CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

Simulating Sub-Circuits

Background

The first installment of the project dealt with the capability to simulate the actions of four very
simple gate types, a INV gate, an AND gate, an OR gate and an XOR (exclusive or) gate. The
second installment extended that capability by describing the simple logic gates using Verilog,
but the Verilog was restricted to descriptions of circuits which only contained a single gate. The
third installment allowed Verilog circuits to contain multiple gates. The final installment of the
project allows a Verilog circuit to make an instance of another Verilog circuit. For instance, in
installment 3, we simulated a two-input multiplexor in MUX2.v that contained multiple gates. It
is possible to create a 4 input multiplexor by making three instances of the MUX2 circuit, and
wiring them together correctly.

Verilog Infrastructure

There are no changes in the usage of Verilog infrastructure provided to you between the third
installment of the project, and the fourth installment, but there have been many internal
changes to make the code more efficient, so the name of the support file has changed to
verilog3.c — just to ensure you use the latest version. Since the usage of the functions has not
changed, the documentation hasn’t changed either, but I’'m repeating that documentation in
the reference section that describes what each function does at the end of this document.

As in installment 3, | have also included a C program called “printCircuit.c” which is an example
of how to use the Verilog infrastructure. Look at this code to get some idea of how to use the
infrastructure.

You may also look through the code that implements the Verilog infrastructure, but there are
some concepts used in that code that we haven’t discussed yet. We will talk more about the
code when we discuss these concepts.

Project Description

Create a C program called simModule.c. This program is very similar to the simVerilog.c
program you created for installment 3. You may start with the code you used for installment 3,
and modify it to accommodate the new installment 4 requirements.

The simModule.c program needs to:

1. Check to make sure there are at least 3 command line inputs specified. If not, print a
message that indicates what the command line should be, and exit with a non-zero
return code.

2. Invoke the Verilog openModule statement passing argv[1] in as the argument, and
keeping track of the module number returned. (If there is a problem reading the Verilog
file, openModule will exit the program for you, so there is no need to check to see if it
worked.)



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

3. Loop through the remaining command line inputs. Invoke the “atoi()” library function to
get the integer value represented by each command line argument, and use that value
to set each module input pin in the Verilog circuit to that value, using the order the
module input pins appear in the Verilog module header. If there are not enough
command line values, print the names of the input module pins which were not set. If
there were too many command line values specified, print the values not used in a
message.

4. Loop through the circuit as long as some activity occurs, where activity is either setting a
pin in the circuit to a known value, or setting a net in the circuit to a known value. Inside
this loop you will net to:

a. Propagate all source pin values to nets.
b. Propagate all net values to net sinks.
c. Evaluate all instances and set the instance output pin based on the input values.

5. Print the result to the user using the printModulelO function.

6. Invoke the freeModule function for your module.

7. If your program worked correctly, return an exit code of zero.

This is the exact same set of instructions as in installment 3. There is only one subtle difference.
In 4.c. when | say “Evaluate all instances”, in installment 3, those instances were instances of
gates. In installment 4, those instances may still be gates, but they may be instances of lower
level Verilog circuits. Forinstance, the MUX4.v Verilog file has an instance statement of the
form:

MUX2 sel01(10,11,50,sel01out);

... This instance statement says that instance with instance name “sel01” is an instance of the
MUX2 circuit, represented by the file MUX2.v. The I0 net connects to the first module pin of
MUX2, the I1 connects with the second module pin of MUX2, the SO pin connects with the third
instance pin of MUX2, and the sel0lout net connects with the fourth instance pin of MUX2. You
will need to find all the input pins in this instance (and the Verilog infrastructure has pre-read
MUX2.v so it knows which pins are inputs and which are outputs), find the values in the MUX4
circuit for those input pins, make a new version of MUX2 by running the openModule function
for MUX2, and set the module input pins for MUX2. Then you will need to simulate MUX2.
Once that is done, you can then look at the module output pins for MUX2, and use their value
to set the instance pin values for the output instance pins in the MUX4 circuit.

This sounds hard, but you already know how to simulate the MUX2 circuit. We did that in
installment 3. You just need to figure out how to make the simulation code into a function and
invoke that function recursively when there is an instance of a Verilog circuit.

There are some rules about the instances of lower level Verilog circuits, as follows:

1. The instance name in the instance statement should be the name of a Verilog file,
except the Verilog file will have a .v suffix.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

2. ltisinvalid to create Verilog with circular references. In other words, if the MUX4.v file
instances MUX2, then the MUX2.v file may not reference MUX4.

3. Because of rule 2, eventually you must get to Verilog circuits which contain only gates.

4. If thereis an instance of a lower level circuit, but no file exists in the current directory
with that name, the results should be unknown. (You may issue an error message and
quit if you want to, but | found it easier to continue simulation with the output pin
values unknown.)

The following is an example of a correctly coded program:

>./simModule AND_2 1 0O

AND_2 Inputs: AO=1, Al=0; Outputs: z=0;

>./simModule Mux2 1 0 1

MUX2 Inputs: I0=1, I1=0, SEL=1; Outputs: z=0;

>./simModule Mux4 1 0 1 0 0 0

MUX4 Inputs: I0=1, 11=0, 12=1, 13=0, S1=0, SO0=0; Outputs: z=1;

Hints and Suggestions
e Don't forget to include “verilog.h” in your program, and to compile using the command:
gcc -g -Wall -o simModule simModule.c verilog3.c
e Use the printModuleState function to see what is set and what is not set to debug your
code.
e Use the gdb debugger to help find specific problems in your code.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

Project Submission
Upload your simModule.c file in the Project Installment 4 submission area on MyCourses in the
Content area under “Project Submissions”.

Project Grading

After the due date, your submission will be graded as follows. The project is worth 100 points.
Your code will be compared to all other student’s code using an automated code plagiarism
checker that can detect copied code even if you try to “fix” it after copying. Then, your code will
be compiled on a BU Linux machine. If there are compiler errors, the professor will attempt to
fix your code. If your code can be fixed, the rest of the grading will be performed on that fixed
code. Once compiled, your code will be tested with various Verilog circuits that contain one or
more gates with various inputs. The results will be compared to correct results, based on the
requirements above. Points will be deducted for the following reasons:

Problem Deduction

Bad submission (e.g. name not simModule.c) | -5 points

Compiler or logic error that can be fixed -15 points per error

Unfixable error, or >4 errors -60 points

Compiler warning messages -5 points per type of warning message
lllegible or Poorly formatted code Up to -10 points

Incorrect results -10 points per invocation (up to -40 points)
Late submission -10 points per every 24 hours late

Code matches another student’s code -100 points




CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

Verilog Infrastructure Reference

The Verilog Infrastructure consists of a series of functions provided to you. These functions will
read a Verilog file, and return information to you about the contents of that file. The functions
also provide the capability to specify and retrieve Boolean values on pins and nets in the Verilog
circuit defined within the Verilog file.

The infrastructure keeps track of entities in the Verilog circuit, such as modules, pins, nets, and
instances using arbitrary numbers which can be thought of a module numbers, pin numbers,
net numbers, and instance numbers. | will use variable names “mn”, “pn”, “nn”, and “in” to
keep track of the module number, pin number, net number, and instance number in this
reference. When there are lists of entities, such as the list of nets in a module, there will be a
function that returns the size of that list (e.g. moduleNumNets(mn)). You can then specify an
index into that list —any number between 0 and the size of the list — 1 as the “index” into the
list. For each list, there is a function which takes an argument that is the index into the list, and
returns the number associated with the entity in the list. | will use variable names “pi”, “ni”, “ii”
and “si” to reference the index of a pin in a pin list, the index of a net in a net list, the index of
an instance in an instance list, and the index of a sink in a sink list respectively in the following
documentation. For instance, to loop through all the nets in the module with module number
mn, you can use the following code:

’

for(int ni=0;ni<moduleNumNets(mn);ni++) {
int nn=moduleNet(mn,ni);
// Handle net with net number nn

}

Top Level Functions
int openModule(moduleName)

e Argument: char * moduleName — the name of a Verilog module.

e Function: Reads file moduleName.v (where moduleName is the argument) and collects
all the information about the circuit described in that file in internal tables. If there are
any errors, such as file not found or incorrect Verilog data, a message will be printed,
and the program will abort. If everything is successful, the module number will be
returned for later use.

e Return Value: The module number (mn) to be used in other calls.

char * moduleName(mn)

e Argument: int mn —the module number of a Verilog circuit.
e Function: retrieves the module name of the function
e Return Value: A string (character array) that contains the module name

void printModuleState(mn)



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

e Argument: int mn —the module number of a Verilog circuit.

e Function: Prints out all known information about the Verilog module mn. To be used to
debug —to see all the nets, pins, and instances and all the known information about
those entities.

void printModulelO(mn)

e Argument: int mn —the module number of a Verilog circuit.
e Function: Prints the module name, and the module pins and their values. This is the
expected form of output when simulating a gate or a circuit in this project.

void freeModule(mn)

e Argument: int mn —the module number of a Verilog circuit.

e Function: Releases all the information associated with module mn (and recovers space
used by that module). After freeing a module, the module number should not be used
as arguments to subsequent calls to other infrastructure functions.

Module to Pin Functions
Each module contains both module pins and internal pins. Both are kept in a single list, but the
module pins occur first in that list.

int moduleNumModulePins(mn)

e Argument: int mn —the module number of a Verilog circuit.

e Function: Retrieve the number of module pins contained in module mn, so that you can
calculate the pin indexes (pi) from 0 to this number to be used in the modulePin
function.

e Return Value: The number of module pins in module mn.
int moduleNumPins(mn)

e Argument: int mn —the module number of a Verilog circuit.

e Function: Retrieve the number of pins (both module pins and internal pins) contained in
module mn, so that you can calculate the pin indexes (pi) from 0 to this number to be
used in the modulePin function.

e Return Value: The number of pins in module mn.

int modulePin(mn,pi)

e Arguments: int mn —the module number of a Verilog circuit.
int pi — The pin index of a pin in module mn
e Function: Asserts that pi<kmoduleNumPin(mn), and retrieves the pin number associated
with pin index pi in module mn. Note that for very simple Verilog circuits, the pin
numbers may match the pin indexes, but in general this will not be true.
e Return Value: The pin number (pn) of the pit" pin in module mn.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

Pin Functions
The following functions assume you know the pin number (pn).

char * pinName(pn)

e Argument: int pn —the pin number of a Verilog pin.

e Function: asserts that pn is a valid pin number, then retrieves the name of the pin. For
module pins, this is the name of the pin itself. For instance pins, this is the instance
name, followed by a dot, followed by the name of the pin in the instance. For gate
instances, pin names are arbitrarily AQ, Al, ... for input pins, and Z for the output pin.

e Return Value: A string (character array) that contains the pin name of pin pn.

char pinDirection(pn)

e Argument: int pn —the pin number of a Verilog pin.
e Function: asserts that pn is a valid pin number, then retrieves the direction of the pin.
e Return Value: ‘I if pnis an input pin, ‘O’ if pn is an output pin.

int pininstance(pn)

e Argument: int pn —the pin number of a Verilog pin.

e Function: asserts that pn is a valid pin number, then retrieves the instance number of
the instance associated with the pin. If the pin is a module pin, it does not have an
instance, so a -1 is returned.

e Return value: The instance number (in) of the instance associated with pin pn.
int pinNet(pn)

e Argument: int pn —the pin number of a Verilog pin.
e Function: asserts that pn is a valid pin number, then retrieves the net associated with

pin pn. Since all pins in Verilog are connected to a single net, this will return a single
result.

e Return Value: The net number (nn) of the net connect to pin pn.
int pinValue(pn)

e Argument: int pn —the pin number of a Verilog pin.

e Function: asserts that pn is a valid pin number, then retrieves the Boolean value of the
pin. The value is initialized to -1 (unknown) but can be set by the setPinValue function.

e Return Value: The Boolean value associated with pin pn.

int setPinValue(pn,val)

e Argument: int pn —the pin number of a Verilog pin.
int val — The Boolean value (should be 0 or 1) to be put on pin pn.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

e Function: asserts that pn is a valid pin number. If the pin value matches the val
argument, returns zero. Asserts that the pin value is -1 (uknown) because it is an error
to set the same pin to a different value. Sets pin pn’s value to val, and returns a 1.

e Return Value: A zero if the pin value did not change, or a 1 if the pin value was set to the
specified val.

Module to Net Functions
int moduleNumNets(mn)

e Argument: int mn —the module number of a Verilog circuit.

e Function: Retrieve the number of nets contained in module mn, so that you can
calculate the net indexes (ni) from 0 to this number to be used in the moduleNet
function.

e Return Value: The number of nets in module mn.
int moduleNet(mn,ni)

e Arguments: int mn —the module number of a Verilog circuit.
int ni — The net index of a net in module mn
e Function: Asserts that nikmoduleNumNets(mn), and retrieves the net number
associated with net index ni in module mn. Note that for very simple Verilog circuits, the
net numbers may match the net indexes, but in general this will not be true.
e Return Value: The net number (nn) of the ni™ net in module mn.

Net Functions
The following functions assume you know the net number (nn).

char * netName(nn)

e Argument: int nn —the net number of a Verilog net.
e Function: asserts that nn is a valid net number, then retrieves the name of the net.
Return Value: A string (character array) that contains the net name

int netSource(nn)

e Argument: int nn —the net number of a Verilog net.

e Function: asserts that nn is a valid net number, then retrieves the pin number of the
source pin of net nn.

e Return Value: The pin number (pn) of the source pin of net nn.

int netNumSinks(nn)

e Argument: int nn —the net number of a Verilog net.

e Function: asserts that nn is a valid net number, then retrieves the number of sink pins so
that you can calculate the sink indexes (si) from 0 to this number to be used in the
netSink function.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

e Return Value: The number of sink pins for net nn.
int netSink(nn,si)

e Arguments: int nn —the net number of a Verilog net.
int si — The sink index of a sink for net nn

e Function: Asserts that siknetNumSinks(nn), and retrieves the pin number associated
with sink index si in net nn.

e Return Value: The pin number (pn) of the sit sink of net nn.

int netValue(nn)

e Argument: int nn —the net number of a Verilog net.

e Function: asserts that nn is a valid net number, then retrieves the Boolean value of the
net. The value is initialized to -1 (unknown) but can be set by the setNetValue function.

e Return Value: The Boolean value associated with net nn.

int setNetValue(nn)

e Argument: int nn —the net number of a Verilog net.

e Function: asserts that nn is a valid net number. Then retrieves the source pin number for
the source pin of this net, and that source pin’s value. If the net value matches the
source pin’s value, returns zero. Asserts that the net value is -1 (uknown) because it is
an error to set the same net to a different value. Sets net nn’s value to source pin’s
value and returns a 1.

e Return Value: A zero if the net value did not change, or a 1 if the net value was set to its
source pin’s value.

Module to Instance Functions
int moduleNumlInstances(mn)

e Argument: int mn —the module number of a Verilog circuit.

e Function: Retrieve the number of instances contained in module mn, so that you can
calculate the instance indexes (ii) from 0 to this number to be used in the
modulelnstance function.

e Return Value: The number of instances in module mn.

int modulelnstance(mn,ii)

e Arguments: int mn —the module number of a Verilog circuit.
int ii — The instance index of an instance in module mn
e Function: Asserts that iikmoduleNumlInstances(mn), and retrieves the instance number
associated with instance index ii in module mn. Note that for very simple Verilog
circuits, the instance numbers may match the instance indexes, but in general this will
not be true.

e Return Value: The instance number (in) of the iit" instance in module mn.



CS-211 Fall 2019 Project — Installment 4 Due: Dec. 8, 2019

Instance Functions
The following functions assume you know the instance number (in).

char * instanceName(in)

char *

Argument: int in — the instance number of a Verilog instance.

Function: asserts that in is a valid instance number, then retrieves the instance name of
the instance. Note that the instance name is a unique name within this Verilog circuit of
the instance, and is different from the instance module name (see instanceModule
nstanceModuleName).

Return Value: A string (character array) that contains the instance name

instanceModule(in) iastanceMeoduleNamelin}

Argument: int in — the instance number of a Verilog instance.

Function: asserts that in is a valid net number, then retrieves the name of the gate that
is being instanced in this instance, which should be one of “and”, “or”, “xor”, or “not”.
Note that the instance module name is different from the instance name (see
instanceName).

Return Value: A string (character array) that contains the name of the gate instanced by
instance in

int instanceNumPins(in)

Argument: int in — the instance number of a Verilog instance.

Function: asserts that in is a valid instance number, then retrieves the number of pins
connected to this instance so that you can calculate the pin indexes (pi) from 0 to this
number to be used in the instancePin or instanceNet functions.

Return Value: The number of pins connected to instance in.

int instancePin(in, pi)

Arguments: int in — the instance number of a Verilog instance.
int pi — The index of a pin on instance in
Function: Asserts that pi<instanceNumPins(in), and retrieves the pin number associated
with pin index pi in instance in.
Return Value: The pin number (pn) of the pit" pin of instance in.

int instanceNet(in,pi)

Arguments: int in — the instance number of a Verilog instance.
int pi — The index of a pin/connection on instance in
Function: Asserts that pi<instanceNumPins(in), and retrieves the net number associated
with connection index pi in instance in.
Return Value: The net number (nn) of the pit" connection of instance in.



