CS-220 Spring 2019 Test 2 Version Practice Apr. 22,2019

Name:

1. (5 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) I:‘ T I:] F : The Gnu Debugger (gdb) works at the C level. If you did not compile with the
-g option, the Gnu Debugger is virtually useless.

(b) I:‘ T I:‘ F : If the zero flag (ZF) is true, then the instruction ”jne LINE3” will branch to
LINES3.

(c) I:‘ T I:] F :In X86-64 assembler, the memory referenced by -0x1C(%rbp) is the same as the
memory referenced by -0x1C(%rbp,%rax,16) if the %rax register contains a zero.

(d) I:‘ T I:‘ F : The x86/64 ”"push” instruction always decreases the value in the %rsp register.
The ”pop” isntruction always increases the value in the %rsp register.

(e) I:‘ T D F : After executing a conditional jump instruction, the %rip register always points
at the instruction after the jump instruction.

() I:] T I:] F : In the X86-64 ISA instruction processing cycle, there are four phases of the cycle
which potentially read or write from memory: the ”fetch instruction” phase, the ”evaluate address”
phase, the "fetch operands” phase, and the ”store results” phase.

(2) I:‘ T I:‘ F : It is important that an older version of an ISA support everyting in a newer
version of the same ISA so that new software can be run on both old and new hardware.

(h) I:‘ T I:] F : The concept of dividing registers into caller-saved registers and callee-saved
registers makes the resulting code much more efficient because we never have to save and restore
registers that don’t need to be saved and restored, and most of the time, no registers need to be
saved or restored.

(1) I:‘ T I:] F : The convention of using both %rbp and %rsp to delineate the current stack frame
is not absolutely required. We only need to know where the stack frame starts or stops since we
know the stack frame’s length. In fact, there is a gce compiler option to use only the %rsp register
for stack frames instead of both %rsp and %rbp.

() I:‘ T I:‘ F : The gce compiler may decide to translate a switch statement using a jump table,
or it may decide that a jump table is not very efficient because there is no easy way to translate
cases into table indexes, or if there is, the resulting table will be very sparsely populated.

Answer the following by checking all correct answers.

2. (5 points) Which x86 assembler code was generated from the pgmA.c in Listing 1 on page 57?
I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

3. (5 points) Which x86 assembler code was generated from the pgmB.c in Listing 2 on page 57

I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

Page 1 of 8

10.

11.

12.

(5 points) Which x86 assembler code was generated from the pgmC.c in Listing 3 on page 57
I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

(5 points) Which x86 assembler code was generated from the pgmD.c in Listing 4 on page 57
I:] Listing 5 on page 6 I:‘ Listing 6 on page 6 I:] Listing 7 on page 6 I:] Listing 8 on page 6
I:] None of the above

(5 points) The for loop instruction on line 6 in Listing 9 on page 7 generates x86 instructions at which
of the following addresses in Listing 10 on page 77

[Jem6 | Je67a []6ad [|6bl, 6b4, 6b7 [| All of the above

(5 points) Given the stack data in figure 1 on page 8, what is the current value of the i variable in main?

I:] 0 I:] 1 I:‘ 2 I:‘ 0x040060d I:‘ None of the above

(5 points) Given the stack data in figure 1 on page 8, what is the current value of the j variable?

I:] 0 I:] 1 I:‘ 2 I:‘ 0x555547ad I:] None of the above

(5 points) Given the stack data in figure 1 on page 8, what is the value of main’s caller’s %rbp?

|| oxfffifffecos |] ox7fifffife900 [| Ox7fifffffe9es [| Ox7fifi7a5a2bl | | Nome of the
above

(5 points) The x86 instructions in Listing 10 on page 7 at addresses 6¢d through 6d8 are typically called:

I:] funcl on-ramp I:] funky chicken I:] funcl preamble I:‘ funcl frame create I:‘ standard
entry

(5 points) Given the stack data in figure 1 on page 8, what function is currently executing?
I:] The Operating System I:‘ main I:] funcl I:‘ func2 I:] None of the above

(5 points) In the code in Listing 10 on page 7, the following instructions are used to save and restore
caller saved (red) registers:

I:] 660 and 6cb I:] 6cd and 735 I:‘ 737 and 75a I:] All of the above I:] None of the
above

Answer the following questions by filling in the blanks.

13.

14.

(5 points) The instruction at address 70d in Listing 10 on page 7 performs a jne conditional jump, and
therefore, uses the zero flag. What instruction sets the zero flag, and what are the conditions that cause
the zero flag to get set on.

(5 points) Using Listing 10 on page 7, can you find where main’s local variable ans kept? Express your
answer as an offset from the %rbp register.

Page 2 of 8

15.

16.

17.

18.

19.

20.

(5 points) In Listing 10 on page 7, the compiler has chosen to implement the comparison argl==arg2
using the instructions at locations 745 and 749. However, the previous instruction at 742 just moved the
value of the %al register into -0x8(%rbp) and then the compare instruction at 749 comapres the value
in %al with the value in memory at -0x8(%rbp). How can these two ever be different?

(5 points) Using Listing 10 on page 7, what is the address of the x86 instruction that implements the
comparison in main’s for loop, specifically that determines if i < argc?

(5 points) Using Listing 10 on page 7, how much extra space does funcl reserve in its stack frame for
local variables, copies of parameters, and alignment padding?

(5 points) Using Listing 10 on page 7 and figure 1 on page 8, what is the current value of the argv
parameter in the main function?

(5 points) In Listing 10 on page 7, func2 keeps copies of the arguments argl and arg2 at %rbp-4 and
%rbp-8, and since %rsp is the same as %rbp, that means that argl and arg2 values are stored below the
bottom of the stack. What x86-64 ISA architecture feature lets the gcec compiler do this?

(5 points) In Listing 10 on page 7, the instructions at addresses 715 and 730 in funcl put either a one or
a zero in the %eax register. The X86 calling conventions we learned stated that the %rax register should
contain the return code. Why did the gce compiler put a one or a zero into %eax instead of %rax?

Page 3 of 8

Page 4 of 8

Listing 1: pgmA.c

Tear-off Page

Listing 3: pgmC.c

int main(int argc, char xxargv) {
int i; int ans=0;
for (i=0ji<argc; i++) {
ans+=i ;
}

return ans;

int main(int argc, char xxargv) {
int ans=0;
if (arge > 5) ans=-1;
else if (arge < 1) ans=-1;
else ans=100;
return ans;

Listing 2: pgmB.c

int main(int argc, char xxargv) {
int ans=0;
switch (arge) {
case 1: ans=100; break;

case 2: ans=1; break;

case 3: ans=20; break;
case 4: ans=40; break;
case 5: ans=50; break;

default: ans=-1; break;

}

return ans;

Listing 4: pgmD.c

int main(int argc, char xxargv) {
int ans=0;
while (arge >= 5) {
ans—+-+;
argc=argc — 2;
}

return ans;

Page 5 of 8

Tear-off Page

Listing 5: pgm?.objdump.txt

0000000000000660 <main>:

660:
661:
664:
667:
66b:
672:
676:
678:
67f:
681:
685:
687:
68e:
690:
697:
69a:
69b:

push
mov
mov
mov
movl
cmpl
jle
movl
Jjmp
cmpl
jg
movl
Jmp
movl
mov
pop
retq

Yrbp

%rsp,%rbp
%edi,—0x14(%rbp)
%rsi,—0x20(%rbp)
$0x0,—0x4(%rbp)
$0x5,—0x14(%rbp)

681 <main+0x21>
SOxELEELEEE ,—0x4(%rbp)
697 <main+0x37>
$0x0,—0x14(%rbp)

690 <main+0x30>
$OxEEFEFE,—0x4(%rbp)
697 <main+0x37>
$0x64,—0x4(%rbp)
—0x4(%rbp),%eax

Y%rbp

Listing 7: pgm?.objdump.txt

686:

0000000000000660 <main >:
660:
661:
664:
667:
66b:
672:
674:
678:
67c:
680:
682:
685:

push %rbp

mov Yrsp,%rbp

mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x4(%rbp)

Jjmp 67c <main+0xlc>
addl $0x1,—0x4(%rbp)

subl $0x2,-0x14(%rbp)
cmpl $0x4,—0x14(%rbp)
is 674 <main+0x14>
mov —0x4(%rbp),%eax

pop Y%rbp

retq

Listing 8: pgm?.objdump.txt

Listing 6: pgm?.objdump.txt

0000000000000660 <main>:

660:
661:
664:
667:
66b:
672:
676:
678:
67b:
683:
68a:
68d:
690:
697:
69a:
69c:
6ad:
6ab:
6ac:
6ae:
6b5:
6b7:
6be:
6¢0:
6c¢T:
6c9:
6d1:
6d4 :

6d5:

push %rbp
mov Y%rsp,%rbp
mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x4(%rbp)
cmpl $0x5,—0x14(%rbp)
ja 6c9 <main+0x69>
mov —0x14(%rbp),%eax
lea 0x0(,%rax,4),%rdx
lea Oxda(%rip),%rax
mov (%rdx,%rax,1) ,%eax
movslq %eax,%rdx
lea Oxcd(%rip),%rax
add Yordx,%rax
jmpq *%rax
movl $0x64,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $0x1,—0x4(%rbp)
jmp 6dl <main4+0x71>
movl $0x14,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $0x28,—0x4(%rbp)
jmp 6d1l <main+0x71>
movl $0x32,—0x4(%rbp)
jmp 6dl <main+0x71>
movl $Oxffffffff —0x4(%r
mov —0x4(%rbp),%eax
pop Y%rbp

retq

691:

0000000000000660 <main>:
660:
661:
664:
667:
66b:
672:
679:
67b:
67e:
681:
685:
688:
68b:
68d:
690:

push %rbp

mov Y%rsp,%rbp

mov %edi,—0x14(%rbp)
mov %rsi,—0x20(%rbp)
movl $0x0,—0x8(%rbp)
movl $0x0,—0x4(%rbp)
Jjmp 685 <main+0x25>
mov —0x4(%rbp),%eax
add %eax,—0x8(%rbp)
addl $0x1,—0x4(%rbp)
mov —0x4(%rbp) ,%eax
cmp —0x14(%rbp),%eax
jl 67b <main+0x1b>
mov —0x8(%rbp),%eax
pop %rbp

retq

bp)

Page 6 of 8

X O T W

Tear-off Page

Listing 9: reflexive.c

int funcl(int argl, char % arg2);
int func2(char argl, char arg2);
int main(int argc,char xxargv) {
int i;
int ans=0;
for (i=1l;i<argc;i++) {
if (funcl(i,argv[i])>0) { ans=i; }

if (ans>0) { return 0; }

return 1;
}
int funcl(int argl, char xarg2) {
int j=1;
while (arg2 [j]!=0x00) {
if (0==func2(arg2[0],arg2(j])) { j++; }
else { return 1; }
}
return 0;
}

int func2(char argl, char arg2) {
if (argl=—arg2) return 1;
return 0;

}

Listing 10: reflexive.objdump.txt 6cd: jmp 6¢cb <main4-0x6b>
0000000000000660 <main>: 2§gf ‘;‘:’;’Wq $0x1,%eax
660: push %rbp Gee: retq

661: mov Y%rsp,%rbp

664: sub $0x20,%rsp

668: mov %edi,—0x14(%rbp)
66b: mov %rsi,—0x20(%rbp)
66f: movl $0x0,—0x8(%rbp)

676: movl $0x1,—0x4(%rbp)

67d: jmp 6bl <main+0x51>

00000000000006cd <funcl >:
6cd: push %rbp
6ce: mov Y%rsp,%rbp
6d1: sub $0x20,%rsp
6d5: mov %edi,—0x14(%rbp)
6d8: mov %rsi,—0x20(%rbp)

67f: mov ~0x4(%rbp), %eax 6dc: movl $0x1,—0x4(%rbp)
682: cltq 6e3: jm 7lc <funcl+0x4f>
684: lea 0x0(,%rax,8),%rdx - Jmp
6e5: mov —0x4(%rbp) ,%eax
68c: mov —0x20(%rbp),%rax)
690 add Yrdx Yrax 6e8: movslq %eax,%rdx
) ! 6eb: mov —0x20(%rbp),%rax

693: mov (Yorax),%rdx 6ef: add Yrdx,%rax

696: mov 0x4(%rb1i)),%eax 6f2: movzbl (%rax),%eax
699: mov Y%rdx,%rsi

. 6f5: movsbl %al,%edx
69c: mov Y%eax,%edi

6f8: mov —0x20(%rbp),%rax
6fc: movzbl (%rax),%eax

6ff: movsbl %al,%eax

702: mov Y%edx,%esi

704: mov Y%eax,%edi

706: callq 737 <func2>

70b: test Y%eax,%eax

69e: callq 6cd <funcl>
6a3: test Yeax,%eax

6a5: jle 6ad <main+0x4d>
6a7: mov —0x4(%rbp) ,%eax
6aa: mov Y%eax,—0x8(%rbp)
6ad: addl $0x1,—0x4(%rbp)

6bl: mov —Ox4(%rbp),%eax 70d: jne 715 <funcl-+0x48>
6bd: comp —0x14(%rbp),%eax 70f: addl $0x1,—0x4(%rbp)
6b7: jl 67f <maint0x1f> D ’ orop

713: jmp 7lc <funcl+40x4f>
715: mov $0x1,%eax
7la: jmp 735 <funcl4+0x68>

6b9: cmpl $0x0,—0x8(%rbp)
6bd: jle 6¢c6 <main+0x66>
6bf: mov $0x0,%eax

Page 7 of 8

Tlc:
71f:
722:
726:
729:
72c:
T2e:
730:
735:
736:

mov

—0x4(%rbp),%eax
movslq %eax,%rdx

mov —0x20(%rbp),%rax
add Y%rdx,%rax

movzbl (%rax),%eax

test %al,%al

jne 6eb5 <funcl+0x18>
mov $0x0,%eax

leaveq

retq

0000000000000737 <func2 >:

737:
738:

Figure 1: Stack representation, %rsp and %rbp are identified, and all multi-byte data is represented in big

Y%rbp
%rsp,%rbp

push
mov

endian format.

Tear-off Page

73b: mov %edi,%edx

73d: mov %esi ,%eax

73f: mov %d1,—0x4(%rbp)
742: mov %al,—0x8(%rbp)
745: movzbl —0x4(%rbp),%eax
749: cmp —0x8(%rbp),%al
74c: jne 755 <func2+0xle>
T4e: mov $0x1,%eax

753: jmp 75a <func24+0x23>
755: mov $0x0,%eax

75a: pop %rbp

75b: retq

Address Value (64 bit) Comments
Ox7HTtfe908 | 0x00007ff{f7aba2bl
Ox7ftttfe900 | 0x0000555555554760
Ox7THfTfffe8f8 | 0x00000001 0x00000002 | Two 4-byte values
Ox 7HTfffe8f0 [0x00007{tfffe9e0
OxT7ftfffffe8e8 | 0x55554530 0x00000004 | Two 4-byte values
Ox7ftftffe8e0 | 0x00007{ffT{tfe9e8
OxTfttttfe8d8 | 0x00005555555546a3
Ox7ftfffffe8d0 | 0x00007ftffTfe900 < %rbp
Ox7fIffffe8c8 | 0x555547ad 0x00000001 | Two 4-byte values
Ox7ftffffe8cO | 0x00000001 0x00000000 | Two 4-byte values
OxT7ffffffe8b8 | 0xfTad2fe0 0x00000002 | Two 4-byte values
Ox7iifIffe8b0 | 0x00007iITfeco8 + %rsp
Ox7fffftfe8a8 | 0x000055555555470b

Page 8 of 8

