CS-220 Spring 2019 Test 1 Version Practice Mar. 1, 2019

Name:

1. (10 points) For the following, Check T if the statement is true, or F if the statement is false.

(a)

(e)

(f)

(2)

(h)

(i)

T D F : In the ASCII alphabet, the only difference between an uppercase alphabetic
character and that same character in lower case is a single bit, which can be represented as the
value for a blank (0x20).

I:‘ T F : If you change two different clones of the same repository in different ways, git will
be able to merge those changes automatically when you push both sets of changes into the cloud.

Git will try to automatically merge divergent sets of development, but rarely is able to resolve differ-
ences, and almost always requires human intervention to resolve conflicts. We strongly recommend
single-threaded development to avoid this conflict.

I:‘ T F : The same bits in memory are always interpreted to be the same value, no matter
what type is associated with those bits.

I:‘ T F : We can use bitwise AND to turn off some bits in a value, but leave others
unchanged, we can use bitwise OR to flip some bits (change 0’s to 1’s and 1’s to 0’s) but leave
others unchanged, and we can use bitwise XOR to turn on some bits but leave others unchanged.

Bitwise OR turns on some bits, bitwise XOR flips some bits.

I:‘ T F :In an assignment (or argument evaluation), C converts the value of the expression
to the most general type and converts the receiver of the assignment to that type.

C evaluates the expression using the most general type, but then converts the result to the type of
the receiver.

T I:] F : If you continue to add 1 to a 4 byte two’s complement integer, eventually, you
will reach the value of -27.

Even if you start at -26, eventually you will overflow to negative numbers and get to -27.

T I:] F : Even though computed results may look exactly the same, the underlying
hardware on a little-endian machine is very different than the equivalent hardware on a big-endian
machine.

T I:] F : The concept of sub-normal floating point numbers enables the representation
of much smaller (closer to zero) numbers than we could represent with only normal floating point
numbers, but we lose precision... as numbers get smaller and smaller, they also become less and
less precise.

This is true... every time the power of 2 gets smaller, we can use fewer FRAC bits to represent
sub-normal numbers, and hence they are less precise.

T I:‘ F : C functions always pass arguments by copying the value of the argument into
the parameter, but by passing a pointer, we can mimic a ”call by reference” paradigm because even
though the address is copied, the memory that the address is pointing to is shared between the
caller and the called function.

I:‘ T F : It is possible to initialize all elements of an array to 1 using the syntax

int vec[10]={1};.

That will initialize vec[0] to 1, but all remaining elements of vec will be initialized to 0.

Page 1 of 6

2. (5 points) If a floating point number is represented by the bits 0x8000003f, then the floating point value
of that number is:
I:‘ Less than -2 to the -127
Greater than -2 to the -127, but less than 0
I:‘ Zero

I:‘ Greater than zero, but less than 2 to the -127.

I:‘ Greater than 2 to the -127

3. (5 points) What is does the following code snippet print?

int x=2; int y=4;
if (x==1)
if (y==2)
x=0;
else
y=9;
printf ("x=%d y=%d\n” ,x,y);

x=2 y=4 I:] x=6 y=9 I:] x=6 y=4 I:] x=2 y=9 I:] Compiler error.

An ambiguous else statement is associated with the closest if statement even though the indentation
suggests otherwise.

4. (5 points) Check all the statements below that are correct comparisons of a float variable to a double
variable.
The float variable takes half the memory of the double variable.
I:‘ The float variable can hold a smaller (closer to zero) value than the double variable.
I:‘ The float variable is more precise than the double variable.
The float variable cannot hold a non-infinite value as large as the double variable.

There are some values which must be denormalized as a float, but can be normalized as double.

5. (b points) What does the following snippet of code print out?

int x=5;
if (x=6) x++;
printf("x is %d\n” ,x);

xis 7 I:] x is b I:‘ x is 6 I:] Nothing (compile error) I:] Nothing (seg. violation)

Page 2 of 6

6. (5 points) What does the following snippet of code print to stdout?

int x[]={3, 1, 1, 4, 2};
char xy[]={"cat” ,”dog” ,” turkey” ,”ant” ,” owl” };
printf ("%s\n”,y[x[x[4]]]);

I:] cat dog I:] turkey I:] ant I:] owl

y[x[x[4]]]==y[x[2]]==y[l] which contains the address of the literal string ”dog”.

7. (5 points) What does the following snippet of code print to stdout?

int arr[] = {1, 2, 3, 4};

int i, sum=0; int xarptr=arr;

for (i = 0; i < 4; i4++4) { sum += xarptr; arptr++; }
printf ("%d\n”, sum);

I:] Compiler error I:‘ 6 I:‘ 777... reads unitialized memory 10 I:] 24
When i==0, arptr===~&arr[0]; i==1, arptr==&arr[1], and so on. So sum==1+2+43+4==10.

Answer the following questions by filling in the blanks.

8. (5 points) Given the following snippet of code, what will get printed to stdout?

int x[7];
x[6]=1+(x[6]=1+(x[4]=1+(x[3]=1)));x[2]=1+(x[1]=1+(x[0]=0));
printf ("x[4]=%d\n” ,x[4]);

x[4]=2
This problem demonstrates assignment expressions. x[3]=1, x[4]=1+1=2, x[5]=1+2=3, x[6]=3+1=4,
x[0]=0, x[1]=1+0=1, x[2]=1+1=2.

9. Given the following snippet of code:

int i;

for (i=0;i <100;i++) {
if (0==1%2) continue;
if (0==1%4) printf(”You won $100!\n”);
if (i>15) break;

}

printf(”The final value of i is %d\n”,i);

(a) (2 points) Will the code snippet above print out You won $100!? No

If i is divisible by 4, it is also divisible by 2, so the continue would already have happened.

(b) (3 points) The code snippet above will print out The final value of i is 17

When i=16, you will continue. The first time the break statement is true is when i=17.

Page 3 of 6

10. (5 points) Given the following C code:

#include <stdio.h>
union {
int num;
unsigned char ncs[4];
} test;
int main() {
test .num=0x000000ff;
if (test.ncs[0]==0x??) printf(”This is a little —endian machine\n”);
else printf(”This is a big—endian machine\n”);
return 0;

}

What literal value would you specify in place of 0x??7 so that the correct message gets printed?
Oxff

11. (5 points) Given the following snippet of code, what will get printed to stdout?

float fx=2.56;
int y=fxx*2;
printf ("y=d\n” ,y);

y=5

12. (5 points) What is does the following code snippet print to stdout?

int mat[2][3][4]; int slice; int row; int col;
for (slice=0;slice <2;slice++) {
for (row=0;row <3;row++) {
for (col=0; col<4; col++) {
mat[slice][row][col] = slicex20 4+ rowx5 + col;

}
}
printf("mat[1][2][3]=%d\n” ;mat [1][2][3]);

mat[1][2][3]=33

I L

mat[1][2][3]==33 because it was written by mat[1][2][3]=1%20 + 25 + 3;

13. (5 points) Given the following snippet of code, what will get printed to stdout?

unsigned char x=255; // mazimum unsigned char value
printf ("x+1=%d 7 ,x+1);
printf ("+x=%d\n” ,++x);

x+1=256 ++x=0
is unsigned char, but gets ded to an int because %d ts an int, but is evaluated in ar
x is unsigned char, but gets expanded to an int because %d expects an int, but ++x is evaluated in an
unsigned char environment, so is set to zero BEFORE it’s value is cast to int!

Page 4 of 6

14. Consider the following program:

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
char encode(char in,char * perm);
int main(int argc, char sxargv) {

char c;
while (EOF !=(c=getchar())) {
putchar (encode(c,argv[1]));

}

return 0;
}
char encode(char in,char * perm) {

int i=in—"a’;

if (i<0 || i>strlen(perm)) return in;

return perm|i|;

}

This program is based on the fact that all ASCII lowercase letters map to consecutive numbers in
alphabetical order. For instance, a = 97,b = 98,¢ = 99, d = 100, and so on.

If this code is compiled as executable file encode, then the command
echo "this is a test" | ./encode zyxwvutsrqponmlkjihgfedcba
. would write the following string to stdout: gsrh rh z gvhg

(a) (30 points) Write a C program (including the main function) which takes a permutation of the
alphabet as the command line argument, and decodes the encoded result as specified by the encode
function above. For instance, the command...

echo "this is a test" | ./encode zyxwvutsrqponmlkjihgfedcba | ./decode zyxwvutsrqponmlkjihgfedcba
.. would write the string this is a test to stdout.

Solution:

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
char decode(char in, char * perm);
int main(int argc,char sxargv) {

char c;
while (EOF !=(c=getchar())) {
putchar (decode(c,argv[1]));

}

return 0;

}

char decode(char in,char * perm) {

int i;
for (i=0;i<strlen (perm);i++) {
if (perm[i]J==in) return ’a’+i;

return in;

Page 5 of 6

Note... it turns out that the encode function will also decode itself! You could also copy exactly
what was given above.

(b) (10 points (bonus)) If your code from the previous question works correctly, and is compiled as
decode, what will get written to stdout as a result of the following command:

echo "vzhb zh z y x!" | ./decode zyxwvutsrqponmlkjihgfedcba

Solution: easy as a b c!

Question: 1 (2134|567 |8|9]10 |11 |12 | 13| 14 | Total

Points: 1055|555 |5|5|d5|5|5 |5 |5 |5]3] 100

Bonus Points: | O |O|O0O|0[0]0]O0O]O0|0] O 0 0 0 | 10 10

Page 6 of 6

