CS-220
Spring 2019

Data In C:
Integers

Binghamton CS-220
University Spring 2019

Variable Concept

Memory
0000 0000 0000 0000 0000 0000 0011 1100
0101 0100

0100 0000 1000 0000 0000 0000 0000 0000

First_Initial

Binghamton CS-220

University Spring 2019

Data Types

» Tag each piece of data / location in memory with a “type”

* Type tells compiler how many bits to use

* Type tells compiler how to interpret those bits
* Enables automatic conversion from one type to another
* Enables compiler to check to make sure data is used correctly

Binghamton CS-220
University Spring 2019

C Built-in Types

Integer Real
Binary 2’s complement | [|EEE 754 | ASCII

Binghamton CS-220

University Spring 2019

Two’s Complement Binary -

 Number represented by a vector of n binary digits (1’s or 0’s)

* If leftmost bit is a zero, number is positive, simple binary
n_

1
=Y bix2 2712028120 22 22 2120
value = b; X 2

0O 0001010
=0

* If leftmost bit is a one, number is negative
n—1

value = z b; x 2L | — 2™
i=0

27120120 24 27122121 20

111110120

Binghamton CS-220

University Spring 2019

C Idiom: (Using Leaks) 2

* In binary representation, 2¥is just a single 1 in the xth bit
* e.g. 23=0b0000 1000 = 8

* Use the “shift” operator, <<, to calculate 2%

int x=3;
Int y=1<<X;

printf(“y is %d\n”,y); // prints y is 8

Binghamton CS-220

University Spring 2019

C idiom: (using Leaks) Strings of x 1 bits

e Use the fact that 2¥X—1 is a string of x 1 bits

* e.g.2> =8=0b000 1000
-1 =0b000 0001

«23-1 =7=0b0000111

e Combine 2¥idiom with -1

int x=3;
int y=(1<<x)-1; // yis Ob0000 ... 0000 0111

Binghamton CS-220

University Spring 2019

Two’s Complement Leaky Shortcut

* To multiply by -1, flip the bits and add 1
* “Flip this bits” is the same as 0b111... 1111 — u_value
e 1-0=1, flip a zero to a one
e 1-1=0, flip a one to a zero
* Never carry
* Ob111.... 1111 is 2"-1, so “flip the bits” is (2"-1)-u_value
« u_value = Y5 b; X 2!
e flip the bits and add 1 is:
(2"-1)-u_value+1=2"-u_value
=-(u_value-2")
-value

Binghamton CS-220

University Spring 2019

C idiom: Bitwise AND to select bits

* Create a “mask” that has 1 bits for every interesting bit, and O for
every bit you want to ignore

* Bitwise AND the mask with the original value

* Result has the original bit in the interesting positions
* 0&1=0, 1&1=1

* Result has 0 in the ignorable positions
* 0&0=0, 1&0=0

e Evaluate “truth” of result — “True” means at least one interesting bit
was on (1), “False” means all interesting bits were off (0).

Binghamton CS-220

University Spring 2019

Example: Print Binary...

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
int n=atoi(argv[1]); inti; printf("%d = Ob",n);
for(i=31:i>=0;i--) {
printf("%c",(n&1<<i)?'1":'0");
it (0==i%4) printf(" ");
}
printf("\n"); return O;

Binghamton

University

Using Hexadecimal Numbers

e Shorthand for writing bits
* Each hexadecimal digit represents 4 bits
 Much easier to read/write/remember

O 00 N O 1 p W N —» O

T e T o Y S "E
v A W N L O

0x0
Ox1
0x2
0x3
0x4
0x5
O0x6
0x7
O0x8
0x9
OxA
OxB
0xC
O0xD
OxE
OxF

CS-220

Spring 2019

0b0000
0b0001
0b0010
O0b0011
0b0100
0b0101
O0b0110
0b0111
0b1000
0b1001
O0b1010
Ob1011
0b1100
Ob1101
Ob1110
Ob1111

Binghamton CS-220

University Spring 2019

Example: Print hex (without %x)

int main(int argc, char **argv) {
long n=atol(argv[1]);
int i; printf("%ld = 0x",n);
unsigned long mask=(1<<4)-1; // Four ones in the rightmost byte
char * xd="0123456789ABCDEF";
for(i=2*sizeof(n)-1;i>=0;i—-) {
int v=(n&(mask<<(i*4)))>>(i*4);
printf("%c”,xd[v]);
if (0==i%4) printf(" ");
}
printf("\n"); return O;

Binghamton CS-220

University Spring 2019

Example: alternate print hex (without %x)

int main(int argc, char **argv) {

union { long In; unsigned char Ic[8]; } n;

char * xd="0123456789ABCDEF";

n.In=atol(argv[1]); printf("%ld = 0x",n.In);

for(int i=0;i<sizeof(n);i++) {
if (i>0 && 0==i%2) printf(" ");
printf("%c%c",xd[(n.lc[i]&O0xFO0)>>4],xd[n.Ic[i]&0xO0F]);

}

printf("\n");

return O;

Binghamton CS-220

University Spring 2019

C Leaky Idiom — Multiply by 2*

* Instead of multiplying a number by a power of two, shift it to the left

int x=2; 27120120 24|22 22 12 20

int y=atoi(argv[1]); 00001010

intym = y<<x; // *ym =y * 2Ax //
27]26]25 24|23 122220

* Shifts are faster than multiplication 00101000

Binghamton CS-220

University Spring 2019

C Leaky Idiom — Divide by 2

* Instead of dividing by 2%, shift right by x

int x=2; 27120120 24|22 22 12 20

int y=atoi(argv[1]); 00001010
intyd =y>>x; // *yd =y / 2Ax (almost)

27120020 24 27122 21 20

* Warning — negative numbers round differently! 0 0 0 0 0 0 1 ©
* Multiplication —rounds towards zero
 Shifting — rounds down (towards —infinity)

CS-220
Spring 2019

* C has an “unsigned” keyword that can be used to modify type
* e.g. unsigned short x;

* Enables representation in raw binary — not two’s complement

Binghamton

University

Unsigned Integers

* Extra bit enables two-times larger maximum number

* Not much of a benefit
* Impossible to represent negative numbers

* Unsigned often leads to counter-intuitive results!
* More explanation coming later

Binghamton CS-220

University Spring 2019

Q: Why four flavors of Integers?

* A: Space vs. Capacity trade-off

Type # Bits? Min Max U Max
char 3 -27=-128 27-1=127 28-1=255
short 16 -215=-32,768 21°-1=32,767 216-1=65,535

int 32 ~-2.15 x 10° ~2.15 x 10° ~4.3 x 10°
long 64 ~-9 x 1018 ~9 x 1018 ~18.5x1018

INumber of bits may be different on different machines!

CS-220
Spring 2019

Binghamton

University

Leaky Abstraction: Infinite Integers

* In mathematics, every integer, n has a successor, n+1

* In C, integers are finite...
* No indication of overflow!

* For unsigned char, 255=0b1111 1111 + 1 = 0b0000 0000 =0
-2 -1 0 +1 +2 +255

I G SR
 For char, 127 =0b0111 1111 +1 = 0b1000 0000 =-128
-128 -2 -1 0 +1 +2 +127

o @ +°°

Binghamton CS-220

University Spring 2019

Cconstants

* Decimal numbers are signed integers: int Xx=93;

« Add “U” suffix to make them unsigned: unsigned char uy=183U;
* Almost never used — only needed if signed value doesn’t fit

* Prefix with O to interpret as an octal number: int xa=013; // == 11
* Prefix with x, 0x, X, or OX for hexadecimal: int xb=0x12;: //== 18
* Add “L” suffix to make them long : long yl = 0X000011110000FFFFL;

* Almost never used — only needed if constant value doesn’t fit int

Binghamton CS-220

University Spring 2019

Casting : C Data Format Conversion

'

* When you cast a movie, you decide what role each |
actor will play

* In programming, we use the term “cast” to indicate UeT% 5 - '
what role (type) we expect the bits to play ' -

* In other words, how should your program interpret the specific bits in
memory

* Unless explicitly cast, determine the interpretation based on the
declared type of a variable

Binghamton CS-220

University Spring 2019

Mixing Integer Types

* Mixed Type Expressions * C compiler could issue
int X; long y; y=y*x; an error message for
mixed types

* Assignment Statements
int x; long y; x=y*3.0; e C compiler could
require explicit casting

* Argument Evaluation ,
for all conversions

int myfn(long x); int y=myfn(3);

* C could automatically
convert values, based
on pre-defined rules

* Explicit Casting
int x=7; long y = ((long)x)/3;

21

Binghamton CS-220

University Spring 2019

C Automatic type conversion rules

* In an expression (or part of an expression), C converts all components
in that expression to the most “general” type, and then evaluates the
expression using that general type

* In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

* C converts expressions with a valid explicit cast

22

Binghamton CS-220

University Spring 2019

Generality of Numeric Types

Most General

A A, \!|double
A] Mfloat

Y] Munsigned
4] 7 m Iong Iong
Y] Munsigned
A] Mint int

A] \!|unsigned
y - J[short short

- [unsigned
\!|char Uchar

Least General

23

Binghamton CS-220

University Spring 2019

Converting Signed vs Unsignhed -

* Bits stay exactly the same, but the bits are INTERPRETTED differently

2726 2° 120127 122 |20 20
1 1 10 10 1 0

char x = -22; unsigned char w = 234;
unsigned char y=x; char z=w;
printf(“y=%d\n",y); printf(“z=%d\n",z);

// prints y=234 /] prints z=-22

Binghamton CS-220

University Spring 2019

Changing Integer Size

* Truncate or Pad on left with sign bit

27 2° 20 |20 27 122 |2t 20

1 1 1 0 1 0 1 O
215 214212 212 91 1210120 120 27 125 25 2* 22 22 2t 20
11 1 1 1 1 1 11 1 1 O 1 O 1 O

char x = -22; shortw = -22;
short y=Xx; char z=w;

Binghamton

CS-220

University

Changing Integer Size (unsigned)

* Truncate or Pad on left with sign bit (=0)

27 2° 20 |20 27 122 |2t 20
1 110 10 10

Spring 2019

215 214212 212 91 1210120 120 27 125 25 2* 22 22 2t 20
o o 0o 0 0 60 0 01 1.1 O 1 O 1 O

unsigned char x = 234;
unsigned short y=x;

unsigned short w = 234;
unsigned char z=w;

CS-220
Spring 2019

Binghamton

University

Leaky Abstractions: Conversion Errors

* When C converts a negative signed number to a positive number
char x = -1; unsigned chary = x; printf(‘y = %d\n",y)

* When C converts a wide number to a smaller width, but the number
doesn’t fit

short x=260; chary = x; printf("y = %d\n",y);

Binghamton CS-220

University Spring 2019

Unsigned Pitfall

unsigned int width=+38;

signed int leftX = -13;

if ((leftX < 0) && (leftX + width) > 0) {
printf("Rectangle crosses y axis\n");

Binghamton CS-220

University Spring 2019

Abstraction

Bits are stored in memory from most significant at left
to least significant at right
(int 100,000 = 0x0001 86A0)

270 (272|259 27| 270|275 27427 27 220291210 27 2020|204 25 2212 20 2 20 27 | 27 20| 24 22 27 21| 20

o o o o o o 0o 00 OO OOOOT1TI11TH0O0MO0OMO0OT11T11O011O01100 00O
0 0 0 1 8 6 A 0

Binghamton CS-220

University Spring 2019

Leaky Abstraction — "Endian”-ness

Some machines store as expected... (Big—endian)

ﬁﬁWHﬁﬁﬂﬁﬁﬂﬂﬁﬂﬂﬁﬂﬂﬁﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂ

b31 b23 b22 b21 b20 b19 b18 b17 b16 l:)15 l:)14 b13 b12 b11 blO b b b b b b b b b b

o.......000000011oooo11010100000
K

1 8 6 A 0

Some machines store least significant byte first! (Little-endian)

2720120 202322211 202200 25 21212 (20 2° | 28 |27 2% 2% 270291210 27 2% § | 270|228 277 270 2% 2%
by; b3g byg byg by7 g bys by b3 by, byy g byg byg by; byg bys by byg byy by by by bg by
1010000010000 11000 00 000 1 o FGNGHEIGHNIOHWGHEIOHON

o I

A 0 8 6 0 1

Binghamton CS-220

University Spring 2019

Why Little Endian?

* Casting/Conversion:
* int x; /* 32 bits starting at byte 42 */
e v = (short int) x; /* Put the least significant 16 bits from x intoy */

Big Endian Little Endian

X

‘I (short int) x

(short int) x I

Binghamton CS-220

University Spring 2019

Big Endian vs. Little Endian Adder

B: B:
| LN | LN
| | | 1 <
b B N |detn | I B B
| | |
B: B:
—_l —_l
—— =
=

Binghamton CS-220

University Spring 2019

When does Endian-ness Leak?

* Only on multi-byte data types (short, int, long, float, double)
* Only when we look at the underlying bits or transfer binary data

* Big-endian machine: First byte is the most significant byte
* Everything works until we get binary data from a little-endian machine

* Little-endian machine: First byte is the least significant byte
 When hardware interprets the bits/bytes as a number, bytes are switched
 We don’t even know if a machine is big-endian or little-endian!
* Until: we get binary data from a big-endian machine OR
* Until we look at the bit representation of the data, not treated as a number

Binghamton CS-220

University Spring 2019

Managing Endian-Ness

* Network standard is big-endian

e stdlib functions

* machine representation = network (big-endian) representation
* htons (short) , htonl (long)

* Network representation (big-endian) = machine representation
* ntohs (short), ntohl (long)

* No-ops when hardware is big-endian

* endian.h functions
* htobel6, htobe32, htobeb64, htolel6, htole32, htole64
* bel6toh, be32toh, beb4toh, lel6toh, le32toh, le64toh

See xmp_endian/network.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2019/examples/xmp_endian/

Binghamton CS-220

University Spring 2019

Endian-ness In this Course

e LDAP machines are little-endian

 When you put binary data in a file, you must enter numbers in little-
endian format!

* When you print memory from gdb,
* if you specify byte output formats, data will appear little endian.

* (When you specify multi-byte numeric output formats, the infrastructure
switches the bytes for you.)

* If you make a union of byte-data and multi-byte formats, the byte
data will show endian-ness

* Otherwise, everything looks like big-endian!

Binghamton CS-220

University

Resources

Spring 2019

* The C Programming Language, (K&R) Sections 2.2 and 2.7

* Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type conversion

e C Tutorial — Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-
operator.html#The%20cast%200perator

* C-FaQ Cast Operator Section:
http://c-fag.com/~scs/cclass/int/sx4bb.html

36

https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator
http://c-faq.com/~scs/cclass/int/sx4bb.html

