CS220 Fall 2016 Practice Final Exam

NAME:

Part 1: Numbers, Arrays, and Functions

1. (10 pts) For each of the following sections of code, explain why the specified assertion may fail:
a.

char x;
for(x=120; x<256; x++) { assert(x>0); }

The x variable is of character type, whose largest positive value is 127. When you try to
exceed 127, you overflow x, and it becomes negative (-128).

b. | int x=7; int y=9; int 2=10*(x/y);
assert(z>0);

Since x and y are integers, (x/y) will be integer division, which rounds down to the
nearest integer. Since 7/9 =0.777.., this rounds down to 0, and z will become O.

C.
float frac; float sum=0.0; const float sth=1.0/7.0;
for(frac=sth; frac<1.0; frac+=sth) { sum +=frac*17.6; }
assert(sum==17.6);
Because floating point numbers are approximations, frac*17.6 is not exactly 17.6/7, so
7*%17.6/7 is not exactly 17.6. Furthermore, if sth>=(1.0/7.0), then the loop will only
execute 6 times. Furthermore, sum is really 1/7*17.6 + 2/7*17.6+... + 6/7*17.6 = 52.8
d. int x=foo(); char y=x+7;
assert(y==(x+7));
If x>255, then x+7 will get truncated when it is assigned to y. For instance, if x=260,
x+7=267=x010B, but when this is assigned to v, it will get truncated to Ox0B=11.
e.

unsigned int x=7; int y=foo();
if (y<0 && (7*y)<0) { assert(x*y<0); }

Since x is unsigned, the expression “x*y” is treated as unsigned, and unsigned numbers
are always >=0.



2. (10 pts) Given the following C code:

union { int wn; char cn[4]; } num;
num.wn=foo();
if (num.cn[3] & 0x80) printf(“Sign bit on\n");

a. If foo() returns the value -129 (OxFFFF FF7F) on a big-endian machine, will the “Sign bit
on” message get printed? No — num.cn[3] & 0x80=0x7F & 0x80=0x00 (2 pts)

b. If foo() returns the value -129 (OxFFFF FF7F) on a little-endian machine, will the “Sign bit
on” message get printed? Yes — num.cn[3] & 0x80 = OxFF & 0x80 = 0x10 (2 pts)

c. Give an example of a number returned by foo() which would print “Sign bit on” on both
a big-endian and a little-endian machine. -1=0xFFFF FFFF (3 pts)

d. How would you check for the sign bit on a little-endian machine? (There are lots of
correct answers... any correct answer gets full credit.) (num.cn[0] &0x80); (num.wn<0);
(3 pts)

Sorry about the
extra parens

3. (10 pts) Given the following C code:

float dist[4][5]; int r; int c;
void setDist(int r,int c,float v) { (*(dist+r*4+c)=v; }
float getDist(int r,int c) { return *(dist+r*4+c); }
for(r=0;r<4;r++) {

for(c=0;c<5;c++) { setDist(r,c,r*10.0+c); }

Q

After the code executes, what is the value of getDist(2,2)? 22.0 C(2 pts)

b. After the code executes, what is the value of dist[2][2]? 30.0 (dist[2][2] is at offset
2*5+2=12 from the beginning of dist, which is set when r=2, c=4 and again (finally) when
r=3, c=0.) (2 pts)

c. If &dist[0]==0x0801 c000, (assuming sizeof(float)==4) what is the value of dist+2*4+2?
0x0801 c028 (dist+8+2 = dist + 10 (floats) = dist + 40 (bytes) =dist + 0x28) (3 pts)

d. Would the answers to a, b, and c be the same if “float dist[4][5]” were replaced by “float
*dist=malloc(20*sizeof(float));”? If not, what answer would be different? Same (3 pts)



Part 2: ISA, X86, and Stack Frames

4. (20 pts) Put an “X” in front of each true statement below:

____Inthe x86 ISA, a single instruction can access up to three different memory locations.

_X_The difference between a computer and an adding machine is that you can program a
computer... you can’t program an adding machine.

____Ifa computer does not support the x86 architecture, you cannot run UNIX on that
computer.

____As an ISA evolves, it stays downwardly compatible (supports everything the previous
version supports) in order to make the resulting ISA simpler than the previous version.

_X_Inthe x86 ISA, the name of each integer register implies the length (number of bits) of that
register.

_X_In x86, the condition code registers, CF, ZF, SF, and OF, are set either explicitly by a cmp or
test instruction, or implicitly by any instruction which performs an arithmetic operation.

X _In x86 |A-32, each function creates its own stack frame below its caller’s stack frame on
entry, and restores its callers stack frame when it exits.

____Inx861A-32, the %eax register always contains the return address when a function exits.

_X_Inx86 IA-32, the responsibility to save and restore register values while a lower level
function is called is shared between the caller of a function, and the function being called
(the callee).

____Inx86 1A-32, the 4 byte word in the current stack frame with the greatest (highest) address
is in the %ebp register, and the 4 byte word in the stack frame with the least (lowest)
address is in the %esp register. (The address is in the register, but this implies that the
register contains the value... not the address.... but since this was unclear, allowed either X
orno X.)



(20 pts) Draw a line between the C code, and the x86 code generated from that C code.

C Code

int c=0;
a=a+b;
C++;

if (c>=3) returnc;
return O;

int c;

for(c=0; c<3; c++) {
a=a+b;

}

return c;0

int c=1;

while(c<3) {
a=a+b; c++;

}

return c;

int c=1;
a=a+b;
C++;

’

return (c>=3)?c:0;

/

x86 Code

movl $1, -4(%ebp)
jmp .L6
.L7:  movl 12(%ebp), %eax
addl %eax, 8(%ebp)
/ addl $1, -4(%ebp)
.L6:  cmpl $2,-4(%ebp)
jle .L7
movl -4(%ebp), %eax

movl $1, -4(%ebp)
movl 12(%ebp), %eax
addl %eax, 8(%ebp)
addl $1, -4(%ebp)

cmpl $2, -4(%ebp)
jle .L10

movl -4(%ebp), %eax

jmp .L11
.L10: movl S0, %eax
L11:

movl $0, -4(%ebp)
\ movl 12(%ebp), %eax
addl  %eax, 8(%ebp)
addl S1, -4(%ebp)
cmpl S2, -4(%ebp)
jle .L13
movl -4(%ebp), %eax
jmp .L14
.L13: movl S0, %eax
.L14:

g

\ movl $0, -4(%ebp)

jmp L2

.L3: movl 12(%ebp), %eax
addl  %eax, 8(%ebp)
addl S1, -4(%ebp)

.L2:  cmpl S2,-4(%ebp)
jle .L3
movl -4(%ebp), %eax




Part 3: Linking, Loading, Processes, Virtual Memory, Heap Memory

5. (15 pts) Using the following Swap Space Table and Page Table [The LRU column in the page
table identifies the head and tail of the LRU pointers, and contains a pointer to the slot of the
next recently used. Thus, the most recently used page is in slot 0003, and the least recently
used page is in slot 0002.]

Swap Space Table. Page Table
Free | PID | Page ID | DiskAddr PID | PageID | Slot | Dirty LRU

0 |1111 | 08010 | S:01000 1111 | 08010 | 0001 | O ->0006

0 |1111| 08011 | S:02000 1111 | FFFFC | 0002 | 1 | TAIL->NULL
O |1111] FFFFC | S:03000 2222 | 08010 | 0003 | O | HEAD->0001
1 |2222| 08010 | S:04000 1111 | FEFEB | 0004 | 1 ->0002

1 | 2222 | FFFF D | S:05000 2222 | FFFED | 0005 | O ->0004

0 |1111| 0804 C | S:06000 1111 | 0804 c | 0006 1 ->0005

0 |1111| FFFFB | S:07000

1 |2222 | 08012 | S:08000

If the Memory management unit gets a request to fetch an instruction from memory for
PID=1111, at address 0x0801 102C, identify all the actions and table updates the MMU must
perform to translate the virtual address 0x0801 102C to a real memory address. You may
assume the MMU uses a true least-recently used algorithm.

>S@ 0 o0 o W

Divide the requested address into Page 0801 1, and offset 02C.

Look up PID=1111, Page=0801 1 in the page table... not found.

Find least recently used page at slot 0002 in the page table

Since slot 0002 dirty bit is on, find unused slot in swap space table @ S:04000
Write 4K page in real slot 0002 to disk at S:04000

Update LRU “TAIL” pointer to slot 0004 in the page table

Update Swap Space Table: Free=0, PID=1111, Page ID=FFFF C at DiskAddr=S:04000
Update Swap Space Table: Free=1 at DiskAddr=S:03000

Find PID=1111, Page ID=0801 1 in swap space table at DiskAddr S:02000

Copy 4K page in Swap at DiskAddr S:02000 to Slot 002 in memory

Update page table at Slot 0002: PID=1111 Page ID=0801 1 Dirty=0 LRU: HEAD->0003
Return Real Address 0002 02C



Part 4: Reading and Writing C Code

6. (15 pts) Consider the following code used to implement a heap management routine using a

free list...

struct { void * loc; int len; } freeList[100];
int fUsed=0;

void addFree(void *loc,int len) {
assert(fUsed<100);
freelist[fUsed].loc=loc;
freelist[fUsed].len=len;
fUsed++;

}

int findFree(int len) {
inti;
for (i=0; i<fUsed; i++)

if (len<=freelList[i].len) return i;

return -1;

addFree(HEAPSTART,HEAPSIZE);

void * malloc(int request) {
request=4*((request+7)/4); // Round up + prefix
int r=findFree(request);
if (r==-1) return NULL; // Request cannot be satisfied
void *bptr=freelList[r].loc;
*(int *)bptr=request;
freelList[r].loc+=request;
freelist[r].len-=request;
return bptr+4;

Using the conventions above, write the “free” function. The free function takes a void * pointer
as an argument, where the pointer is some value returned by the malloc routine. Your free
routine may assume that the heap memory is correct... that is, you are given a pointer that was
originally the value returned by malloc, and there is a prefix 4 bytes before the pointer which
contains the length of the block given by malloc. The free routine should create a new free list
entry for the entire block, including the prefix, which contains both the length and location of
the newly freed block. The free function does not need to return any value.

void free(void *payload) {
void *bptr=payload-4;
int len="*(int *)bptr;
addFree(bptr,len);




Notes on Problem 3...
int dist[4,5] looks like:

[O][0] +0 | [O][1]+1 | [OI[2] +2 |[O][3] +3 |[O][4] +4
(10l +5 [0 +6 (1121 +7 | [11[3]1 +8 |[[1][4] +9
[2][0] +10 | [21[1] +11 | [2][2] +12 | [21[3] +13 | [2][4] +14
[31[0] +15 | [3][1] +16 | [31[2] +17 | [31[3] +18 | [3][4] +19

After setDist...
[0][0] =0 | [OI[1]1=1 |I[O][2] =2 [0][3] =3 [0][4] =4,10
[1][0]1 =11 | [1][1]1 =12 | [1][2] =13 [11[3] =14,20 | [1][4] =21
[2][0] =22 | [2][1] =23 | [2][2] =24.,30 ] [2][3] =31 [2][4] =32
[31[0] =33 | [31[1] =34 | [3][2] =7? [31[3] =77 [31[4] =77




