CS-220 Spring 2016 Project 4 Due: Tuesday, May 17, 2016

Project 4

Due: Tuesday, May 17 at 11:59 PM (10 point penalty per day for late submission)
Goals:

e Learn all the details of a buffer overflow attack
e Reinforce understanding of X86 stack frames
e Learn how to create object code from X86 assembler

Background: So far, we have had both a lecture and a |ab that covered the basics of a buffer
overflow attack. In Project 4, we will complete the process — generating a complete buffer
overflow attack, including inserting your own “nefarious” code - to modify the results of a
specific program.

Note that the techniques you will use for this attack will not work outside our specialized lab
environment. | have designed the code in this project to be particularly vulnerable to a buffer
overflow attack. Besides, as good citizens, we would never try to use these methods for evil
purposes.

Specifications: You will be given the C code called “grades.c” and a Makefile that compiles
grades.c into a binary file called “grades”. The grades program does the following:

1. Generates random grades for the CS220 class.

2. Calculates the weighted average of those grades for all students.

3. Prompts the user for a his section... either “A” for section A, or “B” for section B. (Of
course, if there happens to be anything after the “A” or “B”, we won’t notice... after all, |
did say the grades program was vulnerable to attack.)

4, Prints out the grades and the averages for all the students in your section.

The student identification numbers (SID) used in this project are the same as the student
numbers used in the bomb project. For instance, if you had bomb105 for Project 3, then you
will find your grade under SID 105 in the output produced by the grades program.

You need to provide an input file that includes the section letter. Your grade for this project
will be the result of applying your input file to my copy of the grades binary file with a random
seed of my choice.

Note that the random number generator used to generate the grades is normally seeded with
the time date stamp, so grades generates a different grade for you every time it runs.
However, these random grades are designed to generate a decent grade (between the high
50’s and mid 70’s), so if you submit an input file that simply contains a valid section ID, you are
guaranteed of getting some random grade that might not be too bad. However, the point of

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/lectures/L20%20-%20Buffer%20Overflow%20Attack.pdf
http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/labs/Lab_10.html

CS-220 Spring 2016 Project 4 Due: Tuesday, May 17, 2016

this project is to provide an input file which alters your grade, and guarantees that you get a
very good grade.

When we run your input file, we will be making some checks on your results. If these checks
fail, we will know that you have been hacking, and will subtract points from your project 4
grade. The checks we will be making are as follows:

Check Score Impact

If any grade other than your own has been modified... -20 points
If any of the grades in your row are less than zero, or greater than the -20 points
maximum grade....

If your average grade is calculated incorrectly, based on the algorithm in -20 points
the getAvg function in grades.c...

If Output lines (e.g. student grades) are missing compared to normal run... -20 points
If extra messages (e.g. “segmentation violation”) appear... -20 points
Submission error (e.g. file named incorrectly) ... -10 points
First to report a valid bug in the code supplied in the tar file +5 points

Implementation: Download the tar file for Project4 and untar. This will create a proj4 directory
which contains several files, as follows:

e Makefile — A makefile to compile, test, and debug the grades executable.

e grades.c—The C code used to create the grades executable.

e test.txt — An example input file that initially specifies the “B” section.

e dbg cmds.txt — An example input file that provides gdb startup commands

Your job is to come up with an input file which not only specifies the password, but which also
alters the execution of the grades executable in such a way as to modify your individual grades,
as well as the average grade, without altering anything else about the results of the program.

In order to do that, you will need to generate your own object code, figure out how to get that
object code into the input file in such a way that it ends up in memory that allows program
execution, and then figure out how to modify the return address to branch to your new object
code. Your object code will need to repair/manage the stack frame that may have been
corrupted by your buffer overflow attack, modify your grades and average grade, and then
return to normal program execution.

Note that it may be possible to work on Project 4 on your own hardware, but, since there are
differences between different implementations, and your result will be tested on an LDAP
machine, make sure your input file works correctly on an LDAP machine before submitting.

Submission: Once you have completed implementing and testing your input file, rename the
file to <userid>.txt, and load it into BlackBoard in the project 4 submission area.

CS-220 Spring 2016 Project 4 Due: Tuesday, May 17, 2016

Grading: Your input file will be run against the professor’s version of the grades executable on
an LDAP machine. Unless there are other problems, such as alteration of other student’s
grades, or incorrect averages (see the table above), then your grade for Project 4 will be the
average grade for your SID printed out by the grade program.

Hints:

Work on this project wherever you want to (e.g. LDAP or Cygwin or on your dual boot
laptop), but test it on an LDAP machine before you submit. Not all UNIX
implementations are exactly the same!
Read through the grades.c program. There are some very big hints on where you can
put your new object code so that it is easy to execute. Note that in general, you can
write to pages in the stack, but cannot execute code in those pages. You can execute
code in pages in the .text section once it is loaded into memory, but you cannot write to
those pages. You can write to global data in the .data section once it is loaded into
memory, but you cannot execute instructions in that memory. | have created a page in
memory for you which you are allowed to both write AND execute instructions. You
need to find that page in memory and use it.
You may want to create a temporary version of grades.c that does the modifications you
would like it to. Then you can look at the X86 code that modified your grades to figure
out how these modifications can be done in X86 assembler.
You will need to create binary object code which modifies your grades and handles the
X86 stack. There are many ways to do this. | found it easiest to create a file with x86
assembler code, which | called “hack.s”. Then, using the command:

gcc —m32 —c —o hack.o hack.s
| can get binary object code in hack.o. Use “objdump —d hack.o” to get a man-readable
listing. | can figure out where the binary object code is by running objdump -h hack.o,
and looking at the table of contents entry for the .text section. (Note that hack.ois an
ELF format file, so your object code doesn’t start at the beginning of the file.) That gives
me enough information to know where the binary object code starts in the hack.o file,
and how long it is.
You will need to write a program to generate a new test.txt file that contains both ASCII
data (for the section ID), and binary data (for instance, your code and the “return
address”). Write this program in C if that’s the easiest for you. Some students write this
code in python or java or some other language they were very familiar with. | don’t care
what language you use... you don’t need to turn in the program that writes test.txt... just
turnin the correct file.
When writing your input file, avoid the hexadecimal value OxOA. In ASCII, 0x0A is a
newline character, and the “gets” function called by grades will stop reading when it
runs into a newline character.

