CS220 Fall 2015

Test 2

NAME:

Nov.9, 2015

1. (20 points) The C code for the “isGreater” function from project 1 is as follows:

R N O AW =

}

while(*s 1) {

int isGreater(char *s1,char *s2) {

if (*s1)>(*s2)) return 1;
if (*s1)<(*s2)) return -1;

sl++; s2++;

}
if ((*s2)==0) return O;
return -1;

For each of the following lines of x86 assembler code, identify the line number (or line

numbers) of the C code which generated the x86 assembler code. Note —the x86 “movzb

|”

instruction copies from an 8 bit byte to a 32 bit long word, padding to the left with zeroes. The
x86 “test” instruction performs a bitwise AND of its arguments, but does not save the results —
just sets the condition codes.

A
movl 8(%ebp), %eax
movzbl (%eax), %edx
movl 12(%ebp), %eax
movzbl (%eax), %eax
cmpb %al, %d|
jge L27
movl $-1, %eax
jmp .L26

L27

c.
add| $1, 8(%ebp)
addl $1, 12%ebp)

B.
jmp .L24
.L28
.L24:
movl 8(%ebp), %eax
movzbl (%eax), %eax
testb %al, %al
jne .L28
o.
movl 12(%ebp), %eax
movzbl (%eax), %eax
testb %al, %al
jne .L29
movl $0, %eax
jmp .L26
.L29

2. (20 points) The x86 instructions that enter and exit the “isGreater” function is as follows:

isGreater:

pushl %ebp

movl %esp, %ebp
.L26:

popl %ebp

ret

How many bytes are required for the “isGreater” stack frame?
If the “isGreater” function had any local variables, would the entry and exit code be
different? If so, what other instructions would be required?

If the “isGreater” function invoked any lower level functions which required argument
values, would the entry and exit code be different? If so, what other instructions would be
required?

Would the “isGreater” function still work if we removed the pushl %ebp; movl %esp,%ebp;
and popl %ebp instructions?

(10 points) Mark each statement below as either true (T) or false (F). Assume you are running

GDB on the llist binary that includes the “isGreater” function, as defined above, with the
associated x86 assembler code as defined in problems 1 and 2.

a. _____ Ifthereisa breakpoint set at “isGreater”, then GDB will open a prompt after the

execution of the “movl %esp,%ebp” instruction.

______IfGDB provides a prompt after executing the “move %esp,%ebp” instruction at the
top of the “isGreater” function, you can type the command “x /3xw Sebp” to see 1) the
caller’s %ebp, 2) the return address to the caller, and 3) the first parameter to isGreater.
____IfGDB provides a prompt at the .L24 label (as in problem 1.b above), the GDB “next”
instruction would cause GDB to open a new prompt after executing the instruction “movl
8(%ebp),%eax

______If GDB provides a prompt at the .L24 label (as in problem 1.b above), and %ebp+8 has
the value OxffffdacO, then the GDB command “x /s Oxffffdac0” will print the value of the s1
string.

______If GDB provides a prompt at the .L24 label (as in problem 1.b above), the GDB “info
isGreater” command will print the author of the isGreater function.

2

4. (20 points) Consider the following Stack Information:

Address Hex Value Comments
0xff968a28 0xff968aa8

0xff968a24 0x00000000

0xff9689e4 0x08049e00

0xff9689e0 0x73007369 “is”
0xff9689dc 0x00000001

0xff9689cc 0x0804869d

0xff9689c8 0xff968a28

0xff9689c4 0x00000000

0xff968994 0x09992018 -> “this”
0xff968990 0xff9689e0

0xff96898c 0x08048806

0xff968988 0xff9689c8 %esp, %ebp

a. ldentify the starting and ending addresses of each stack frame in this stack

Top of Frame

Bottom of Frame

b. When the currently executing function returns to its caller, what address will it return to?

c. The ASCII value for ‘i’ is 0x69 and the ASCII value for ‘s’ is 0x73. Was the above stack
created from a big-endian or a little—-endian machine?

d. If the current function above is the “isGreater” function, what are the two parameters passed
into the current invocation of that function?

e. If the above represents main calling insertWord calling isGreater, then which function has a

local variable with the value “is”?

5. (30 points) Write a C function to insert a node into a binary tree. A node of the binary tree can
be described by the following structure:

struct thode {
struct thode * parent;
int value;
struct thode * left;
struct tnode * right;

%

You may use a function whose prototype is “struct thode * makeTnode(int val)” which allocates
space for a new instance of struct tnode, initializes the value field to the value of the val
parameter, initializes all pointers to NULL, and returns a pointer to the new instance.

Your C function should have the prototype “void insertTree(int val, struct tnode *root)”, where
val is an integer whose value is NOT already in the tree, and root is a pointer to the root node of
an existing, non-empty binary tree. The tree has the property that the value of every node in
the left sub-tree of any node is smaller than the value in the node itself, and the value in every
node in the right sub-tree of a node is larger than the value in the node itself. The root’s parent
pointer should be NULL, but every other node’s parent pointer should point at its parent node.
Your function should add a new node to the tree for the “val” input, and maintain the ordering
of the left and right sub-trees.

Hint: This function is simple if you write it recursively.

