CS-220 Spring 2019 Test 2 Version Practice Apr. 22,2019

Name:

1. (5 points) For the following, Check T if the statement is true, or F if the statement is false.

(a)

(f)

(2)

(h)

(i)

()

I:‘ T F : The Gnu Debugger (gdb) works at the C level. If you did not compile with the
-g option, the Gnu Debugger is virtually useless.

gdb provides capabilities to debug at the X86 level as well as the C level, and at the X86 level, the
-g debugging information is useful, but not required.

I:‘ T F : If the zero flag (ZF) is true, then the instruction ”jne LINE3” will branch to
LINE3.

The jne instruction is based on the assumption that you just ran a cmp b,a instruction which
calculates a-b. If the result is zero, then a==b and the zero flag will get set on. So jne only takes
the branch when the zero flag is off.

T I:] F :In X86-64 assembler, the memory referenced by -0x1C(%rbp) is the same as the
memory referenced by -0x1C(%rbp,%rax,16) if the %rax register contains a zero.

The first form is indirect addressing. The second form is table addressing mode, where %rax
represents the row index, and 16 represents the size of a row.

T I:‘ F : The x86/64 "push” instruction always decreases the value in the %rsp register.
The ”pop” isntruction always increases the value in the %rsp register.

I:‘ T F : After executing a conditional jump instruction, the %rip register always points
at the instruction after the jump instruction.

If the condition is true, %rip is set to the target of the branch instead of the next sequential
instruction.

I:‘ T F : In the X86-64 ISA instruction processing cycle, there are four phases of the cycle
which potentially read or write from memory: the ”fetch instruction” phase, the ”evaluate address”
phase, the "fetch operands” phase, and the ”store results” phase.

The ”evaluate address” phase does NOT read or write from memory, although the other three
phases do.

I:] T F : It is important that an older version of an ISA support everyting in a newer
version of the same ISA so that new software can be run on both old and new hardware.

Usually we don’t care if new software doesn’t run on old hardware.

T I:] F : The concept of dividing registers into caller-saved registers and callee-saved
registers makes the resulting code much more efficient because we never have to save and restore
registers that don’t need to be saved and restored, and most of the time, no registers need to be
saved or restored.

T I:] F : The convention of using both %rbp and %rsp to delineate the current stack frame
is not absolutely required. We only need to know where the stack frame starts or stops since we
know the stack frame’s length. In fact, there is a gcc compiler option to use only the %rsp register
for stack frames instead of both %rsp and %rbp.

T I:‘ F : The gce compiler may decide to translate a switch statement using a jump table,
or it may decide that a jump table is not very efficient because there is no easy way to translate
cases into table indexes, or if there is, the resulting table will be very sparsely populated.

Page 1 of 8

Answer the following by checking all correct answers.

2.

(5 points) Which x86 assembler code was generated from the pgmA.c in Listing 1 on page 57

I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 Listing 8 on page 6
I:] None of the above

672 initialized i, 679 jumps to the condition, i <arge, 68b jumps to the loop body, and 681 implements
the increment.

(5 points) Which x86 assembler code was generated from the pgmB.c in Listing 2 on page 57

I:] Listing 5 on page 6 Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

Indirect jump at 69a only occurs for switch statements.

(5 points) Which x86 assembler code was generated from the pgmC.c in Listing 3 on page 57
Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

Comparison at 676 is arge < 5, which is the inverse of the if condition.

(5 points) Which x86 assembler code was generated from the pgmD.c in Listing 4 on page 57
I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

After initialization of ans, jumps immediately to condition, arge > 4, which is equivalent to arge > 5

(5 points) The for loop instruction on line 6 in Listing 9 on page 7 generates x86 instructions at which
of the following addresses in Listing 10 on page 77

[]e6r6 [Jera []e6ad [] 6bl,6b4, 6b7 All of the above

676 initializes i to 1, 67d jumps down to test the condition, 6ad is the increment (i++) instruction,
6b1 and 6b4 set the condition codes by comparing i to arge, and 6b7 checks those condition codes and
iterates the loop.

(5 points) Given the stack data in figure 1 on page 8, what is the current value of the i variable in main?

I:] 0 I:] I:‘ 0x040060d I:‘ None of the above

Based on the 1n1t1ahzat10n at 676, 1 is at main’s %rbp-4 or OxT7fffTfe8fc.

(5 points) Given the stack data in figure 1 on page 8, what is the current value of the j variable?

I:] 0 1 I:‘ 2 I:‘ 0x555547ad I:] None of the above

Based on the initialization at 6dc, j is at %rbp-4 or 0xT7fffffffeScc.

(5 points) Given the stack data in figure 1 on page 8, what is the value of main’s caller’s %rbp?

|] oxvfitffifecos | | OxTHHfiHe900 | | Ox7fiffffe9e8 | | OxTff7a5a2bl None of the
above

Trick question! At the top of main’s stack frame, where the operating system’s %rbp is supposed to be,
there is the value 0x0000555555554760. The opera‘clncy system does not reveal the top of its stack framc
to the main function. When main starts, the OS has put the address of one of the library initialization
routines in the %rbp register.

Page 2 of 8

10.

11.

12.

(5 points) The x86 instructions in Listing 10 on page 7 at addresses 6¢d through 6d8 are typically called:

I:] funcl on-ramp D funky chicken funcl preamble I:‘ funcl frame create I:‘ standard
entry

(5 points) Given the stack data in figure 1 on page 8, what function is currently executing?

I:] The Operating System I:‘ main funcl I:‘ func2 I:] None of the above

The return address above %rbp has offset 6a3, which points to the instruction below the call to funcl

(5 points) In the code in Listing 10 on page 7, the following instructions are used to save and restore
caller saved (red) registers:
I:] 660 and 6¢b I:] 6cd and 735 I:] 737 and 75a I:‘ All of the above None of the above

All of the choices are involved with pushing and popping the value of the %rbp register, which is a callee
saved (blue) register, not a caller saved register. Neither main, nor funcl, nor func2 needed to maintain
the values of any caller saved registers across a call to a lower level function, so no save and restore of
caller saved registers was required.

Answer the following questions by filling in the blanks.

13.

14.

15.

16.

(5 points) The instruction at address 70d in Listing 10 on page 7 performs a jne conditional jump, and
therefore, uses the zero flag. What instruction sets the zero flag, and what are the conditions that cause
the zero flag to get set on.
test %eax,%eax at 70b, when %eax is zero.

The zero flag is set when the result of the bitwise and of %eax with itself performed by the test instruction
contains no one bits, which can only be true when the value of %eax is zero. The jne instruction jumps
when the zero flag is off - skipping the then block that does a j++ only when the result of func2 is zero
on line 15 of Listing 9 on page 7

(5 points) Using Listing 10 on page 7, can you find where main’s local variable ans kept? Express your
answer as an offset from the %rbp register.

%rbp-8
The instruction at 66f initializes ans to zero, and references the value as -0x8(%rbp)

(5 points) In Listing 10 on page 7, the compiler has chosen to implement the comparison argl==arg2
using the instructions at locations 745 and 749. However, the previous instruction at 742 just moved the
value of the %al register into -0x8(%rbp) and then the compare instruction at 749 comapres the value
in %al with the value in memory at -0x8(%rbp). How can these two ever be different?

The instruction at 745 writes arg2 to %eax, which includes the value of the %al register.

(5 points) Using Listing 10 on page 7, what is the address of the x86 instruction that implements the
comparison in main’s for loop, specifically that determines if i < argc?

6b4 cmp -0x14 (%rbp) ,%eax
The x86 code loads the value of i into the %eax register with the mov instruction at 6bl, and compares
that to the value of the copy of the arge variable kept in main’s stack frame at %rbp-0x14 with the cmp
instruction at 6b4.

Page 3 of 8

17.

18.

19.

20.

(5 points) Using Listing 10 on page 7, how much extra space does funcl reserve in its stack frame for
local variables, copies of parameters, and alignment padding?
0x20 or 32 bytes

The instruction at 6d1 moves the bottom of the stack frame to 0x20 below %rbp. This leaves enough
room for j at %rbp-4 as well as copies of the arguments at %rbp-0x14 and %rbp-0x20.

(5 points) Using Listing 10 on page 7 and figure 1 on page 8, what is the current value of the argv
parameter in the main function?

0x00007fffffffe9e8
Since argv is the second parameter, its value is saved in the %rsi register on entry to main. Main then
stores that value in -x20(%rbp) at instruction 66b. Since the current function executing is funcl, then
the current %rbp points at main’s %rbp, which is 0x00007{fffffe900. Therefore, the value of argv is 0x20
below that value, or at 0x00007{tfffffe8e0.

(5 points) In Listing 10 on page 7, func2 keeps copies of the arguments argl and arg2 at %rbp-4 and
%rbp-8, and since %rsp is the same as %rbp, that means that argl and arg2 values are stored below the
bottom of the stack. What x86-64 ISA architecture feature lets the gcc compiler do this?

The red-zone
Since func? is a leaf function, and does not use the stack, it can use the red-zone below the stack and
depend on the fact that no-one else is allowed to change those value.

(5 points) In Listing 10 on page 7, the instructions at addresses 715 and 730 in funcl put either a one or
a zero in the %eax register. The X86 calling conventions we learned stated that the %rax register should
contain the return code. Why did the gce compiler put a one or a zero into %eax instead of %rax?

The return type of funcl is int, not long, so only 4 bytes are required.

Page 4 of 8

Listing 1: pgmA.c

Tear-off Page

Listing 3: pgmC.c

int main(int argc, char xxargv) {
int i; int ans=0;
for (i=0ji<argc; i++) {
ans+=i ;
}

return ans;

int main(int argc, char xxargv) {
int ans=0;
if (arge > 5) ans=-1;
else if (arge < 1) ans=-1;
else ans=100;
return ans;

Listing 2: pgmB.c

int main(int argc, char xxargv) {
int ans=0;
switch (arge) {
case 1: ans=100; break;

case 2: ans=1; break;

case 3: ans=20; break;
case 4: ans=40; break;
case 5: ans=50; break;

default: ans=-1; break;

}

return ans;

Listing 4: pgmD.c

int main(int argc, char xxargv) {
int ans=0;
while (arge >= 5) {
ans—+-+;
argc=argc — 2;
}

return ans;

Page 5 of 8

Tear-off Page

Listing 5: pgm?.objdump.txt

0000000000000660 <main>:

660:
661:
664:
667:
66b:
672:
676:
678:
67f:
681:
685:
687:
68e:
690:
697:
69a:
69b:

push
mov
mov
mov
movl
cmpl
jle
movl
Jjmp
cmpl
jg
movl
Jmp
movl
mov
pop
retq

Yrbp

%rsp,%rbp
%edi,—0x14(%rbp)
%rsi,—0x20(%rbp)
$0x0,—0x4(%rbp)
$0x5,—0x14(%rbp)

681 <main+0x21>
SOxELEELEEE ,—0x4(%rbp)
697 <main+0x37>
$0x0,—0x14(%rbp)

690 <main+0x30>
$OxEEFEFE,—0x4(%rbp)
697 <main+0x37>
$0x64,—0x4(%rbp)
—0x4(%rbp),%eax

Y%rbp

Listing 7: pgm?.objdump.txt

686:

0000000000000660 <main >:
660:
661:
664:
667:
66b:
672:
674:
678:
67c:
680:
682:
685:

push %rbp

mov Yrsp,%rbp

mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x4(%rbp)

Jjmp 67c <main+0xlc>
addl $0x1,—0x4(%rbp)

subl $0x2,-0x14(%rbp)
cmpl $0x4,—0x14(%rbp)
is 674 <main+0x14>
mov —0x4(%rbp),%eax

pop Y%rbp

retq

Listing 8: pgm?.objdump.txt

Listing 6: pgm?.objdump.txt

0000000000000660 <main>:

660:
661:
664:
667:
66b:
672:
676:
678:
67b:
683:
68a:
68d:
690:
697:
69a:
69c:
6ad:
6ab:
6ac:
6ae:
6b5:
6b7:
6be:
6¢0:
6c¢T:
6c9:
6d1:
6d4 :

6d5:

push %rbp
mov Y%rsp,%rbp
mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x4(%rbp)
cmpl $0x5,—0x14(%rbp)
ja 6c9 <main+0x69>
mov —0x14(%rbp),%eax
lea 0x0(,%rax,4),%rdx
lea Oxda(%rip),%rax
mov (%rdx,%rax,1) ,%eax
movslq %eax,%rdx
lea Oxcd(%rip),%rax
add Yordx,%rax
jmpq *%rax
movl $0x64,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $0x1,—0x4(%rbp)
jmp 6dl <main4+0x71>
movl $0x14,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $0x28,—0x4(%rbp)
jmp 6d1l <main+0x71>
movl $0x32,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $Oxffffffff —0x4(%r
mov —0x4(%rbp),%eax
pop Y%rbp

retq

691:

0000000000000660 <main>:
660:
661:
664:
667:
66b:
672:
679:
67b:
67e:
681:
685:
688:
68b:
68d:
690:

push %rbp

mov Y%rsp,%rbp

mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x8(%rbp)
movl $0x0,—0x4(%rbp)
Jjmp 685 <main+0x25>
mov —0x4(%rbp),%eax
add %eax,—0x8(%rbp)
addl $0x1,—0x4(%rbp)
mov —0x4(%rbp) ,%eax
cmp —0x14(%rbp),%eax
jl 67b <main+0x1b>
mov —0x8(%rbp),%eax
pop %rbp

retq

bp)

Page 6 of 8

X O T W

Tear-off Page

Listing 9: reflexive.c

int funcl(int argl, char % arg2);
int func2(char argl, char arg2);
int main(int argc,char xxargv) {
int i;
int ans=0;
for (i=1l;i<argc;i++) {
if (funcl(i,argv[i])>0) { ans=i; }

if (ans>0) { return 0; }

return 1;
}
int funcl(int argl, char xarg2) {
int j=1;
while (arg2 [j]!=0x00) {
if (0==func2(arg2[0],arg2(j])) { j++; }
else { return 1; }
}
return 0;
}

int func2(char argl, char arg2) {
if (argl=—arg2) return 1;
return 0;

}

Listing 10: reflexive.objdump.txt 6cd: jmp 6¢cb <main4-0x6b>
0000000000000660 <main>: 2§gf ‘;‘:’;’Wq $0x1,%eax
660: push %rbp Gee: retq

661: mov Y%rsp,%rbp

664: sub $0x20,%rsp

668: mov %edi,—0x14(%rbp)
66b: mov %rsi,—0x20(%rbp)
66f: movl $0x0,—0x8(%rbp)

676: movl $0x1,—0x4(%rbp)

67d: jmp 6bl <main+0x51>

00000000000006cd <funcl >:
6cd: push %rbp
6ce: mov Y%rsp,%rbp
6d1: sub $0x20,%rsp
6d5: mov %edi,—0x14(%rbp)
6d8: mov %rsi,—0x20(%rbp)

67f: mov ~0x4(%rbp), %eax 6dc: movl $0x1,—0x4(%rbp)
682: cltq 6e3: jm 7lc <funcl+0x4f>
684: lea 0x0(,%rax,8),%rdx - Jmp
6e5: mov —0x4(%rbp) ,%eax
68c: mov —0x20(%rbp),%rax)
690 add Yrdx Yrax 6e8: movslq %eax,%rdx
) ! 6eb: mov —0x20(%rbp),%rax

693: mov (Yorax),%rdx 6ef: add Yrdx,%rax

696: mov 0x4(%rb1i)),%eax 6f2: movzbl (%rax),%eax
699: mov Y%rdx,%rsi

. 6f5: movsbl %al,%edx
69c: mov Y%eax,%edi

6f8: mov —0x20(%rbp),%rax
6fc: movzbl (%rax),%eax

6ff: movsbl %al,%eax

702: mov Y%edx,%esi

704: mov Y%eax,%edi

706: callq 737 <func2>

70b: test Y%eax,%eax

69e: callq 6cd <funcl>
6a3: test Yeax,%eax

6a5: jle 6ad <main+0x4d>
6a7: mov —0x4(%rbp) ,%eax
6aa: mov Y%eax,—0x8(%rbp)
6ad: addl $0x1,—0x4(%rbp)

6bl: mov —Ox4(%rbp),%eax 70d: jne 715 <funcl-+0x48>
6bd: comp —0x14(%rbp),%eax 70f: addl $0x1,—0x4(%rbp)
6b7: jl 67f <maint0x1f> D ’ orop

713: jmp 7lc <funcl+40x4f>
715: mov $0x1,%eax
7la: jmp 735 <funcl4+0x68>

6b9: cmpl $0x0,—0x8(%rbp)
6bd: jle 6¢c6 <main+0x66>
6bf: mov $0x0,%eax

Page 7 of 8

Tlc:
71f:
722:
726:
729:
72c:
T2e:
730:
735:
736:

mov —0x4(%rbp),%eax
movslq %eax,%rdx

mov —0x20(%rbp),%rax
add Y%rdx,%rax

movzbl (%rax),%eax

test %al,%al

jne 6eb5 <funcl+0x18>
mov $0x0,%eax

leaveq

retq

0000000000000737 <func2 >:

737:
738:

Figure 1: Stack representation, %rsp and %rbp are identified, and all multi-byte data is represented in big

Y%rbp
%rsp,%rbp

push
mov

endian format.

Tear-off Page

73b: mov %edi,%edx

73d: mov %esi ,%eax

73f: mov %d1,—0x4(%rbp)
742: mov %al,—0x8(%rbp)
745: movzbl —0x4(%rbp),%eax
749: cmp —0x8(%rbp),%al
74c: jne 755 <func2+0xle>
T4e: mov $0x1,%eax

753: jmp 75a <func24+0x23>
755: mov $0x0,%eax

75a: pop %rbp

75b: retq

Address Value (64 bit) Comments

Ox7HTtfe908 | 0x00007ff{f7aba2bl

Ox7ftttfe900 | 0x0000555555554760 + main’s rbp

Ox7THfTfffe8f8 | 0x00000001 0x00000002 | Two 4-byte values

OxTftffe8f0 | 0x000071ffftfe9e0

OxT7ftfffffe8e8 | 0x55554530 0x00000004 | Two 4-byte values

Ox7ftftffe8e0 | 0x00007{ffT{tfe9e8

OxTfttttfe8d8 | 0x00005555555546a3

Ox7fItttfe8d0 | 0x00007{Itfe900 < %rbp

Ox7fIffffe8c8 | 0x555547ad 0x00000001 | Two 4-byte values

Ox7ftffffe8cO | 0x00000001 0x00000000 | Two 4-byte values

OxT7ffffffe8b8 | 0xfTad2fe0 0x00000002 | Two 4-byte values

OxTfffe8b0 | 0x00007 I Tfec98 +— %orsp

Ox7fffftfe8a8 | 0x000055555555470b
Question: 123456 |7|8[9[10[11 12|13 |14 |15 |16 |17 | 18| 19|20 | Total
Points: 5/5|5|5[5|5|5|5|5|5 |5 |5 |5 |5 |5 |5 |5]|5]|5]/|5 100
Bonus Points: |0 {0 |0 0]0|0|0|0]0] O 0 0 0 0 0 0 0 0 0 0 0

Page 8 of 8

