
CS-220 Spring 2016 Project 2 Due: March 23, 2016

Warehouse

Project Description
For this project, we will be writing software to be used in a warehouse environment. The job in

the warehouse is to assemble kits to send out to customers. Each kit is made up of several

different kinds of widgets. Each different kind of widget is kept in a labeled bin in the

warehouse. There are 100 different kinds of widgets in this warehouse, in bins labeled bin 0

through bin 99.

The parts that go into each kit are defined by orders that come into the warehouse. The orders

consist of a list of bin numbers. Each bin number on an order indicates that you should take

one part from the bin with that label, and put it in the kit. The same bin number may appear

multiple times in an order, but you need to put the parts into the kit in the order specified on

the order. For instance, if the order specifies “10 15 10 10 7 9 15 12”, then the kit needs to

have one part from bin 10, followed by one from bin 15, followed by two more from bin 10,

followed by one from bin 7, one from bin 9, one from bin 15, and finally one from bin 8.

Customers pay an average of 10 cents per part, so in this example kit, there are 8 parts, so the

total revenue is $0.80.

But here is the trick. The workbench at which you assemble

the kits can only hold 4 bins at a time. It starts out with no

bins, but once you have filled all four slots on the

workbench, if you need a bin that is not already on the

workbench, you need to send a bin that IS on the

workbench back to the warehouse, and fetch the new bin

that you need. For instance, for the above order, you first

need to fetch bin 10 and put it in the 0th slot to fill the first

order entry. Then fetch bin 15 to the first slot to fill the

second order entry. You can fill the third and fourth order entries from bin 10 in the 0th slot,

but to fill the fifth entry, you need to fetch bin 7 to slot 2. The sixth entry requires a fetch of bin

9 to slot 3. Now, all the slots on the workbench are full. You can fill the seventh entry from bin

CS-220 Spring 2016 Project 2 Due: March 23, 2016

15 which is already in slot 1, but in order to satisfy the 8th order entry for a part from bin 12,

you need to return one bin (say bin 10 from slot 0) and then fetch bin 12 into that slot. It turns

out that it costs 50 cents to fetch a bin, and another 25 cents to return a bin. In the above

scenario, we needed to fetch five bins and return one so the total cost was $2.75 to assemble

this kit. In this case, the net revenue is $0.80 – $2.75 = -$1.95. We actually lose money on this

simple kit.

It turns out that most kits consist of the same parts over and over again. In fact, the probability

if very high that the next part that goes into the kit is a part that we retrieved for the kit

recently.

Working on the Project
You have been provided with the basic infrastructure for the C code to simulate the warehouse

described above. On the project sub-page of the class web page, there is a file called

proj2.tar.gz that you can download to your own UNIX directory. The command:

tar –xvzf proj2.tar.gz

will first create a sub-directory of your current directory called “proj2”, and then populate that

sub-directory with the contents of the proj2.tar.gz file. The proj1 sub-directory will contain the

following files:

 warehouse.c – C source code that contains the main function which simulates the

warehouse. This is the file and function that you need to modify. The main function, as

it is delivered, performs the following functions:

o includes slots.h. This enables access to the utility functions described in slots.c

below.

o Invokes the “initSlots” function

o As long as there are more bin numbers on the order for the kit, main will:

 Read the next entry from standard input, and save it in the “bin” variable.

 Check to see if that bin is already on the workbench by invoking the

“findSlot” function. findSlot will return a -1 if the bin is not already in a

slot on the workbench.

 If bin is not already on the workbench, decide which slot to put the bin

into on the workbench, and invoke the “getBin” function which retrieves

the bin from the warehouse, and puts it in the specified slot on the

workbench.

 Invoke the “getPartgetWidget” function to remove a part from the

specified bin (which must now be in a slot on the workbench) and put it

in the kit.

o When the order is complete, invokes the printEarnings function to print out the

total cost and revenue for this kit.

 slots.h – A “header” file that enables warehouse.c to invoke the functions defines in

slots.c.

CS-220 Spring 2016 Project 2 Due: March 23, 2016

 slots.c – This C source code contain the functions which simulate the workings of the

warehouse. You may not modify this code or these functions. However, you may

invoke these functions, as needed. The functions in slots.c are as follows:

o void initSlots() – This function initializes all slots on the workbench to “empty”

(bin=-1)

o void getBin(int bin,int slot) – This function checks the specified slot. If it is not

empty, the bin in that slot is returned to the warehouse, and $0.25 is added to

the cost. Then, the specified bin is retrieved from the warehouse and placed in

the slot specified, and $0.50 is added to the cost. Finally, the getBin function

prints out a line that indicates which bins are in each slot.

o int findSlot(int bin) – This function checks through all the slots to figure out what

slot the specified bin is in. If the specified bin is in a slot on the workbench, the

findSlot routine returns the slot in which that bin resides (0, 1, 2, or 3). If the bin

is not on the workbench, findSlot returns a -1.

o void getWidget(int bin) – This function checks to make sure that the specified bin

is in a valid slot on the workbench. If so, indicates that you have added a part

from that bin to the kit (increasing the value of the kit by $0.10)

o void printEarnings() – Prints a line to standard output that identifies the cost and

the net revenue for this kit.

 Makefile – a make file that contains several targets, as follows:

o test : A pseudo-target to invoke the packem executable file, which redirects

“order1.txt” to standard input.

o packem: Creates the packem executable file using both the code in warehouse.c

and the code in slots.c

o clean : A pseudo-target to remove the packem executable file

o submit : A pseudo-target to create the tar file to submit on blackboard. NOTE: If

you do not use “make submit” to create the tar file, you will get points deducted

for not following directions. Furthermore, please run “make submit” on an LDAP

machine. We depend on using the LDAP userid as a part of the tar file name we

create. This is done automatically on an LDAP machine, but will be incorrect if

you run “make submit” in other environments! If you submit a tar file created

somewhere other than on an LDAP machine, you will get points deducted for not

following directions.

 order1.txt – A very simple list of bins, as specified in the example above.

 order2.txt – A slightly more complicated kit order… one which we can actually make

money on if we are smart.

When you first untar the file, cd to the proj2 directory, and try building and running packem.

Note that as delivered, the “main” function uses only slot 0 on the workbench. That means that

there is a lot of schlepping bins back and forth to the warehouse, and it’s hard to make any

money on an order.

CS-220 Spring 2016 Project 2 Due: March 23, 2016

Your job for this project is to modify the main function so that it chooses a bin to return (and

free up a slot for a new bin) intelligently. The trick is to send back the bin that is least likely to

be needed again in the near future. If you can do so, then you can reduce the cost of kits, and

increase your profit (or decrease your loss).

You may add new functions and / or variables to warehouse.c, and change the code in the main

function. You may not “look ahead” in the order list… you must fill each order entry as it

arrives, before looking at the next order entry. You may not modify the functions in slots.c

(which keeps track of the cost and benefit of packing a kit.) I have given two sample orders in

the file “order1.txt” and “order2.txt”. Your program should run with any valid order (arbitrary

list of numbers between 0 and 99).

Standard Input, Standard Output, and Standard Error
We have not yet talked about the “standard” input and output (IO) streams in C, but this

project makes use of those streams. Most of the interaction with these standard IO streams

has been provided to you in the infrastructure, but it’s worth describing them in slightly more

detail. For more detailed information, see https://en.wikipedia.org/wiki/C_file_input/output, or

look at The C Programming Language (Kernighan and Ritchie) chapter 7

In UNIX and in C, every program has one input IO connection called “standard input”, and two

output connections called “standard output” and “standard error”. In C, IO (including file IO) is

handled by a concept called a “stream”. In C, the three standard IO connections are all

streams; the standard input stream, standard output stream, and standard error stream.

Normally, C connects the standard input stream up to your keyboard. With that connection,

when your program requests input from standard input, then your terminal opens up (the

cursor blinks), and the program waits for you to type something on the keyboard. Whatever

you type doesn’t get to your program until you hit the “Enter” key. When hit the “Enter” key,

what you typed goes into the standard input stream, and is available to be consumed by your

program. If you type “Ctrl-D”, that sends an “End of File” signal to your program. (Note that a

“Ctrl-C” key sends an immediate “kill” signal to your program. You can use this if your program

ends up in an endless loop.)

For the purposes of this project, we use stdin to provide the list of bins associated with a

specific order. UNIX supports redirection – the capability to get connect standard input to a

disk file rather than the terminal – by using a less than (<) sign. Therefore, the command

“./packem <order1.txt” invokes the packem executable, and sends the “order1.txt” file in the

current directory to standard input. That allows “order1.txt” to contain the list of bins which

contain the parts for kit1. To make kit2, we would specify “./packem <order2.txt”.

Academic Honesty
You may look on the web for ideas and concepts that go in to making your own implementation

of this project. If you do so, please include a comment in your code. e.g.

https://en.wikipedia.org/wiki/C_file_input/output

CS-220 Spring 2016 Project 2 Due: March 23, 2016

/* Concept from: https://xyz.code.org/warehouse */

It is not very likely that you will be able to copy and paste code from the internet into your

code… any code from the internet probably will not be compatible with your infrastructure.

Usually, it’s much more effective, and definitely a much better learning experience if you write

your own code from scratch.

Feel free to discuss this project with other students. However, DO NOT COPY CODE! Your code

will be compared with all other students’ code. The compare tool looks at the semantics of the

code – not just the bytes, so it can detect copied code even if you add comments, change

variable names, etc. If your code compares too closely with any other student’s code, then both

the copier and the student who wrote the code that got copied will get a zero grade on this

project. If you use the same concepts, but write your own implementation of the code, there

will be enough of a difference in the result so that you will not be accused of cheating.

Submitting your Code
When you have finished coding and testing for this project, if you did not develop your code on

an LDAP machine, please copy your code to an LDAP machine, and make sure it compiles and

tests correctly in the LDAP environment. Then, on an LDAP machine, run:

 make submit

in your project directory. This will collect your source code and put it in a tar file called

“<userid>_proj2.tar.gz”, where “<userid>” is your LDAP user ID. (Note that your userid is

encoded in tar file itself as well as in the file name, so just renaming the tar file is not good

enough. You MUST run make submit on an LDAP machine.) Then upload the

<userid>_proj2.tar.gz file onto blackboard in the Project 2 submission area. Note that you may

submit as many times as you want. The TA’s will disregard all but the latest submission.

Project 2 Grading
Project 2 is worth a total of 100 points. After the due date, your <userid>_proj2.tar.gz file will

be downloaded onto an LDAP machine, untarred, and compiled using a Makefile similar to the

one you have been using. You will start with 50 points. If you failed to follow directions, and

upload a tar other than one created by running make submit on an LDAP machine, you will get

a 10 point deduction. If your code gets a compiler error, the TA or professor will try to fix your

code. If there is a simple fix, we will make that fix, subtract 20 points, and continue testing. If

there is no simple fix, you will get a grade of 20 for this project. Once you code compiles, 10

points will be subtracted for each type of compiler warning in your code. Then, your program

will be run on order1.txt and order2.txt. If your code fills the orders, no matter what the

resulting net earnings is, you will get 15 points. If you are successful, your code will be run

against 3 more unpublished test cases. If you get the highest possible net earnings on an

unpublished test case, you will get 10 points. If you get lower than the highest possible, you

will get fewer than 10 points – on a sliding scale down to 5 points. If you fail to fill the order on

an unpublished test case, you get zero points for that test case.

CS-220 Spring 2016 Project 2 Due: March 23, 2016

Situation Grade

No Submission (>10 days late) 0

Unfixable Compiler Error 25

Fixable Compiler Error Base = 30

No Compiler Error Base = 50

Incorrect Submission (bad tar file) Base = Base - 10

Late Submission Base = Base – 10 x (# days late)

Compiler Warning Base = Base – 10 x (types of warnings)

Problem running against order1/order2 Base

Filled order1/order2 Base + 20 + orderA + orderB + orderC

Where orderA is your grade on the first

unpublished test case, orderB on the second, and

orderC on the third.

Note: This is the second of four projects, and your lowest project grade will get dropped. So

don’t despair if you don’t do well on this project… that means you will just have to work harder

on projects 3, and 4.

