CS220 Fall 2016 Practice Final Exam

NAME:

Part 1: Numbers, Arrays, and Functions

1. (10 pts) For each of the following sections of code, explain why the specified assertion may fail:

a- | char X;

for(x=120; x<256; x++) { assert(x>0); }

b. int x=7; int y=9; int z=10*(x/y);
assert(z>0);

float frac; float sum=0.0; const float sth=1.0/7.0;
for(frac=sth; frac<1.0; frac+=sth) { sum +=frac*17.6; }
assert(sum==17.6);

d. int x=foo(); char y=x+7;
assert(y==(x+7));

e. unsigned int x=7; int y=foo();
if (y<O && (7*y)<0) { assert(x*y<0); }

2. (10 pts) Given the following C code:

union {int wn; char cn[4]; } num;
num.wn=Ffoo();
if (num.cn[3] & 0x80) printf(“Sign bit on\n");

a. Iffoo() returns the value -129 (OxFFFF FF7F) on a big-endian machine, will the “Sign bit
on” message get printed?

b. If foo() returns the value -129 (OxFFFF FF7F) on a little-endian machine, will the “Sign bit
on” message get printed?

c. Give an example of a number returned by foo() which would print “Sign bit on” on both
a big-endian and a little-endian machine.

d. How would you check for the sign bit on a little-endian machine? (There are lots of
correct answers... any correct answer gets full credit.)

3. (10 pts) Given the following C code:

float dist[4][5]; int r; int c;
void setDist(int r,int c,float v) { (*(dist+r*4+c)=v; }
float getDist(int r,int c) { return *(dist+r*4+c); }
for(r=0;r<4;r++) {

for(c=0;c<5;c++) { setDist(r,c,r*10.0+c); }

a. After the code executes, what is the value of getDist(2,2)?

b. After the code executes, what is the value of dist[2][2]?

c. If &dist[0]==0x0801 c000, (assuming sizeof(float)==4) what is the value of dist+2*4+2?

d. Would the answersto a, b, and c be the same if “float dist[4][5]” were replaced by “float
*dist=malloc(20*sizeof(float));”? If not, what answer would be different?

Part 2: ISA, X86, and Stack Frames

4. (20 pts) Putan “X” in front of each true statement below:

___Inthe x86 ISA, a single instruction can access up to three different memory locations.

____The difference between a computer and an adding machine is that you can program a
computer... you can’t program an adding machine.

____If a computer does not support the x86 architecture, you cannot run UNIX on that
computer.

____AsanISA evolves, it stays downwardly compatible (supports everything the previous
version supports) in order to make the resulting ISA simpler than the previous version.

____Inthe x86 ISA, the name of each integer register implies the length (number of bits) of that
register.

____Inx86, the condition code registers, CF, ZF, SF, and OF, are set either explicitly by a cmp or
test instruction, or implicitly by any instruction which performs an arithmetic operation.

In x86 IA-32, each function creates its own stack frame below its caller’s stack frame on
entry, and restores its callers stack frame when it exits.

In x86 1A-32, the %eax register always contains the return address when a function exits.

___Inx861A-32, the responsibility to save and restore register values while a lower level
function is called is shared between the caller of a function, and the function being called
(the callee).

____Inx861A-32, the 4 byte word in the current stack frame with the greatest (highest) address
is in the %ebp register, and the 4 byte word in the stack frame with the least (lowest)
address is in the %esp register.

5. (20 pts) Draw a line between the C code, and the x86 code generated from that C code.

C Code

x86 Code

int c=0;
a=a+b;
C++;

if (c>=3) return c;
return O;

movl $1,-4(%ebp)
jmp .L6

.L7: movl 12(%ebp), %eax
addl %eax, 8(%ebp)
addl $1, -4(%ebp)

.L6: cmpl S$2,-4(%ebp)
jle .L7
mov!l -4(%ebp), %eax

intc;

for(c=0; c<3; c++) {
a=a+b;

}

return c;

movl $1,-4(%ebp)
movl 12(%ebp), %eax
addl %eax, 8(%ebp)
addl $1, -4(%ebp)
cmpl $2, -4(%ebp)
jle .L10
movl -4(%ebp), %eax
jmp .L11
.L10: movl $0, %eax
L11:

int c=1;
while(c<3) {

a=a+b; c++;
}

return c;

movl $0, -4(%ebp)
movl 12(%ebp), %eax
addl %eax, 8(%ebp)
addl $1, -4(%ebp)
cmpl $2, -4(%ebp)

int c=1;
a=a+b;
C++;

’

return (c>=3)?c:0;

jle .L13
movl -4(%ebp), %eax
jmp .L14
.L13: movl $0, %eax
.L14.
movl S0, -4(%ebp)
jmp .L2

.L3: movl 12(%ebp), %eax
addl %eax, 8(%ebp)
addl $1, -4(%ebp)

.L2: cmpl S2,-4(%ebp)
jle .L3
movl -4(%ebp), %eax

Part 3: Linking, Loading, Processes, Virtual Memory, Heap Memory

6. (15 pts) Using the following Swap Space Table and Page Table [The LRU column in the page
table identifies the head and tail of the LRU pointers, and contains a pointer to the slot of the
next recently used. Thus, the most recently used page is in slot 0003, and the least recently
used page is in slot 0002.]

Swap Space Table

: Page Table

Free | PID | Page ID | DiskAddr PID | PagelD | Slot | Dirty LRU
0 | 1111 08010 | 5:01000 1111 08010 | 00011 0 | 0006
0 | 1111 08011 | 5:02000 1111 FFFEC 10002 | 1 | TAILSNULL
0 | 1111 FFFFC | 5:03000 2222 | 08010 | 0003 | 0 | HEAD->0001
1 | 2222 08010 | 504000 1111 FrrFB 10002 | 1 | 0002
1 | 2222 | FFFFD | 5:05000 5222 | FFFFD 10005 | 0 | 0004
0 | 1111 0804 C | 5:06000 1111 0s0ac 10006 | 1 | 0005
0 | 1111 FFFFB | 5:07000
1 | 2222 08012 | 5:08000

If the Memory management unit gets a request to fetch an instruction from memory for
PID=1111, at address 0x0801 102C, identify all the actions and table updates the MMU must
perform to translate the virtual address 0x0801 102C to a real memory address. You may
assume the MMU uses a true least-recently used algorithm.

Part 4: Reading and Writing C Code

7. (15 pts) Consider the following code used to implement a heap management routine using a

free list...

struct { void * loc; int len; } freeList[100];
int fUsed=0;

void addFree(void *loc,int len) {
assert(fUsed<100);
freeList[fUsed].loc=loc;
freelist[fUsed].len=len;
fUsed++;

}

int findFree(int len) {
inti;
for (i=0; i<fUsed; i++)

if (len<=freelist[i].len) return i;

return -1;

addFree(HEAPSTART,HEAPSIZE);

void * malloc(int request) {
request=4*((request+7)/4); // Round up + prefix
int r=findFree(request);
if (r==-1) return NULL; // Request cannot be satisfied
void *bptr=freelist[r].loc;
*(int *)bptr=request;
freelist[r].loct+=request;
freelist[r].len-=request;
return bptr+4;

Using the conventions above, write the “free” function. The free function takes a void * pointer
as an argument, where the pointer is some value returned by the malloc routine. Your free
routine may assume that the heap memory is correct... that is, you are given a pointer that was
originally the value returned by malloc, and there is a prefix 4 bytes before the pointer which
contains the length of the block given by malloc. The free routine should create a new free list
entry for the entire block, including the prefix, which contains both the length and location of
the newly freed block. The free function does not need to return any value.

Note... we did not study heap memory management in the Spring 2016 semester, so a question
about heap memory management will not appear on the final exam. However, | left this
guestion in to show what kinds of questions will be asked, and to give some idea of how long it

may take to do the final exam.

