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Part 1: Numbers, Arrays, and Functions  

1. (10 pts) For each of the following sections of code, explain why the specified assertion may fail: 

a.  

 

 

The x variable is of character type, whose largest positive value is 127.  When you try to 

exceed 127, you overflow x, and it becomes negative (-128). 

 

 

b.  

 

 

Since x and y are integers, (x/y) will be integer division, which rounds down to the 

nearest integer.  Since 7/9 = 0.777.., this rounds down to 0, and z will become 0. 

 

 

c.  

 

 

 

 

Because floating point numbers are approximations, frac*17.6 is not exactly 17.6/7, so 

7*17.6/7 is not exactly 17.6.  Furthermore, if sth>=(1.0/7.0), then the loop will only 

execute 6 times. Furthermore, sum is really 1/7*17.6 + 2/7*17.6+… + 6/7*17.6 = 52.8 

 

d.  

 

 

If x>255, then x+7 will get truncated when it is assigned to y.  For instance, if x=260, 

x+7=267=x010B, but when this is assigned to y, it will get truncated to 0x0B=11. 

 

 

e.  

 

 

Since x is unsigned, the expression “x*y” is treated as unsigned, and unsigned numbers 

are always >= 0. 

 

  

char x;  

for(x=120; x<256; x++) { assert(x>0); } 

int x=7; int y=9; int z=10*(x/y); 

assert(z>0); 

float frac; float sum=0.0; const float sth=1.0/7.0; 

for(frac=sth; frac<1.0; frac+=sth) { sum +=frac*17.6; } 

assert(sum==17.6); 

int x=foo(); char y=x+7; 

assert(y==(x+7)); 

unsigned int x=7; int y=foo(); 

if (y<0 && (7*y)<0) { assert(x*y<0); } 
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2. (10 pts) Given the following C code:  

 

 

 

 

 

 

a. If foo() returns the value -129 (0xFFFF FF7F) on a big-endian machine, will the “Sign bit 

on” message get printed? No – num.cn[3] & 0x80=0x7F & 0x80=0x00 (2 pts)  

 

b. If foo() returns the value -129 (0xFFFF FF7F) on a little-endian machine, will the “Sign bit 

on” message get printed? Yes – num.cn[3] & 0x80 = 0xFF & 0x80 = 0x10 (2 pts) 

 

c. Give an example of a number returned by foo() which would print “Sign bit on” on both 

a big-endian and a little-endian machine. -1=0xFFFF FFFF (3 pts) 

 

d. How would you check for the sign bit on a little-endian machine? (There are lots of 

correct answers… any correct answer gets full credit.) (num.cn[0] &0x80); (num.wn<0);  

(3 pts) 

 

 

3. (10 pts) Given the following C code: 

 

 

 

 

 

 

 

 

a.  After the code executes, what is the value of getDist(2,2)? 22.0 C(2 pts) 

 

 

b. After the code executes, what is the value of dist[2][2]? 30.0 (dist[2][2] is at offset 

2*5+2=12 from the beginning of dist, which is set when r=2, c=4 and again (finally) when 

r=3, c=0.) (2 pts) 

c. If &dist[0]==0x0801 c000, (assuming sizeof(float)==4) what is the value of dist+2*4+2? 

0x0801 c028 (dist+8+2 = dist + 10 (floats) = dist + 40 (bytes) =dist + 0x28) (3 pts) 

 

d. Would the answers to a, b, and c be the same if “float dist[4][5]” were replaced by “float 

*dist=malloc(20*sizeof(float));”?  If not, what answer would be different? Same (3 pts)  

union { int wn; char cn[4]; } num; 

num.wn=foo(); 

if (num.cn[3] & 0x80) printf(“Sign bit on\n”); 

float dist[4][5]; int r; int c; 

void setDist(int r,int c,float v) { (*(dist+r*4+c)=v; } 

float getDist(int r,int c) { return *(dist+r*4+c); } 

for(r=0;r<4;r++) { 

 for(c=0;c<5;c++) { setDist(r,c,r*10.0+c); } 

} 

Sorry about the 

extra parens 
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Part 2: ISA, X86, and Stack Frames  

4. (20 pts) Put an “X” in front of each true statement below: 

 

___ In the x86 ISA, a single instruction can access up to three different memory locations.  

_X_ The difference between a computer and an adding machine is that you can program a 

computer… you can’t program an adding machine. 

___ If a computer does not support the x86 architecture, you cannot run UNIX on that 

computer. 

___ As an ISA evolves, it stays downwardly compatible (supports everything the previous 

version supports) in order to make the resulting ISA simpler than the previous version. 

_X_ In the x86 ISA, the name of each integer register implies the length (number of bits) of that 

register. 

_X_ In x86, the condition code registers, CF, ZF, SF, and OF, are set either explicitly by a cmp or 

test instruction, or implicitly by any instruction which performs an arithmetic operation. 

_X_ In x86 IA-32, each function creates its own stack frame below its caller’s stack frame on 

entry, and restores its callers stack frame when it exits. 

___ In x86 IA-32, the %eax register always contains the return address when a function exits. 

_X_ In x86 IA-32, the responsibility to save and restore register values while a lower level 

function is called is shared between the caller of a function, and the function being called 

(the callee). 

___ In x86 IA-32, the 4 byte word in the current stack frame with the greatest (highest) address 

is in the %ebp register, and the 4 byte word in the stack frame with the least (lowest) 

address is in the %esp register. (The address is in the register, but this implies that the 

register contains the value… not the address…. but since this was unclear, allowed either X 

or no X.) 
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 (20 pts) Draw a line between the C code, and the x86 code generated from that C code. 

 

C Code  x86 Code 
int c=0; 

a=a+b; 

c++; 

if (c>=3) return c; 

return 0; 

  movl $1, -4(%ebp) 

 jmp .L6 

.L7: movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

.L6: cmpl $2, -4(%ebp) 

 jle .L7 

 movl -4(%ebp), %eax 

int c; 

for(c=0; c<3; c++) { 

   a=a+b; 

} 

return c;0 

  movl $1, -4(%ebp) 

 movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

 cmpl $2, -4(%ebp) 

 jle .L10 

 movl -4(%ebp), %eax 

 jmp .L11 

.L10: movl $0, %eax 

.L11: 

int c=1; 

while(c<3) { 

   a=a+b; c++; 

} 

return c; 

  movl $0, -4(%ebp) 

 movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

 cmpl $2, -4(%ebp) 

 jle .L13 

 movl -4(%ebp), %eax 

 jmp .L14 

.L13: movl $0, %eax 

.L14: 

int c=1; 

a=a+b; 

c++; 

return (c>=3)?c:0; 

  movl $0, -4(%ebp) 

 jmp .L2 

.L3: movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

.L2: cmpl $2, -4(%ebp) 

 jle .L3 

 movl -4(%ebp), %eax 
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Part 3: Linking, Loading, Processes, Virtual Memory, Heap Memory 

5. (15 pts) Using the following Swap Space Table and Page Table [The LRU column in the page 

table identifies the head and tail of the LRU pointers, and contains a pointer to the slot of the 

next recently used.  Thus, the most recently used page is in slot 0003, and the least recently 

used page is in slot 0002.] 

 

Swap Space Table 

Free PID Page ID DiskAddr 

0 1111 0801 0 S:01000 

0 1111 0801 1 S:02000 

0 1111 FFFF C S:03000 

1 2222 0801 0 S:04000 

1 2222 FFFF D S:05000 

0 1111 0804 C S:06000 

0 1111 FFFF B S:07000 

1 2222 0801 2 S:08000 

 

If the Memory management unit gets a request to fetch an instruction from memory for 

PID=1111, at address 0x0801 102C, identify all the actions and table updates the MMU must 

perform to translate the virtual address 0x0801 102C to a real memory address.  You may 

assume the MMU uses a true least-recently used algorithm. 

a. Divide the requested address into Page 0801 1, and offset 02C. 

b. Look up PID=1111, Page=0801 1 in the page table… not found. 

c. Find least recently used page at slot 0002 in the page table 

d. Since slot 0002 dirty bit is on, find  unused slot in swap space table @ S:04000 

e. Write 4K page in real slot 0002 to disk at S:04000 

f. Update LRU “TAIL” pointer to slot 0004 in the page table 

g. Update Swap Space Table: Free=0, PID=1111, Page ID=FFFF C at DiskAddr=S:04000 

h. Update Swap Space Table: Free=1 at DiskAddr=S:03000 

i. Find PID=1111, Page ID=0801 1 in swap space table at DiskAddr S:02000 

j. Copy 4K page in Swap at  DiskAddr S:02000 to Slot 002 in memory 

k. Update page table at Slot 0002: PID=1111 Page ID=0801 1 Dirty=0 LRU: HEAD->0003 

l. Return Real Address 0002 02C  

  

Page Table 

PID Page ID Slot Dirty LRU 

1111 0801 0 0001 0 ->0006 

1111 FFFF C 0002 1 TAIL->NULL 

2222 0801 0 0003 0 HEAD->0001 

1111 FFFF B 0004 1 ->0002 

2222 FFFF D 0005 0 ->0004 

1111 0804 C 0006 1 ->0005 
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Part 4: Reading and Writing C Code 

6. (15 pts) Consider the following code used to implement a heap management routine using a 

free list… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the conventions above, write the “free” function.  The free function takes a void * pointer 

as an argument, where the pointer is some value returned by the malloc routine.  Your free 

routine may assume that the heap memory is correct… that is, you are given a pointer that was 

originally the value returned by malloc, and there is a prefix 4 bytes before the pointer which 

contains the length of the block given by malloc.  The free routine should create a new free list 

entry for the entire block, including the prefix, which contains both the length and location of 

the newly freed block.  The free function does not need to return any value. 

void free(void *payload) { 

 void *bptr=payload-4; 

 int len=*(int *)bptr; 

 addFree(bptr,len); 

} 

  

struct { void * loc; int len; } freeList[100]; 

int fUsed=0; 

 

void addFree(void *loc,int len) { 

 assert(fUsed<100); 

 freeList[fUsed].loc=loc; 

 freeList[fUsed].len=len; 

 fUsed++; 

} 

int findFree(int len) { 

 int i; 

 for (i=0; i<fUsed; i++)  

if (len<=freeList[i].len) return i; 

 return -1; 

} 

 

addFree(HEAPSTART,HEAPSIZE); 

void * malloc(int request) { 

 request=4*((request+7)/4); // Round up + prefix 

 int r=findFree(request); 

 if (r==-1) return NULL; // Request cannot be satisfied 

 void *bptr=freeList[r].loc; 

 *(int *)bptr=request; 

 freeList[r].loc+=request; 

 freeList[r].len-=request; 

 return bptr+4; 

} 
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Notes on Problem 3… 

int dist[4,5] looks like: 

 

[0][0] +0 [0][1] +1 [0][2] +2 [0][3] +3 [0][4] +4 

[1][0] +5 [1][1] +6 [1][2] +7 [1][3] +8 [1][4] +9 

[2][0] +10 [2][1] +11 [2][2] +12 [2][3] +13 [2][4] +14 

[3][0] +15 [3][1] +16 [3][2] +17 [3][3] +18 [3][4] +19 

 

After setDist… 

[0][0] =0 [0][1] =1 [0][2] =2 [0][3] =3 [0][4] =4,10 

[1][0] =11 [1][1] =12 [1][2] =13 [1][3] =14,20 [1][4] =21 

[2][0] =22 [2][1] =23 [2][2] =24,30 [2][3] =31 [2][4] =32 

[3][0] =33 [3][1] =34 [3][2] =?? [3][3] =?? [3][4] =?? 

 


