
CS220 Fall 2015 Test 2 Nov. 9, 2015

NAME: ___

1

1. (20 points) The C code for the “isGreater” function from project 1 is as follows:

For each of the following lines of x86 assembler code, identify the line number (or line

numbers) of the C code which generated the x86 assembler code. Note – the x86 “movzbl”

instruction copies from an 8 bit byte to a 32 bit long word, padding to the left with zeroes. The

x86 “test” instruction performs a bitwise AND of its arguments, but does not save the results –

just sets the condition codes.

A. _________ B. ____________

C. __________ D. __________

1. int isGreater(char *s1,char *s2) {

2. while(*s1) {

3. if ((*s1)>(*s2)) return 1;

4. if ((*s1)<(*s2)) return -1;

5. s1++; s2++;

6. }

7. if ((*s2)==0) return 0;

8. return -1;

9. }

 movl 8(%ebp), %eax

 movzbl (%eax), %edx

 movl 12(%ebp), %eax

 movzbl (%eax), %eax

 cmpb %al, %dl

 jge .L27

 movl $-1, %eax

 jmp .L26
.L27

 movl 12(%ebp), %eax

 movzbl (%eax), %eax

 testb %al, %al

 jne .L29

 movl $0, %eax

 jmp .L26

.L29

 jmp .L24

.L28

 …

.L24:

 movl 8(%ebp), %eax

 movzbl (%eax), %eax

 testb %al, %al
 jne .L28

 addl $1, 8(%ebp)
 addl $1, 12(%ebp)

2

2. (20 points) The x86 instructions that enter and exit the “isGreater” function is as follows:

a. How many bytes are required for the “isGreater” stack frame? _______

b. If the “isGreater” function had any local variables, would the entry and exit code be

different? If so, what other instructions would be required?

c. If the “isGreater” function invoked any lower level functions which required argument

values, would the entry and exit code be different? If so, what other instructions would be

required?

d. Would the “isGreater” function still work if we removed the pushl %ebp; movl %esp,%ebp;

and popl %ebp instructions?

3. (10 points) Mark each statement below as either true (T) or false (F). Assume you are running

GDB on the llist binary that includes the “isGreater” function, as defined above, with the

associated x86 assembler code as defined in problems 1 and 2.

a. _____ If there is a breakpoint set at “isGreater”, then GDB will open a prompt after the

execution of the “movl %esp,%ebp” instruction.

b. _____ If GDB provides a prompt after executing the “move %esp,%ebp” instruction at the

top of the “isGreater” function, you can type the command “x /3xw $ebp” to see 1) the

caller’s %ebp, 2) the return address to the caller, and 3) the first parameter to isGreater.

c. _____ If GDB provides a prompt at the .L24 label (as in problem 1.b above), the GDB “next”

instruction would cause GDB to open a new prompt after executing the instruction “movl

8(%ebp),%eax

d. _____ If GDB provides a prompt at the .L24 label (as in problem 1.b above), and %ebp+8 has

the value 0xffffdac0, then the GDB command “x /s 0xffffdac0” will print the value of the s1

string.

e. _____ If GDB provides a prompt at the .L24 label (as in problem 1.b above), the GDB “info

isGreater” command will print the author of the isGreater function.

isGreater:

 pushl %ebp

 movl %esp, %ebp

 …

.L26:

 popl %ebp

 ret

3

4. (20 points) Consider the following Stack Information:

Address Hex Value Comments

0xff968a28 0xff968aa8

0xff968a24 0x00000000

…

0xff9689e4 0x08049e00

0xff9689e0 0x73007369 “is”

0xff9689dc 0x00000001

…

0xff9689cc 0x0804869d

0xff9689c8 0xff968a28

0xff9689c4 0x00000000

…

0xff968994 0x09992018 -> “this”

0xff968990 0xff9689e0

0xff96898c 0x08048806

0xff968988 0xff9689c8 %esp, %ebp

a. Identify the starting and ending addresses of each stack frame in this stack

Top of Frame Bottom of Frame

b. When the currently executing function returns to its caller, what address will it return to?

c. The ASCII value for ‘i’ is 0x69 and the ASCII value for ‘s’ is 0x73. Was the above stack

created from a big-endian or a little-endian machine?

d. If the current function above is the “isGreater” function, what are the two parameters passed

into the current invocation of that function?

e. If the above represents main calling insertWord calling isGreater, then which function has a

local variable with the value “is”?

4

5. (30 points) Write a C function to insert a node into a binary tree. A node of the binary tree can

be described by the following structure:

struct tnode {

 struct tnode * parent;

 int value;

 struct tnode * left;

 struct tnode * right;

};

You may use a function whose prototype is “struct tnode * makeTnode(int val)” which allocates

space for a new instance of struct tnode, initializes the value field to the value of the val

parameter, initializes all pointers to NULL, and returns a pointer to the new instance.

Your C function should have the prototype “void insertTree(int val, struct tnode *root)”, where

val is an integer whose value is NOT already in the tree, and root is a pointer to the root node of

an existing, non-empty binary tree. The tree has the property that the value of every node in

the left sub-tree of any node is smaller than the value in the node itself, and the value in every

node in the right sub-tree of a node is larger than the value in the node itself. The root’s parent

pointer should be NULL, but every other node’s parent pointer should point at its parent node.

Your function should add a new node to the tree for the “val” input, and maintain the ordering

of the left and right sub-trees.

Hint: This function is simple if you write it recursively.

