
CS-211 Fall 2019 Project – Installment 2 Due: Oct. 28, 2019 

Simulating Verilog Gates 
Background 
The Wikipedia article on Verilog starts off with “Verilog, … is a hardware description language 

(HDL) used to model electronic systems. It is most commonly used in the design and verification 

of digital circuits at the register-transfer level of abstraction.”  Most of you are taking or have 

taken a Digital Logic course, so should be very familiar with digital circuits by now. The first 

installment of the project dealt with the capability to simulate the actions of four very simple 

gate types, an INV gate, an AND gate, an OR gate and an XOR (exclusive or) gate. The second 

installment extends that capability by describing the simple logic gates using Verilog. 

Verilog Infrastructure 
We talked about the structure of a Verilog file, as well as the infrastructure I have created that 

reads a Verilog file and makes the information from that file available to you via a series of 

function calls to the Verilog infrastructure functions. Reread the notes for lecture P01 for a 

complete description of these functions.  

I have also included a C program called “printCircuit.c” which is an example of how to use the 

Verilog infrastructure. Look at this code to get some idea of how to use the infrastructure. 

You may also look through the code that implements the Verilog infrastructure, but there are 

some concepts used in that code that we haven’t discussed yet. We will talk more about the 

code when we discuss these concepts. 

Project Description 
Create a C program called simGate.c. This program needs to: 

1. Check to make sure there are at least 3 command line inputs specified. If not, print a 

message that indicates what the command line should be, and exit with a non-zero 

return code. 

2. Invoke the Verilog openModule statement passing argv[1] in as the argument, and 

keeping track of the module number returned. (If there is a problem reading the Verilog 

file, openModule will exit the program for you, so there is no need to check to see if it 

worked.) 

3. Loop through the remaining command line inputs. Invoke the “atoi()” library function to 

get the integer value represented by each command line argument, and use that value 

to set each module input pin in the Verilog circuit to that value, using the order the 

module input pins appear in the Verilog module header. If there are not enough 

command line values, print the names of the input module pins which were not set. If 

there were too many command line values specified, print the values not used in a 

message. 

4. Propagate all input pin values to nets. 

5. Propagate all net values to net sinks. 

6. Evaluate all instances and set the instance output pin based on the input values. 

https://en.wikipedia.org/wiki/Verilog


CS-211 Fall 2019 Project – Installment 2 Due: Oct. 28, 2019 

7. Propagate all input pin values to nets. 

8. Propagate all net values to net sinks. 

9. Print the result to the user using the printModuleIO function. 

10. Invoke the freeModule function for your module. 

11. If your program worked correctly, return an exit code of zero. 

The following is an example of a correctly coded program: 

Hints and Suggestions 

• Remember, argv[0] is the command itself. You might want to use this in your messages 

instead of hard coding “simGate”. 

• In this installment of the project, you will use the entire command line argument string 

for each command line argument. Pass the first command line argument (other than the 

command itself) into the openModule() function. Pass the remaining command line 

arguments into the atoi() function. 

• You can use the same logic you used to complete installment 1 to evaluate the gate 

instances. Feel free to cut and paste from your installment 1 submission (if you got it 

right.) 

• Remember, you cannot compare two strings using the “==” or “!=” operators. You must 

include string.h, and use the library function strcmp to compare two strings. The strcmp 

function returns a zero if its two arguments are equal, or a non-zero if they are 

different.  So for instance, to check to see what kind of gate is instanced, you will need 

to code:  strcmp(instanceModuleName(in),”inv”), and check to see if the result is zero or 

no-zero. 

• Don’t forget to include “verilog.h” in your program, and to compile using the command: 

  gcc -g -Wall -o simGate simGate.c verilog.c 

  

./simGate AND_2 1 0 
AND_2 Inputs: A0=1, A1=0; Outputs: Z=0; 
 



CS-211 Fall 2019 Project – Installment 2 Due: Oct. 28, 2019 

Project Submission 
Upload your simGate.c file in the Project Installment 2 submission area on MyCourses in the 

Content area under “Project Submissions”. 

Project Grading 
After the due date, your submission will be graded as follows.  The project is worth 100 points. 

Your code will be compared to all other student’s code using an automated code plagiarism 

checker that can detect copied code even if you try to “fix” it after copying. Then, your code will 

be compiled on a BU Linux machine.  If there are compiler errors, the professor will attempt to 

fix your code.  If your code can be fixed, the rest of the grading will be performed on that fixed 

code.  Once compiled, your code will be tested with various simple Verilog circuits that contain 

a single gate with various inputs. The results will be compared to correct results, based on the 

requirements above. Points will be deducted for the following reasons: 

Problem Deduction 

Bad submission (e.g. name not simGate.c) -5 points 

Compiler or logic error that can be fixed -15 points per error 

Unfixable error, or >4 errors -60 points 

Compiler warning messages -5 points per type of warning message 

Illegible or Poorly formatted code Up to -10 points  

Incorrect results -10 points per invocation (up to -40 points) 

Late submission -10 points per every 24 hours late 

Code matches another student’s code -100 points 

 


