b1001

10 0xA 0b1010

11 0xB 0b1011

12 0xC 0b1100

13 0xD 0b1101

14 0xE 0b1110

15 0xF 0b1111

Binghamton

University

CS-220

Spring 2019

Example: Print hex (without %x)

int main(int argc, char **argv) {

long n=atol(argv[1]);

int i; printf("%ld = 0x",n);

unsigned long mask=(1<<4)-1; // Four ones in the rightmost byte

char * xd="0123456789ABCDEF";

for(i=2*sizeof(n)-1;i>=0;i--) {

int v=(n&(mask<<(i*4)))>>(i*4);

printf("%c",xd[v]);

if (0==i%4) printf(" ");

}

printf("\n"); return 0;

}

Binghamton

University

CS-220

Spring 2019

Example: alternate print hex (without %x)

int main(int argc, char **argv) {

union { long ln; unsigned char lc[8]; } n;

char * xd="0123456789ABCDEF";

n.ln=atol(argv[1]); printf("%ld = 0x",n.ln);

for(int i=0;i<sizeof(n);i++) {

if (i>0 && 0==i%2) printf(" ");

printf("%c%c",xd[(n.lc[i]&0xF0)>>4],xd[n.lc[i]&0x0F]);

}

printf("\n");

return 0;

}

Binghamton

University

CS-220

Spring 2019

C Leaky Idiom – Multiply by 2x

• Instead of multiplying a number by a power of two, shift it to the left

int x=2;

int y=atoi(argv[1]);

int ym = y<<x; // * ym = y * 2^x

• Shifts are faster than multiplication

27 26 25 24 23 22 21 20

0 0 0 0 1 0 1 0

27 26 25 24 23 22 21 20

0 0 1 0 1 0 0 0

Binghamton

University

CS-220

Spring 2019

C Leaky Idiom – Divide by 2x

• Instead of dividing by 2x, shift right by x

int x=2;

int y=atoi(argv[1]);

int yd = y>>x; // * yd = y / 2^x (almost)

• Warning – negative numbers round differently!
• Multiplication – rounds towards zero

• Shifting – rounds down (towards –infinity)

27 26 25 24 23 22 21 20

0 0 0 0 1 0 1 0

27 26 25 24 23 22 21 20

0 0 0 0 0 0 1 0

Binghamton

University

CS-220

Spring 2019

Unsigned Integers

• C has an “unsigned” keyword that can be used to modify type
• e.g. unsigned short x;

• Enables representation in raw binary – not two’s complement

• Extra bit enables two-times larger maximum number
• Not much of a benefit

• Impossible to represent negative numbers

• Unsigned often leads to counter-intuitive results!
• More explanation coming later

Chap 2.2.2

Binghamton

University

CS-220

Spring 2019

Q: Why four flavors of Integers?

• A: Space vs. Capacity trade-off

17

Type # Bits1 Min Max U Max

char 8 -27=-128 27-1=127 28-1=255

short 16 -215=-32,768 215-1=32,767 216-1=65,535

int 32 ~-2.15 x 109 ~2.15 x 109 ~4.3 x 109

long 64 ~-9 x 1018 ~9 x 1018 ~18.5x1018

1Number of bits may be different on different machines!

Binghamton

University

CS-220

Spring 2019

Leaky Abstraction: Infinite Integers

• In mathematics, every integer, n has a successor, n+1

• In C, integers are finite…
• No indication of overflow!

• For unsigned char, 255=0b1111 1111 + 1 = 0b0000 0000 = 0

• For char, 127 = 0b0111 1111 +1 = 0b1000 0000 = -128

+∞-∞
0-1 +1 +2-2 +255

+∞-∞
0-1 +1 +2-2 +127-128

Binghamton

University

CS-220

Spring 2019

Constants

• Decimal numbers are signed integers: int x=93;

• Add “U” suffix to make them unsigned: unsigned char uy=183U;
• Almost never used – only needed if signed value doesn’t fit

• Prefix with 0 to interpret as an octal number: int xa=013; // == 11

• Prefix with x, 0x, X, or 0X for hexadecimal: int xb=0x12; //== 18

• Add “L” suffix to make them long : long yl = 0X000011110000FFFFL;

• Almost never used – only needed if constant value doesn’t fit int

Binghamton

University

CS-220

Spring 2019

Casting : C Data Format Conversion

• When you cast a movie, you decide what role each
actor will play

• In programming, we use the term “cast” to indicate
what role (type) we expect the bits to play

• In other words, how should your program interpret the specific bits in
memory

• Unless explicitly cast, determine the interpretation based on the
declared type of a variable

Binghamton

University

CS-220

Spring 2019

Mixing Integer Types

• Mixed Type Expressions
int x; long y; y=y*x;

• Assignment Statements
int x; long y; x=y*3.0;

• Argument Evaluation
int myfn(long x); int y=myfn(3);

• Explicit Casting
int x=7; long y = ((long)x)/3;

• C compiler could issue
an error message for
mixed types

• C compiler could
require explicit casting
for all conversions

• C could automatically
convert values, based
on pre-defined rules

21

Binghamton

University

CS-220

Spring 2019

C Automatic type conversion rules

• In an expression (or part of an expression), C converts all components
in that expression to the most “general” type, and then evaluates the
expression using that general type

• In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

• C converts expressions with a valid explicit cast

22

Binghamton

University

CS-220

Spring 2019

Generality of Numeric Types

char

unsigned

char

short

unsigned

short

int

unsigned

int

long

unsigned

long

float

double

23

Most General

Least General

Binghamton

University

CS-220

Spring 2019

Converting Signed vs Unsigned

• Bits stay exactly the same, but the bits are INTERPRETTED differently

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

char x = -22;
unsigned char y=x;
printf(“y=%d\n”,y);
// prints y=234

unsigned char w = 234;
char z=w;
printf(“z=%d\n”,z);
// prints z=-22

Chap 2.2.5

Binghamton

University

CS-220

Spring 2019

Changing Integer Size

• Truncate or Pad on left with sign bit

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0

char x = -22;
short y=x;

short w = -22;
char z=w;

Chap 2.2.6

Binghamton

University

CS-220

Spring 2019

Changing Integer Size (unsigned)

• Truncate or Pad on left with sign bit (=0)

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0

unsigned char x = 234;
unsigned short y=x;

unsigned short w = 234;
unsigned char z=w;

Binghamton

University

CS-220

Spring 2019

Leaky Abstractions: Conversion Errors

• When C converts a negative signed number to a positive number

char x = -1; unsigned char y = x; printf(“y = %d\n”,y);

• When C converts a wide number to a smaller width, but the number
doesn’t fit

short x=260; char y = x; printf(“y = %d\n”,y);

Binghamton

University

CS-220

Spring 2019

Unsigned Pitfall

unsigned int width=+8;

signed int leftX = -13;

if ((leftX < 0) && (leftX + width) > 0) {

printf(“Rectangle crosses y axis\n”);

}

Binghamton

University

CS-220

Spring 2019

Abstraction

Bits are stored in memory from most significant at left

to least significant at right

(int 100,000 = 0x0001 86A0)
231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 0 1 8 6 A 0

Byte m Byte m+1 Byte m+2 Byte m+3

Binghamton

University

CS-220

Spring 2019

Leaky Abstraction – “Endian”-ness

Some machines store as expected… (Big–endian)

Some machines store least significant byte first! (Little-endian)

S 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 0 1 8 6 A 0

Byte 42 Byte 43 Byte 44 Byte 45

27 26 25 24 23 22 21 20 215 214 213 212 211 210 29 28 223 222 221 220 219 218 217 216 S 230 229 228 227 226 225 224

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

A 0 8 6 0 1 0 0

Byte 42 Byte 43 Byte 44 Byte 45

Chap 2.1.3

Binghamton

University

CS-220

Spring 2019

Why Little Endian?

• Casting/Conversion:
• int x; /* 32 bits starting at byte 42 */

• y = (short int) x; /* Put the least significant 16 bits from x into y */

Big Endian

42 43 44 45

00 01 86 A0

x

(short int) x

Little Endian

42 43 44 45

A0 86 01 00

x

(short int) x

Binghamton

University

CS-220

Spring 2019

Big Endian vs. Little Endian Adder

Binghamton

University

CS-220

Spring 2019

When does Endian-ness Leak?

• Only on multi-byte data types (short, int, long, float, double)

• Only when we look at the underlying bits or transfer binary data

• Big-endian machine: First byte is the most significant byte
• Everything works until we get binary data from a little-endian machine

• Little-endian machine: First byte is the least significant byte
• When hardware interprets the bits/bytes as a number, bytes are switched

• We don’t even know if a machine is big-endian or little-endian!

• Until: we get binary data from a big-endian machine OR

• Until we look at the bit representation of the data, not treated as a number

Binghamton

University

CS-220

Spring 2019

Managing Endian-Ness

• Network standard is big-endian

• stdlib functions
• machine representation → network (big-endian) representation

• htons (short) , htonl (long)

• Network representation (big-endian) →machine representation
• ntohs (short), ntohl (long)

• No-ops when hardware is big-endian

• endian.h functions
• htobe16, htobe32, htobe64, htole16, htole32, htole64

• be16toh, be32toh, be64toh, le16toh, le32toh, le64toh

See xmp_endian/network.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_endian/

Binghamton

University

CS-220

Spring 2019

Endian-ness in this Course

• LDAP machines are little-endian

• When you put binary data in a file, you must enter numbers in little-
endian format!

• When you print memory from gdb,
• if you specify byte output formats, data will appear little endian.
• (When you specify multi-byte numeric output formats, the infrastructure

switches the bytes for you.)

• If you make a union of byte-data and multi-byte formats, the byte
data will show endian-ness

• Otherwise, everything looks like big-endian!

Binghamton

University

CS-220

Spring 2019

Resources

• The C Programming Language, (K&R) Sections 2.2 and 2.7

• Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type_conversion

• C Tutorial – Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-
operator.html#The%20cast%20operator

• C-FaQ Cast Operator Section:
http://c-faq.com/~scs/cclass/int/sx4bb.html

36

https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator
http://c-faq.com/~scs/cclass/int/sx4bb.html

