
Binghamton

University

CS-220

Spring 2019

The CS-220 Development 
Environment



Binghamton

University

CS-220

Spring 2019

Who is this guy?

• Arguably more influential in 
software development than 
either Bill Gates or Steve Jobs

• Developed the concept of 
“copyleft”

• Caused DARPA to require 
passwords at MIT

• Created the first recursive 
acronym: GNU



Binghamton

University

CS-220

Spring 2019

Picking the Right Tool for the Job



Binghamton

University

CS-220

Spring 2019

Integrated Development Environment

4



Binghamton

University

CS-220

Spring 2019

Command Line Mentality

Old fashioned but simple…

…and surprisingly efficient…

… (except for editing).



Binghamton

University

CS-220

Spring 2019

Command Line Mentality
• Artisan vs. Factory Worker

• Learn to use lots of tools

• May be slower

• Take more knowledge

• Require more effort

• Tools you can take with you

• Tools universally available

• Applicable to wide variety of 
projects

6



Binghamton

University

CS-220

Spring 2019

Operating System: UNIX

• Oldest “modern” operating system

• Base for Linux, HP/UX, Solaris, AIX, Android, IOS, etc. 

• Most widely used

• Available on Lab accounts

• Free version available on Windows : CYGWIN 
(https://www.cygwin.com/)

• Large library of free software - GNU compilers, editors, debuggers, etc.
(http://en.wikipedia.org/wiki/GNU)

• Assume basic knowledge of UNIX 
(http://www.ee.surrey.ac.uk/Teaching/Unix)

https://www.cygwin.com/
http://en.wikipedia.org/wiki/GNU
http://www.ee.surrey.ac.uk/Teaching/Unix


Binghamton

University

CS-220

Spring 2019

Expect you to know (or figure out)…

• Unix text file

• Unix Directory (parent, child directories)

• Current Directory

• Home Directory

• Commands: ls, cd, mv, cp, mkdir, rmdir, 

• How to open and use a command line terminal



Binghamton

University

CS-220

Spring 2019

Basic Commands

• Editor – gedit (not available everywhere)

• Compiler / Linker – gcc

• Build manager – make

• Debugger – gdb

• Project Management – git



Binghamton

University

CS-220

Spring 2019

Environment 1: G-7 Lab

• Everyone should have gotten an e-mail about LDAP access
• LDAP = “Lightweight Directory Access Protocol”

• Homework this week… log on and try it out (run the demo)

• You get a “home” directory – Your personal disk space

• All CS machines (G-7, remote, etc.) share:
• userid/password

• Your home directory

• https://www.cs.binghamton.edu/~sysadmin/ to change 
password, etc.

10

https://www.cs.binghamton.edu/~sysadmin/


Binghamton

University

CS-220

Spring 2019

Environment 2: Remote CS

• I use “PuTTy” for remote access

• Host Name: remote.cs.binghamton.edu
• The CS machines are different from Harvey or BingSuns!

• By default, putty does not support full-screen applications
• Can use “XLaunch” to enable remote full-screen applications (gedit)

• Performance is not always wonderful

• Alternative: Edit locally and transfer files back and forth
• I use “WinSCP” to transfer files / edit remote files locally

11



Binghamton

University

CS-220

Spring 2019

Environment 3: Unix on your Machine

• C is notoriously non-portable!

• The underpinnings of C (e.g. X86) even less so

• You may use your own machine
• Dual boot Linux, Apple development environment, Cygwin on Windows, 

Bash on Windows 10

• You will need “gcc”, “gdb”, “gmake”, and “git” for this class

• … but test on CS machines! (You will be graded on CS machines)

12



Binghamton

University

CS-220

Spring 2019

GCC (Gnu C Compiler)

>gcc options source_file(s)
• Basic options for CS-220:

• -o output_file/command_name
• -g [include debug information in output file]

• -Wall [turn on all warning messages]

• For example: >gcc –g –Wall –o myCmd myCmd.c

• For more detail, gcc –- help or man gcc

• Complete documentation: https://gcc.gnu.org/onlinedocs/

https://gcc.gnu.org/onlinedocs/


Binghamton

University

CS-220

Spring 2019

The compile / link process

myCmd.c

Translate 
to x86 

Assembler

myfile.s

Translate 
to machine

object 
language

myfile.o

Pre-
processor

myfile.h

stdlib.h libstdlib.so

linker

myCmd
(executable)

GCC



Binghamton

University

CS-220

Spring 2019

• File that tells “make” what to do and how to do it

• Composed of a list of “make rules” 

• A rule has three parts:
• Target – the file that this rule produces

• Dependencies – A list of file used to make the target

• Recipe – Unix command(s) to produce target from the dependency files

• For example:

mymain : mymain.c mymain.h comp.c comp.h

gcc –g –Wall -o mymain mymain.c comp.c

Makefile

Required Tab



Binghamton

University

CS-220

Spring 2019

Example Makefile

test : mycmd

./mycmd “test string”

./mycmd “test string 2”

mycmd : mymain.c mymain.h comp.c comp.h

gcc –g –Wall –o mycmd mymain.c comp.c

clean: 

-rm mycmd



Binghamton

University

CS-220

Spring 2019

Invoking make

• Command : make target

• If target not specified, look for target “all”

• If target not specified and no “all” target, 
make first target in the make file



Binghamton

University

CS-220

Spring 2019

Make processing (simplified)

• Find the rule for the target specified

• Recursively make all dependencies that are targets

• If any dependencies are newer than target file, invoke recipe
• If the target is a file, and the time/date stamp of the target is newer than 

the time date stamp all dependencies, skip the recipe

• If the target is a file, and the time/date stamp of the dependency is newer 
than the time/date stamp of the target, invoke the recipe

• If target is not a file (pseudo-target), assume it is “ancient”  always run the 
recipe

• Cascading dependencies causes build of anything out of date



Binghamton

University

CS-220

Spring 2019

Debugging – GDB (Gnu DeBugger)
• gdb executable

• Starts debugger, loads executable, and prompts for gdb commands

• Basic GDB commands:
• h[elp] – help on gdb commands
• b[reak] location [if cond] – set a breakpoint at location

• location can be either a line number in a file or a function name
• cond stop only when true

• run command  line arguments - invoke command and run to next breakpoint
• c[ontinue] – continue to next breakpoint
• s[tep] – run next program instruction, stepping into function invocations
• n[ext] – run next program instruction, skipping over function invocations
• p[rint] variable or expression - print the current value of variable or expression
• x /options location - print (examine) memory at location
• q[uit] – exit out of gdb



Binghamton

University

CS-220

Spring 2019

GIT – Version Control

The name "git" was given by Linus Torvalds when he wrote the very first 
version. He described the tool as "the stupid content tracker“ and the 
name as (depending on your way):

• random three-letter combination that is pronounceable, and not 
actually used by any common UNIX command.  The fact that it is a 
mispronunciation of "get" may or may not be relevant.

• stupid. contemptible and despicable. simple. Take your pick from the 
dictionary of slang.

• "global information tracker": you're in a good mood, and it actually    
works for you. Angels sing, and a light suddenly fills the room.

• "goddamn idiotic truckload of sh*t": when it breaks



Binghamton

University

CS-220

Spring 2019

GitHub Service

• Software owned by Microsoft

• Uses “GIT” commands as an interface

• Requires userid/password

• Enables “cloud” storage of “repositories”

• A repository is like a sub-directory (project or package)
• Has name, owner, permissions, versions, branches

• May have multiple (divergent) copies!

• Primary copy is in the cloud



Binghamton

University

CS-220

Spring 2019

GitHub Classroom

• Software package built on GitHub

• Allows me to create an “assignment”
• Consists of a repository with a README.md and potentially starter files

• Has an “invitation” URL

• If you “browse” the invitation, GitHub Classroom will allow you to 
“Accept” your invitation

• Create a new private repository for you assignment-gitId
• You may modify your repository to “do” the assignment

• TA’s and I can see your (modified) repository to grade it



Binghamton

University

CS-220

Spring 2019

GitHub Single Threaded Development

• git clone repository-url
• Makes a copy of repository to local disk space
• Repository name becomes a sub-directory in the local directory
• You may edit files in the cloned copy of the directory (does not change cloud!)

• git add file-name
• Tells git that this file has changed (been modified or added) in this copy of the repository

• git commit –m ‘commit comment’
• Tells git that you want to save the “staged” changes you have made in this copy
• May use –a flag to “auto-add” any tracked file that has been changed

• git push
• Copy all committed changes to the cloud

• git pull
• Copy any changes from the cloud to the current directory (clone)



Binghamton

University

CS-220

Spring 2019

Managing Assignment Deadlines

• Each pushed commit has an associated hash code
• list of hexadecimal characters that “contains” code derived from contents 

of repository (if contents changes, hash code changes also)

• Get hash code of latest commit in the cloud with 
“git rev-parse HEAD”

• Cut and paste hash code in myCourses submission area
• myCourses records time/date of hash code submission

• CA’s will retrieve the version of your repository associated with 
that hash code to grade



Binghamton

University

CS-220

Spring 2019

Demo
• See examples/xmp_gdb/

• A jar of marbles has a random mix of
100 red marbles, 
100 green marbles, 
100 blue marbles

• How many marbles do you need to pick out of 
the jar to get 10 red marbles?

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2018/examples/xmp_gdb/

