
CS-220 Spring 2019 Test 2 Version Practice Apr. 22, 2019

Name:

1. (5 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) T X F : The Gnu Debugger (gdb) works at the C level. If you did not compile with the
-g option, the Gnu Debugger is virtually useless.

gdb provides capabilities to debug at the X86 level as well as the C level, and at the X86 level, the
-g debugging information is useful, but not required.

(b) T X F : If the zero flag (ZF) is true, then the instruction ”jne LINE3” will branch to
LINE3.

The jne instruction is based on the assumption that you just ran a cmp b,a instruction which
calculates a-b. If the result is zero, then a==b and the zero flag will get set on. So jne only takes
the branch when the zero flag is off.

(c) X T F : In X86-64 assembler, the memory referenced by -0x1C(%rbp) is the same as the
memory referenced by -0x1C(%rbp,%rax,16) if the %rax register contains a zero.

The first form is indirect addressing. The second form is table addressing mode, where %rax
represents the row index, and 16 represents the size of a row.

(d) X T F : The x86/64 ”push” instruction always decreases the value in the %rsp register.
The ”pop” isntruction always increases the value in the %rsp register.

(e) T X F : After executing a conditional jump instruction, the %rip register always points
at the instruction after the jump instruction.

If the condition is true, %rip is set to the target of the branch instead of the next sequential
instruction.

(f) T X F : In the X86-64 ISA instruction processing cycle, there are four phases of the cycle
which potentially read or write from memory: the ”fetch instruction” phase, the ”evaluate address”
phase, the ”fetch operands” phase, and the ”store results” phase.

The ”evaluate address” phase does NOT read or write from memory, although the other three
phases do.

(g) T X F : It is important that an older version of an ISA support everyting in a newer
version of the same ISA so that new software can be run on both old and new hardware.

Usually we don’t care if new software doesn’t run on old hardware.

(h) X T F : The concept of dividing registers into caller-saved registers and callee-saved
registers makes the resulting code much more efficient because we never have to save and restore
registers that don’t need to be saved and restored, and most of the time, no registers need to be
saved or restored.

(i) X T F : The convention of using both %rbp and %rsp to delineate the current stack frame
is not absolutely required. We only need to know where the stack frame starts or stops since we
know the stack frame’s length. In fact, there is a gcc compiler option to use only the %rsp register
for stack frames instead of both %rsp and %rbp.

(j) X T F : The gcc compiler may decide to translate a switch statement using a jump table,
or it may decide that a jump table is not very efficient because there is no easy way to translate
cases into table indexes, or if there is, the resulting table will be very sparsely populated.

Page 1 of 8

Answer the following by checking all correct answers.

2. (5 points) Which x86 assembler code was generated from the pgmA.c in Listing 1 on page 5?

Listing 5 on page 6 Listing 6 on page 6 Listing 7 on page 6 X Listing 8 on page 6

None of the above
672 initialized i, 679 jumps to the condition, i <argc, 68b jumps to the loop body, and 681 implements
the increment.

3. (5 points) Which x86 assembler code was generated from the pgmB.c in Listing 2 on page 5?

Listing 5 on page 6 X Listing 6 on page 6 Listing 7 on page 6 Listing 8 on page 6

None of the above
Indirect jump at 69a only occurs for switch statements.

4. (5 points) Which x86 assembler code was generated from the pgmC.c in Listing 3 on page 5?

X Listing 5 on page 6 Listing 6 on page 6 Listing 7 on page 6 Listing 8 on page 6

None of the above
Comparison at 676 is argc ≤ 5, which is the inverse of the if condition.

5. (5 points) Which x86 assembler code was generated from the pgmD.c in Listing 4 on page 5?

Listing 5 on page 6 Listing 6 on page 6 X Listing 7 on page 6 Listing 8 on page 6

None of the above
After initialization of ans, jumps immediately to condition, argc > 4, which is equivalent to argc ≥ 5.

6. (5 points) The for loop instruction on line 6 in Listing 9 on page 7 generates x86 instructions at which
of the following addresses in Listing 10 on page 7?

676 67d 6ad 6b1, 6b4, 6b7 X All of the above
676 initializes i to 1, 67d jumps down to test the condition, 6ad is the increment (i++) instruction,
6b1 and 6b4 set the condition codes by comparing i to argc, and 6b7 checks those condition codes and
iterates the loop.

7. (5 points) Given the stack data in figure 1 on page 8, what is the current value of the i variable in main?

0 1 X 2 0x040060d None of the above
Based on the initialization at 676, i is at main’s %rbp-4 or 0x7fffffffe8fc.

8. (5 points) Given the stack data in figure 1 on page 8, what is the current value of the j variable?

0 X 1 2 0x555547ad None of the above
Based on the initialization at 6dc, j is at %rbp-4 or 0x7fffffffe8cc.

9. (5 points) Given the stack data in figure 1 on page 8, what is the value of main’s caller’s %rbp?

0x7fffffffec98 0x7fffffffe900 0x7fffffffe9e8 0x7ffff7a5a2b1 X None of the
above
Trick question! At the top of main’s stack frame, where the operating system’s %rbp is supposed to be,
there is the value 0x0000555555554760. The operating system does not reveal the top of its stack frame
to the main function. When main starts, the OS has put the address of one of the library initialization
routines in the %rbp register.

Page 2 of 8

10. (5 points) The x86 instructions in Listing 10 on page 7 at addresses 6cd through 6d8 are typically called:

func1 on-ramp funky chicken X func1 preamble func1 frame create standard
entry

11. (5 points) Given the stack data in figure 1 on page 8, what function is currently executing?

The Operating System main X func1 func2 None of the above
The return address above %rbp has offset 6a3, which points to the instruction below the call to func1

12. (5 points) In the code in Listing 10 on page 7, the following instructions are used to save and restore
caller saved (red) registers:

660 and 6cb 6cd and 735 737 and 75a All of the above X None of the above

All of the choices are involved with pushing and popping the value of the %rbp register, which is a callee
saved (blue) register, not a caller saved register. Neither main, nor func1, nor func2 needed to maintain
the values of any caller saved registers across a call to a lower level function, so no save and restore of
caller saved registers was required.

Answer the following questions by filling in the blanks.

13. (5 points) The instruction at address 70d in Listing 10 on page 7 performs a jne conditional jump, and
therefore, uses the zero flag. What instruction sets the zero flag, and what are the conditions that cause
the zero flag to get set on.

test %eax,%eax at 70b, when %eax is zero.

The zero flag is set when the result of the bitwise and of %eax with itself performed by the test instruction
contains no one bits, which can only be true when the value of %eax is zero. The jne instruction jumps
when the zero flag is off - skipping the then block that does a j++ only when the result of func2 is zero
on line 15 of Listing 9 on page 7

14. (5 points) Using Listing 10 on page 7, can you find where main’s local variable ans kept? Express your
answer as an offset from the %rbp register.

%rbp-8

The instruction at 66f initializes ans to zero, and references the value as -0x8(%rbp)

15. (5 points) In Listing 10 on page 7, the compiler has chosen to implement the comparison arg1==arg2
using the instructions at locations 745 and 749. However, the previous instruction at 742 just moved the
value of the %al register into -0x8(%rbp) and then the compare instruction at 749 comapres the value
in %al with the value in memory at -0x8(%rbp). How can these two ever be different?

The instruction at 745 writes arg2 to %eax, which includes the value of the %al register.

16. (5 points) Using Listing 10 on page 7, what is the address of the x86 instruction that implements the
comparison in main’s for loop, specifically that determines if i < argc?

6b4 cmp -0x14(%rbp),%eax

The x86 code loads the value of i into the %eax register with the mov instruction at 6b1, and compares
that to the value of the copy of the argc variable kept in main’s stack frame at %rbp-0x14 with the cmp
instruction at 6b4.

Page 3 of 8

17. (5 points) Using Listing 10 on page 7, how much extra space does func1 reserve in its stack frame for
local variables, copies of parameters, and alignment padding?

0x20 or 32 bytes

The instruction at 6d1 moves the bottom of the stack frame to 0x20 below %rbp. This leaves enough
room for j at %rbp-4 as well as copies of the arguments at %rbp-0x14 and %rbp-0x20.

18. (5 points) Using Listing 10 on page 7 and figure 1 on page 8, what is the current value of the argv
parameter in the main function?

0x00007fffffffe9e8
Since argv is the second parameter, its value is saved in the %rsi register on entry to main. Main then
stores that value in -x20(%rbp) at instruction 66b. Since the current function executing is func1, then
the current %rbp points at main’s %rbp, which is 0x00007fffffffe900. Therefore, the value of argv is 0x20
below that value, or at 0x00007fffffffe8e0.

19. (5 points) In Listing 10 on page 7, func2 keeps copies of the arguments arg1 and arg2 at %rbp-4 and
%rbp-8, and since %rsp is the same as %rbp, that means that arg1 and arg2 values are stored below the
bottom of the stack. What x86-64 ISA architecture feature lets the gcc compiler do this?

The red-zone

Since func2 is a leaf function, and does not use the stack, it can use the red-zone below the stack and
depend on the fact that no-one else is allowed to change those value.

20. (5 points) In Listing 10 on page 7, the instructions at addresses 715 and 730 in func1 put either a one or
a zero in the %eax register. The X86 calling conventions we learned stated that the %rax register should
contain the return code. Why did the gcc compiler put a one or a zero into %eax instead of %rax?

The return type of func1 is int, not long, so only 4 bytes are required.

Page 4 of 8

Tear-off Page

Listing 1: pgmA.c

int main (int argc , char ∗∗ argv) {
int i ; int ans=0;
for (i =0; i<argc ; i++) {

ans+=i ;
}
return ans ;

}

Listing 2: pgmB.c

int main (int argc , char ∗∗ argv) {
int ans=0;
switch (argc) {

case 1 : ans=100; break ;
case 2 : ans=1; break ;
case 3 : ans=20; break ;
case 4 : ans=40; break ;
case 5 : ans=50; break ;
default : ans=−1; break ;

}
return ans ;

}

Listing 3: pgmC.c

int main (int argc , char ∗∗ argv) {
int ans=0;
i f (argc > 5) ans=−1;
else i f (argc < 1) ans=−1;
else ans=100;
return ans ;

}

Listing 4: pgmD.c

int main (int argc , char ∗∗ argv) {
int ans=0;
while (argc >= 5) {

ans++;
argc=argc − 2 ;

}
return ans ;

}

Page 5 of 8

Tear-off Page

Listing 5: pgm?.objdump.txt

0000000000000660 <main>:
660 : push %rbp
661 : mov %rsp ,%rbp
664 : mov %edi ,−0x14(%rbp)
667 : mov %rsi ,−0x20(%rbp)
66b : movl $0x0 ,−0x4(%rbp)
672 : cmpl $0x5 ,−0x14(%rbp)
676 : j l e 681 <main+0x21>
678 : movl $ 0 x f f f f f f f f ,−0x4(%rbp)
67 f : jmp 697 <main+0x37>
681 : cmpl $0x0 ,−0x14(%rbp)
685 : jg 690 <main+0x30>
687 : movl $ 0 x f f f f f f f f ,−0x4(%rbp)
68 e : jmp 697 <main+0x37>
690 : movl $0x64 ,−0x4(%rbp)
697 : mov −0x4(%rbp) ,%eax
69a : pop %rbp
69b : retq

Listing 6: pgm?.objdump.txt

0000000000000660 <main>:
660 : push %rbp
661 : mov %rsp ,%rbp
664 : mov %edi ,−0x14(%rbp)
667 : mov %rsi ,−0x20(%rbp)
66b : movl $0x0 ,−0x4(%rbp)
672 : cmpl $0x5 ,−0x14(%rbp)
676 : ja 6c9 <main+0x69>
678 : mov −0x14(%rbp) ,%eax
67b : lea 0x0(,%rax ,4) ,%rdx
683 : lea 0xda(%rip) ,%rax
68a : mov (%rdx,%rax ,1) ,%eax
68d : movslq %eax,%rdx
690 : lea 0xcd(%rip) ,%rax
697 : add %rdx,%rax
69a : jmpq ∗%rax
69 c : movl $0x64 ,−0x4(%rbp)
6a3 : jmp 6d1 <main+0x71>
6a5 : movl $0x1 ,−0x4(%rbp)
6ac : jmp 6d1 <main+0x71>
6ae : movl $0x14 ,−0x4(%rbp)
6b5 : jmp 6d1 <main+0x71>
6b7 : movl $0x28 ,−0x4(%rbp)
6be : jmp 6d1 <main+0x71>
6c0 : movl $0x32 ,−0x4(%rbp)
6 c7 : jmp 6d1 <main+0x71>
6c9 : movl $ 0 x f f f f f f f f ,−0x4(%rbp)
6d1 : mov −0x4(%rbp) ,%eax
6d4 : pop %rbp

6d5 : retq

Listing 7: pgm?.objdump.txt

0000000000000660 <main>:
660 : push %rbp
661 : mov %rsp ,%rbp
664 : mov %edi ,−0x14(%rbp)
667 : mov %rsi ,−0x20(%rbp)
66b : movl $0x0 ,−0x4(%rbp)
672 : jmp 67 c <main+0x1c>
674 : addl $0x1 ,−0x4(%rbp)
678 : sub l $0x2 ,−0x14(%rbp)
67 c : cmpl $0x4 ,−0x14(%rbp)
680 : jg 674 <main+0x14>
682 : mov −0x4(%rbp) ,%eax
685 : pop %rbp

686 : retq

Listing 8: pgm?.objdump.txt

0000000000000660 <main>:
660 : push %rbp
661 : mov %rsp ,%rbp
664 : mov %edi ,−0x14(%rbp)
667 : mov %rsi ,−0x20(%rbp)
66b : movl $0x0 ,−0x8(%rbp)
672 : movl $0x0 ,−0x4(%rbp)
679 : jmp 685 <main+0x25>
67b : mov −0x4(%rbp) ,%eax
67 e : add %eax ,−0x8(%rbp)
681 : addl $0x1 ,−0x4(%rbp)
685 : mov −0x4(%rbp) ,%eax
688 : cmp −0x14(%rbp) ,%eax
68b : j l 67b <main+0x1b>
68d : mov −0x8(%rbp) ,%eax
690 : pop %rbp

691 : retq

Page 6 of 8

Tear-off Page

Listing 9: reflexive.c

1 int func1 (int arg1 , char ∗ arg2) ;
2 int func2 (char arg1 , char arg2) ;
3 int main (int argc , char ∗∗ argv) {
4 int i ;
5 int ans=0;
6 for (i =1; i<argc ; i++) {
7 i f (func1 (i , argv [i])>0) { ans=i ; }
8 }
9 i f (ans>0) { return 0 ; }

10 return 1 ;
11 }
12 int func1 (int arg1 , char ∗ arg2) {
13 int j =1;
14 while (arg2 [j] !=0 x00) {
15 i f (0==func2 (arg2 [0] , arg2 [j])) { j++; }
16 else { return 1 ; }
17 }
18 return 0 ;
19 }
20 int func2 (char arg1 , char arg2) {
21 i f (arg1==arg2) return 1 ;
22 return 0 ;
23 }

Listing 10: reflexive.objdump.txt

0000000000000660 <main>:
660 : push %rbp
661 : mov %rsp ,%rbp
664 : sub $0x20 ,%rsp
668 : mov %edi ,−0x14(%rbp)
66b : mov %rsi ,−0x20(%rbp)
66 f : movl $0x0 ,−0x8(%rbp)
676 : movl $0x1 ,−0x4(%rbp)
67d : jmp 6b1 <main+0x51>
67 f : mov −0x4(%rbp) ,%eax
682 : cltq
684 : lea 0x0(,%rax ,8) ,%rdx
68 c : mov −0x20(%rbp) ,%rax
690 : add %rdx,%rax
693 : mov (%rax) ,%rdx
696 : mov −0x4(%rbp) ,%eax
699 : mov %rdx,% rs i
69 c : mov %eax,%edi
69 e : cal lq 6cd <func1>
6a3 : test %eax,%eax
6a5 : j l e 6ad <main+0x4d>
6a7 : mov −0x4(%rbp) ,%eax
6aa : mov %eax ,−0x8(%rbp)
6ad : addl $0x1 ,−0x4(%rbp)
6b1 : mov −0x4(%rbp) ,%eax
6b4 : cmp −0x14(%rbp) ,%eax
6b7 : j l 67 f <main+0x1f>
6b9 : cmpl $0x0 ,−0x8(%rbp)
6bd : j l e 6c6 <main+0x66>
6 bf : mov $0x0 ,%eax

6c4 : jmp 6cb <main+0x6b>
6c6 : mov $0x1 ,%eax
6cb : leaveq
6 cc : retq

00000000000006 cd <func1>:
6cd : push %rbp
6 ce : mov %rsp ,%rbp
6d1 : sub $0x20 ,%rsp
6d5 : mov %edi ,−0x14(%rbp)
6d8 : mov %rsi ,−0x20(%rbp)
6dc : movl $0x1 ,−0x4(%rbp)
6 e3 : jmp 71 c <func1+0x4f>
6e5 : mov −0x4(%rbp) ,%eax
6e8 : movslq %eax,%rdx
6eb : mov −0x20(%rbp) ,%rax
6 e f : add %rdx,%rax
6 f2 : movzbl (%rax) ,%eax
6 f5 : movsbl %al ,%edx
6 f8 : mov −0x20(%rbp) ,%rax
6 f c : movzbl (%rax) ,%eax
6 f f : movsbl %al ,%eax
702 : mov %edx,%es i
704 : mov %eax,%edi
706 : cal lq 737 <func2>
70b : test %eax,%eax
70d : jne 715 <func1+0x48>
70 f : addl $0x1 ,−0x4(%rbp)
713 : jmp 71 c <func1+0x4f>
715 : mov $0x1 ,%eax
71a : jmp 735 <func1+0x68>

Page 7 of 8

Tear-off Page

71 c : mov −0x4(%rbp) ,%eax
71 f : movslq %eax,%rdx
722 : mov −0x20(%rbp) ,%rax
726 : add %rdx,%rax
729 : movzbl (%rax) ,%eax
72 c : test %al ,%al
72 e : jne 6e5 <func1+0x18>
730 : mov $0x0 ,%eax
735 : leaveq
736 : retq

0000000000000737 <func2>:
737 : push %rbp
738 : mov %rsp ,%rbp

73b : mov %edi ,%edx
73d : mov %esi ,%eax
73 f : mov %dl ,−0x4(%rbp)
742 : mov %al ,−0x8(%rbp)
745 : movzbl −0x4(%rbp) ,%eax
749 : cmp −0x8(%rbp) ,%al
74 c : jne 755 <func2+0x1e>
74 e : mov $0x1 ,%eax
753 : jmp 75a <func2+0x23>
755 : mov $0x0 ,%eax
75a : pop %rbp
75b : retq

Figure 1: Stack representation, %rsp and %rbp are identified, and all multi-byte data is represented in big
endian format.

Address Value (64 bit) Comments
0x7fffffffe908 0x00007ffff7a5a2b1
0x7fffffffe900 0x0000555555554760 ← main’s rbp
0x7fffffffe8f8 0x00000001 0x00000002 Two 4-byte values
0x7fffffffe8f0 0x00007fffffffe9e0
0x7fffffffe8e8 0x55554530 0x00000004 Two 4-byte values
0x7fffffffe8e0 0x00007fffffffe9e8
0x7fffffffe8d8 0x00005555555546a3
0x7fffffffe8d0 0x00007fffffffe900 ← %rbp
0x7fffffffe8c8 0x555547ad 0x00000001 Two 4-byte values
0x7fffffffe8c0 0x00000001 0x00000000 Two 4-byte values
0x7fffffffe8b8 0xf7ad2fe0 0x00000002 Two 4-byte values
0x7fffffffe8b0 0x00007fffffffec98 ← %rsp
0x7fffffffe8a8 0x000055555555470b

Question: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

Points: 5 100

Bonus Points: 0

Page 8 of 8

