
CS220 Fall 2016 Practice Final Exam  
 

NAME: _________________________________________ 
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Part 1: Numbers, Arrays, and Functions  

1. (10 pts) For each of the following sections of code, explain why the specified assertion may fail: 

a.  

 

 

 

 

 

 

b.  

 

 

 

 

 

 

c.  

 

 

 

 

 

 

 

 

d.  

 

 

 

 

 

 

e.  

 

 

 

 

  

char x;  

for(x=120; x<256; x++) { assert(x>0); } 

int x=7; int y=9; int z=10*(x/y); 

assert(z>0); 

float frac; float sum=0.0; const float sth=1.0/7.0; 

for(frac=sth; frac<1.0; frac+=sth) { sum +=frac*17.6; } 
assert(sum==17.6); 

int x=foo(); char y=x+7; 

assert(y==(x+7)); 

unsigned int x=7; int y=foo(); 

if (y<0 && (7*y)<0) { assert(x*y<0); } 
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2. (10 pts) Given the following C code:  

 

 

 

 

 

 

a. If foo() returns the value -129 (0xFFFF FF7F) on a big-endian machine, will the “Sign bit 

on” message get printed? 

 

b. If foo() returns the value -129 (0xFFFF FF7F) on a little-endian machine, will the “Sign bit 

on” message get printed? 

 

c. Give an example of a number returned by foo() which would print “Sign bit on” on both 

a big-endian and a little-endian machine. 

 

d. How would you check for the sign bit on a little-endian machine? (There are lots of 

correct answers… any correct answer gets full credit.) 

 

 

 

3. (10 pts) Given the following C code: 

 

 

 

 

 

 

 

 

a.  After the code executes, what is the value of getDist(2,2)? 

 

 

b. After the code executes, what is the value of dist[2][2]? 

 

 

c. If &dist[0]==0x0801 c000, (assuming sizeof(float)==4) what is the value of dist+2*4+2? 

 

 

d. Would the answers to a, b, and c be the same if “float dist[4][5]” were replaced by “float 

*dist=malloc(20*sizeof(float));”?  If not, what answer would be different?  

union { int wn; char cn[4]; } num; 

num.wn=foo(); 

if (num.cn[3] & 0x80) printf(“Sign bit on\n”); 

float dist[4][5]; int r; int c; 

void setDist(int r,int c,float v) { (*(dist+r*4+c)=v; } 

float getDist(int r,int c) { return *(dist+r*4+c); } 

for(r=0;r<4;r++) { 

 for(c=0;c<5;c++) { setDist(r,c,r*10.0+c); } 
} 
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Part 2: ISA, X86, and Stack Frames 

4. (20 pts) Put an “X” in front of each true statement below: 

 

___ In the x86 ISA, a single instruction can access up to three different memory locations.  

___ The difference between a computer and an adding machine is that you can program a 

computer… you can’t program an adding machine. 

___ If a computer does not support the x86 architecture, you cannot run UNIX on that 

computer. 

___ As an ISA evolves, it stays downwardly compatible (supports everything the previous 

version supports) in order to make the resulting ISA simpler than the previous version. 

___ In the x86 ISA, the name of each integer register implies the length (number of bits) of that 

register. 

___ In x86, the condition code registers, CF, ZF, SF, and OF, are set either explicitly by a cmp or 

test instruction, or implicitly by any instruction which performs an arithmetic operation. 

___ In x86 IA-32, each function creates its own stack frame below its caller’s stack frame on 

entry, and restores its callers stack frame when it exits. 

___ In x86 IA-32, the %eax register always contains the return address when a function exits.  

___ In x86 IA-32, the responsibility to save and restore register values while a lower level 

function is called is shared between the caller of a function, and the function being called 

(the callee). 

___ In x86 IA-32, the 4 byte word in the current stack frame with the greatest (highest) address 

is in the %ebp register, and the 4 byte word in the stack frame with the least (lowest) 

address is in the %esp register. 
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5. (20 pts) Draw a line between the C code, and the x86 code generated from that C code. 

 

C Code  x86 Code 

int c=0; 

a=a+b; 

c++; 

if (c>=3) return c; 

return 0; 

  movl $1, -4(%ebp) 

 jmp .L6 

.L7: movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

.L6: cmpl $2, -4(%ebp) 

 jle .L7 

 movl -4(%ebp), %eax 

int c; 

for(c=0; c<3; c++) { 

   a=a+b; 

} 

return c; 

  movl $1, -4(%ebp) 

 movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

 cmpl $2, -4(%ebp) 

 jle .L10 

 movl -4(%ebp), %eax 

 jmp .L11 

.L10: movl $0, %eax 

.L11: 

int c=1; 

while(c<3) { 

   a=a+b; c++; 

} 

return c; 

  movl $0, -4(%ebp) 

 movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

 cmpl $2, -4(%ebp) 

 jle .L13 

 movl -4(%ebp), %eax 

 jmp .L14 

.L13: movl $0, %eax 

.L14: 

int c=1; 

a=a+b; 

c++; 

return (c>=3)?c:0; 

  movl $0, -4(%ebp) 

 jmp .L2 

.L3: movl 12(%ebp), %eax 

 addl %eax, 8(%ebp) 

 addl $1, -4(%ebp) 

.L2: cmpl $2, -4(%ebp) 

 jle .L3 

 movl -4(%ebp), %eax 
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Part 3: Linking, Loading, Processes, Virtual Memory, Heap Memory  

6. (15 pts) Using the following Swap Space Table and Page Table [The LRU column in the page 

table identifies the head and tail of the LRU pointers, and contains a pointer to the slot of the 

next recently used.  Thus, the most recently used page is in slot 0003, and the least recently 

used page is in slot 0002.] 

 

Swap Space Table 

Free PID Page ID DiskAddr 

0 1111 0801 0 S:01000 

0 1111 0801 1 S:02000 

0 1111 FFFF C S:03000 

1 2222 0801 0 S:04000 

1 2222 FFFF D S:05000 

0 1111 0804 C S:06000 

0 1111 FFFF B S:07000 

1 2222 0801 2 S:08000 

 

If the Memory management unit gets a request to fetch an instruction from memory for 

PID=1111, at address 0x0801 102C, identify all the actions and table updates the MMU must 

perform to translate the virtual address 0x0801 102C to a real memory address.  You may 

assume the MMU uses a true least-recently used algorithm. 

 

  

Page Table 

PID Page ID Slot Dirty LRU 

1111 0801 0 0001 0 ->0006 

1111 FFFF C 0002 1 TAIL->NULL 

2222 0801 0 0003 0 HEAD->0001 

1111 FFFF B 0004 1 ->0002 

2222 FFFF D 0005 0 ->0004 

1111 0804 C 0006 1 ->0005 
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Part 4: Reading and Writing C Code 

7. (15 pts) Consider the following code used to implement a heap management routine using a 

free list… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the conventions above, write the “free” function.  The free function takes a void * pointer 

as an argument, where the pointer is some value returned by the malloc routine.  Your free 

routine may assume that the heap memory is correct… that is, you are given a pointer that was 

originally the value returned by malloc, and there is a prefix 4 bytes before the pointer which 

contains the length of the block given by malloc.  The free routine should create a new free list 

entry for the entire block, including the prefix, which contains both the length and location of 

the newly freed block.  The free function does not need to return any value. 

Note… we did not study heap memory management in the Spring 2016 semester, so a question 

about heap memory management will not appear on the final exam.  However, I left this 

question in to show what kinds of questions will be asked, and to give some idea of how long it 

may take to do the final exam. 

 

struct { void * loc; int len; } freeList[100]; 

int fUsed=0; 

 

void addFree(void *loc,int len) { 

 assert(fUsed<100); 

 freeList[fUsed].loc=loc; 

 freeList[fUsed].len=len; 

 fUsed++; 

} 

int findFree(int len) { 

 int i; 

 for (i=0; i<fUsed; i++)  

if (len<=freeList[i].len) return i; 

 return -1; 

} 

 

addFree(HEAPSTART,HEAPSIZE); 

void * malloc(int request) { 

 request=4*((request+7)/4); // Round up + prefix 

 int r=findFree(request); 

 if (r==-1) return NULL; // Request cannot be satisfied 

 void *bptr=freeList[r].loc; 

 *(int *)bptr=request; 

 freeList[r].loc+=request; 

 freeList[r].len-=request; 

 return bptr+4; 

} 


